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Creating robust quantum operations is a major challenge in the current noisy intermediate-scale quantum
computing era. Recently, the importance of noise-resilient control methods has become more pronounced in the
field. Ordinarily, noisy quantum systems are described by the Lindblad equation. However, minimizing noise
susceptibility using this equation has proven challenging because of its irreversibility. In this study, we propose a
method for creating robust pulses based on the stochastic Schrodinger equation. This equation describes individ-
ual noise realizations under any colored noise process, contrary to the Lindblad equation, which describes mean
system behavior under white noise. Using stochastic optimal control techniques, our method, fidelity-enhanced
variational quantum optimal control, is able to construct higher-fidelity paths than its nonstochastic counterpart.
By accounting for both environmental noise sources as well as noise sources inherent to the control system,
highly significant increases in fidelity are noted for both single- and multiple-qubit state preparations.
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I. INTRODUCTION

In the noisy intermediate-scale quantum (NISQ) era, quan-
tum computers operate with a limited number of qubits that
are highly susceptible to noise [1], stemming from sources
like stimulated emission, measurement errors, or control noise
[2-4]. To advance beyond this stage in terms of noise re-
silience and scalability, significant improvements in both
hardware and control software are essential. One promising
approach on the software level is to create quantum opera-
tions that are least susceptible to noise by refining the control
function, or pulse, that determines the trajectory of qubit states
within the Hilbert space. Pulse construction algorithms aim to
discover an optimal control pulse that transitions a qubit from
an initial state to a (possibly unknown) target state. This field
of study has gained research attention in recent years [5-7]
with a focus on error mitigation, that is, minimizing noise and
errors affecting the final state. One of the simplest strategies
is to construct time-optimal pulses that reduce the exposure of
the system to noise by shortening the interaction time of the
system with its environment, as demonstrated in [8,9].

More sophisticated approaches for noise mitigation have
also emerged. For example, dynamic decoupling meth-
ods apply nearly instantaneous pulses to counteract static
system-environment interactions [10,11]. Rather than directly
countering the effects of noise, Refs. [12—16] develop pulses
that guide the qubit state along paths that are less suscepti-
ble to noise. These approaches introduce time-independent
noise and use cost functions based on the fidelity with re-
spect to a predefined gate. Of these approaches, Refs. [12,13]
optimize gates using gradient estimation techniques, while
Ref. [14] takes a supervised learning approach. Other
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research, such as Refs. [15,16], employ analytical methods
like inversion and perturbation techniques. Additionally, re-
cent work in Refs. [17,18] revolves around designing pulses
to maximize fidelity while considering the Lindblad equation,
using estimated gradients and a known target state. In this
context, Ref. [19] investigates the optimal control of the Lind-
blad equation via Pontryagin’s maximum principle [20] as an
alternative.

Instead of just looking at the mean behavior of a quantum
system described by the Lindblad equation, we found that
examining individual realizations improves error analysis for
state preparation. This can be achieved using a stochastic un-
raveling (or stochastic dilation) of the Lindblad equation with
the stochastic Schrodinger equation (SSE) [21-23]. Our focus
here is on noise sources driven by classical noise processes
originating from the control pulses used in qubit state evo-
lution. This includes noise in laser intensity and frequency,
which often limit fidelity [24,25]. Considering only classical
noise also simplifies the analysis as it fixes one physically
accurate unraveling of the Lindblad equation from many pos-
sible options [21], allowing for a clearer understanding of how
these common factors influence quantum systems. Addition-
ally, this method enables us to calculate the entire distribution
of prepared states, moving beyond just the mean value [26].
This results in novel insights into individual state prepara-
tions, allowing for more advanced optimal control techniques
designed for stochastic processes [27]. We further consider
noise intensities that scale with the amplitude of the control
pulse, as would be the case in intensity noise in neutral atom
systems [28] or flux noise in superconducting systems [29].

Since the SSE serves as a possible unraveling of the
evolution of density matrices, (non-Markovian) Lindblad-
type master equations can be derived from it, as shown in
Refs. [26,30,31]. In Ref. [32], optimal control techniques
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have been applied to create specific spatial wave functions
through the SSE. Meanwhile, Ref. [33] rigorously shows the
existence of solutions from a mathematical standpoint. Two
other works have utilized the SSE for enhancing fidelity in
quantum operations. Reference [34] does this with a focus
on quantum error correction rather than addressing noise
mitigation, whereas Ref. [35] uses path-integral approaches.
Regarding robust optimal control methods based on the Lind-
blad equation, Ref. [19] unravels the Lindblad equation into
a potentially nonphysical form and uses arbitrary Lindblad
decay operators. In contrast, our stochastic process is based
on classical control noise, resulting in physically significant
realizations. The work most closely aligned with ours is pre-
sented in Ref. [17], where closed systems are analyzed and
Hamilton-Jacobi-Bellman equations [36] are used for opti-
mality conditions. Our work differs in the fact that we use
analytic gradients derived from stochastic optimal control
rather than estimated gradients, demonstrating practical ap-
plications through numerical examples.

In this work, we present a pulse construction method
called fidelity-enhanced variational quantum optimal control
(FVQOC) based on the optimal control of the SSE, which we
believe offers four key advantages.

(i) The method is based on analytical gradients, allowing
for the creation of high-fidelity pulses for systems with arbi-
trary numbers of qubits.

(i) It accommodates classical colored noise [37], enabling
more realistic noise profiles on practical control systems based
on power spectral densities [38] compared to approaches as-
suming white noise.

(iii) Fidelity optimization can be combined with unknown
state preparations, such as ground-state optimization in vari-
ational quantum optimal control (VQOC) [39] and other
pulse-based variational quantum algorithms [6,7,40], result-
ing in improved error rates.

(iv) The algorithm generates pulses tailored to specific
experimental setups by incorporating the characteristic noise
operators of a system, allowing qubits to avoid noise-prone
regions of the Hilbert space.

The layout of this paper is as follows. Section Il recalls (de-
terministic) VQOC, which is indifferent to noise. In Sec. III
we detail the SSE and establish a framework that enables
optimal control techniques. Section IV provides the pulse
optimization scheme for FVQOC. In Sec. V we show initial
results for our model on single- and multiple-qubit state and
gate preparation, using classical white and colored noise.

II. VARIATIONAL QUANTUM OPTIMAL CONTROL

In VQOC [39], a noiseless state' ¢ evolves according to
the Schrodinger equation as

dey _ 0 —

- =HOb, $0) =g,

H(t):=) z/H, 120, (M)
jeJ

!For readability purposes, standard bra-ket notation is replaced by
daggers to indicate conjugates, as in Refs. [26,30].

Susceptibility

|1)

FIG. 1. Illustration of a higher-fidelity path (blue) on the Bloch
sphere found by FVQOC, compared to the low-fidelity path (purple)
found by standard VQOC. The incorporation of fidelity in the cost
function leads to differing gradients V,J and subsequently lower

error outcomes. Shades on the Bloch sphere indicate areas of high
or low susceptibility to noise.

where z := (z/) jes 18 the vector of control pulses indexed by
a finite set J and H (¢) is the control Hamiltonian made up of
a combination of Hamiltonians H;, j € J. The goal is to find
optimal pulses by minimizing a cost functionJ = J; + J, with

2\ | z A 2
N1(2) == (¢}) Hug®},  a(z) = EHZ”za (2)

where ¢? is the unique solution corresponding to the
Schrodinger equation (1) for a specified control 2,2 Higg
is a given target Hamiltonian of which the ground state
¢rarg 1s to be constructed, with ground-state energy Eiye =
¢§aIgHtarg¢larg- The functional J; represents the energy of the
state at time ¢ = 7T, while the J, term penalizes for high-
amplitude pulses.

In VQOC [39], the Gateaux derivative V_J is calculated
via adjoint methods and is determined as

T . .
VJ(z)(8z) = — A f 7/ 8z dt
0

T 4
- / 2i(@2) (H]. T (T. )Hy (T 1))
0

x ¢r8z]dt, 3)

where T'(¢, s) := U(¢)U7(s), with U the unitary solution op-
erator satisfying ¢ = U (t)¢. Following the steepest descent
along this gradient yields pulses that will map ¢ to a (local)
minimizer of the cost function J via (1).

For every ground-state preparation problem, there are in-
finitely many possible paths ¢, connecting the initial state ¢g

2For notational purposes, we will write ¢, for ¢Z, where the depen-
dence on z is implicit.
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and the final state ¢7. Figure 1 illustrates that some of these
paths will be more susceptible to noise than others and thus
will lead to worse final fidelity. If A > 0, the optimization
algorithm will try to minimize the control function amplitude
supplied to the system and thus reduce the influence of noise
implicitly, as the signal-to-noise ratio of a control function is
often constant over the signal strength [41]. This parameter
may be increased to ensure that the maximum amplitudes of
the generated pulses remain within experimentally feasible
limits. We note that other pulse constraints, such as max-
imum rise and fall times, are inherently dependent on the
specific system and therefore fall outside the scope of this
investigation. However, the pulses constructed in this study
demonstrate no excessive behavior, as detailed in Sec. V.
During pulse construction, no direct attention is paid to the
specific noise sources in the system. When these optimized
pulses are implemented in experimental contexts, noise will
continuously introduce errors, which are particularly pertinent
in the current NISQ era. This underscores the necessity for
a more sophisticated methodology that explicitly considers
noise, with the objective of achieving higher-fidelity state
preparations.

III. STOCHASTIC SCHRODINGER EQUATION

To take into account the system’s error sources during
pulse construction, a descriptive model for the noise is neces-
sary. These error sources might include spontaneous emission,
dephasing [42], or, as analyzed in this paper, errors in the con-
trols, e.g., caused by intensity or frequency noise in the lasers
[43]. If one assumes a white-noise profile for the control noise,
the mean behavior of the system can be analyzed by the Lind-
blad equation, describing open quantum system evolution, and
pulses that are more robust to these noises can be estimated
numerically as in Refs. [17-19]. However, we instead opt to
employ the SSE since it is more versatile in the noise profiles
and provides information over the entire distribution of states,
which can in turn be used for an analytical method to construct
higher-fidelity pulses. The SSE for the noisy state v is given
by

1 .
dy = iHyidr = 5 leS,‘ S dlx'], +in:SIWthtZ» )

where S := {S;},c, is a family of Hermitian noise operators
indexed by a finite set L and X; = (Xll ):>0 are noise processes
with finite quadratic variation [X n, = ylzt, y; > 0 [30]. This
could be, for instance, white noise with X,’ = W,’ , but also
Ornstein-Uhlenbeck (OU) noise [44] with

dX! = —kX/dt + ydW/, Kk >0,

or any noise sampled from an arbitrary power spectral density.
As an illustrative case, we employ OU noise for this work, as
it has a power spectral density that dominates in the lower
frequencies, which is most common in real-world sources of
control noise [38]. In an ideal scenario, a pulse minimizing the
ground-state energy error

e (¥) := E[w;HtargWT] - Elarg &)

can be found. However, the quadratic dependence of this
cost function on the stochastic wave function ¥; makes

identifying an analytic expression for the gradient difficult.
Instead, we adapt the VQOC problem (2) by adding a so-
called fidelity regularizer to the cost function, i.e.,

J=Ji+Jh+ 5,
T
J3(z) = —,u]E[FZT + v/ Ffds:|, (6)
0

where 1, v > 0 and F?:= [(¢*)"y/*|? is the fidelity of the
stochastic state i with respect to the deterministic state
¢. The choice of regularization parameter values (X, u, v)
is important in the convergence behavior of the algorithm.
Properly tuning these parameters directly influences the algo-
rithm’s performance, affecting its ability to reach an optimal
solution efficiently. If v > 0, the algorithm maximizes the
fidelity over the entire path instead of just the end time.
If © =0, the algorithm is inattentive to the fidelity and is
identical to VQOC. By choosing i > 0, we ensure that the
algorithm prioritizes fidelity conservation, although it will not
fully reach the ground state. It is therefore recommended to
gradually decrease p as the algorithm progresses. This ap-
proach allows the algorithm to first establish a high-fidelity
path and in the subsequent iterations refine its focus towards
the ground state. In essence, FVQOC is a fidelity-regularized
version of VQOC. As a generale rule, we calculate VJ;(z®)
and VJ3(z©), with z© the initial guess for the pulses, and
choose wu = ||V, Ji@Z)/1IVJ3(Z@)]| to ensure both terms
contribute equal orders of magnitude to the cost function.
Similarly, we set A = ||V ,J1(Zz)||/||V,J2(z)].

In Sec. 1V, we provide the Géateaux derivative of Jj,
with the state evolving according to the stochastic differ-
ential equations of (4), for which we employ tools from
stochastic optimal control [27]. To this end, a system
of evolution equations is constructed for the vector n, =
(@ Povre, ¢/ Py, ..., Pav_ 1) T as performed in Ref. [26]
and described in detail in Appendix A. Here N is the number
of qubits and P; are the 4" distinct Pauli matrices. Fixing Py =
I ensures that the fidelity F, can be equivalently expressed as

F,=mnAom,, Ao=1[1,0,0,...,0][1,0,0,...,0]".

The system of equations for » is given by

dn, = gn,, 2)dt + Y fin, )Xy, (D)
l
with

. 1 ;
8n.2):= Y A = 5 > vPB By,
jeJ leL

filn,2) =B, lel,

where the anti-Hermitian matrices A; and B; have elements
(Aj)m,n = iTr(Pm[Hja B = _(Aj)n,m»
(Bl)m,n == lTr(PmPnSl) == _(Bl)n,m-

From (7), one can show that n,T N, = ’78770 = 2 is a conserved
quantity.
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IV. FIDELITY-ENHANCED VARIATIONAL QUANTUM
OPTIMAL CONTROL

Fidelity-enhanced variational quantum optimal control
aims to minimize the cost function presented in (6) by em-
ploying an analytic gradient descent approach. To achieve
this, we need to determine the Giteaux derivative of the cost
function. For the J; and J, terms outlined in (6), the Gateaux
derivative has been computed in Ref. [39], as given in (3).
For the fidelity term J3, techniques derived from stochastic
optimal control are required to compute the Gateaux deriva-
tive. The calculations follow the general approach established
in Ref. [27] and are detailed in Appendix B. The Gateaux
derivative of J3 takes the form

T
VJ3(Z)(5Zj):E|:/ KZ_,‘(ntvztv ptart)(st(t)d[i|v
0
where

K.z, p,r) = Aon, + p'em. )+ Y rl fi(n, 2).
[

Here p and r are variables of backward stochastic differential
equations, which are known to be difficult to solve [45], both
analytically and numerically [46]. We will examine two cases
that are of physical relevance, where the Gateaux derivative
can be explicitly expressed using only forward stochastic dif-
ferential equations, as elaborated in Appendix B. These are
fixed noise, described in Sec. IV A, and scaled noise, as in
Sec. IV B. Finally, in Sec. IV C we will address the challenge
of optimizing the fidelity over entire unitaries / — Uy in-
stead of a single state preparation ¢y — @arg.

A. Fixed noise

When the noise strength y > 0 is independent of the con-
trol functions, as is typical in scenarios involving external
noise sources such as auxiliary electric fields [12,47], sponta-
neous decays, or stimulated emission, the Gateaux derivative
can be expressed as

T
VJ3(z)(6z;) :]E[/ ;,\D,Ajnt8zj(t)dt:|,
0

T
&= ”TTAOCDT + V/ ! Ao®yds,
t

where @ is the solution operator of the stochastic system
(7, n, = ®,x0, and ¥ = ®~!, Both ® and ¥ follow forward
stochastic differential equations and can thus be solved nu-
merically using Monte Carlo simulation (see Appendix C),
allowing for accurate and efficient approximation of the ana-
Iytic expression for the gradient.

B. Scaled noise

In realistic quantum systems, the noise associated with
control pulses typically scales, most often linearly, with the
amplitude of those pulses, e.g., amplitude and frequency
noise. This scaling can be factored into the noise model (7)
by considering noise processes dY; ; = yi./|zc)|dX;,, which
keeps the signal-to-noise ratio d[Y];/|z.)| fixed. Here ¢
maps the pulse z;(¢) to which the noise profile X; ; scales, and

ALGORITHM 1. FVQOC for fixed noise.

input: z©, H,, ¢o, #iter, #trials
output: 250, B[]+ Hurg Vo 1]
// Pulse Optimization Procedure
for k = 0 to #iterations do
calculate VJ;, VJ,;
for w = 0 to #trials do
generate X; ,;
calculate 5, @, ¥,;
VI = toVuA i,
end
T =0 — (VI + VL + E[VIP]):
end
// Final Energy Determination
for w = 0 to #trials do
generate X, ; /;
calculate U, (z#i®);
end
return 20, ., [ U (T) Hiare Uo (T b0 ;

y1 > 0 serves as the base noise level. The scaled noise SSE
takes the form

1
dn, = 2OAde = = 3yl lzea)©)1B] B dIX;
l

jeJ
+ Y vz OB, dXo .
!

Assuming that X; ; is generated? by a white-noise process W, ;,
the derivative now takes the form

T
VJ3(z)(8z;) =E|:/ & (Aﬂhdt
0

1 Vi
+ ~————=Bin,dW,, |8z;(t)dt
l|cuz>:j2lz/<r>|l/2 B A

For both fixed and scaled noise, the Gateaux derivatives are
determined by first generating noise realizations X; ;(w) and
subsequently calculating x(w), ¥(w), and ®(w) for each of
these realizations. We then obtain the gradients by averaging
these results. The pseudocode in Algorithm 1 shows an imple-
mentation of FVQOC for fixed noise, which adapts easily to
the scaled noise version.

C. Gate optimization

Alongside state preparation (transitioning ¢g t0 ¢rg), a
key challenge is the construction of a complete unitary trans-
formation Uyyg. At first sight, one may not expect VQOC to
benefit significantly from fidelity optimization because of the
following naive intuition: Rotating one state out of a noisy
region would merely rotate another into that same noisy re-
gion. Yet we will study the problem as it reveals surprising
and insightful conclusions.

3Note that this does not imply X, = W;,; instead, X;,’s only ran-
dom source is W, e.g., Ornstein-Uhlenbeck noise [22].
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The evolution of both the noisy unitary U and the noiseless
unitary V is characterized by

. 1 ot .
dU; = iHU;dt — > XI:SI SUAX ]+ XI:S,U,dX,_,,

dv; =iHV,dt, U0)=V(0) =1

For this problem, the ground-state energy reads
J1(V) = —[Tr (U V)l

The fidelity equivalent for gates F, is given by an integral over
all possible initial states ¢ distributed according to the Haar
measure Uyaar [48]:

J(U, V) = E[ f Al Umouﬂaar(d«po)]

=K |:<0'/: UTV;UTU,UHaar(dU)‘O>:|
U

1
= Z—NJE[Tr(vTT Ur)l,

where the last equality holds by the averaging property of the
Haar measure, stating that, for any operator O,

e _ 1
/ U"0U pygaar (U ) = 2—NTr(O)I.
The operator Q, := Vf U, evolves according to

. 1 .
dQ; = ilH, Q,]dr — ; Y281 S10,dt +i Z&Q;dxz,,,

with initial data Q(0) = I. The continuous-time case (v > 0)
may be considered in a similar fashion.

The minimization for J3, in this case, can be done using
stochastic optimal control with

n, = {Tr(RQr), Te(P1Qy), . ..., Tr(Pyv_1 Q).

Noticeably, this system evolves exactly as (7), but with 5, =
{1,0,0,...,0}, and thus acts as if the initial states 5, =
{1,701, ..., non} in (7), where {noy, ..., noy} are points on
the (4V — 1)-dimensional sphere, are averaged out in the full
gate optimization case.

Furthermore, considering white noise X;, = y;W;, and
Pauli-type noise operators S;Sl = I, we obtain

d _ _l 2 T _ _1 2
EE[TY(Qz)] =37 E[Tr(S'SO)] = 7Y E[Tr(Q0)],

indicating that the fidelity term J3(U, V') remains independent
of the choice of pulses, as hypothesized at the beginning
of this section. Nevertheless, when S'S # I or in scenarios
involving noise sources beyond white noise, one could expect
to find a nonzero gradient of J3.

V. RESULTS

In this section, we present several examples to illustrate the
performance of FVQOC and provide a comparison with its
deterministic counterpart, VQOC [39]. In all cases, we will
compare FVQOC both with v > 0 (for the continuous-time
cost) and with v = 0 (for the end-time cost) to VQOC (u = 0,
no SSE). Throughout this section, we incorporate relatively

high noise strengths, characterized by signal-to-noise ratios
on the order of 0.01, which is high but not unreasonable for
NISQ devices [28,49,50]. We do this to distinguish errors
induced by the SSE from those arising from the pulse con-
struction algorithm, which might struggle to find the exact
minimizing pulse for the ground-state problem. Furthermore,
it showcases the effect that FVQOC can have on paths taken
through Hilbert space. All averages are taken over N = 200
runs. For the single-qubit cases, convergence is typically ob-
served after 20 pulse optimization iterations. Therefore, the
maximum number of iterations is fixed at this number. As a
figure of merit, we will generally consider the relative increase
in error [Jerr (¥ )rvoc — Jerr (¥ )voocl/Jer (¥ )vqoc as in (5).

A. Fixed noise

In the case of fixed noise, we analyze a one-qubit prob-
lem with the target Hamiltonian defined as Hyy = —oy.
Hence, the goal is to find control pulses that map the
initial state ¢g = |0) to the ground state ¢, = |+). We as-
sume full control over the Bloch sphere, i.e., we can apply
H; = o; fori € {X,Y, Z}. The control Hamiltonians are sub-
jected to OU control noise, characterized by S; = H;, with
values (yx, vr, vz) = (0.07,0.01, 0.01) and k; = 0.1. To op-
timize the control, we implement the FVQOC with the
parameters (A, i, v) = (0.1, 250, 1) for the continuous cost
function, while setting either v = 0 or u = O for the end cost
and the VQOC, respectively. After ten iterations, we set u = 0
in all cases, aiming to home in on achieving a high-fidelity
path toward the approximate ground state.

The energies and control paths identified in this problem
are illustrated in Fig. 2. One observes that the end-time cost
demonstrates both higher fidelity and lower-energy error com-
pared to VQOC, with the continuous-time cost performing
even better on both metrics. As anticipated, both methods
converge towards the ground state after ten iterations when
@ = 0. The promising performance can be attributed to the
paths found on the Bloch sphere, as shown in Fig. 2(b). Both
FVQOC methods effectively guide the qubit state towards the
ox eigenstates, where it is least susceptible to noise due to the
condition yx > Yy, ¥z. In the final segment of the trajectory,
the state transitions to the target Hamiltonian Hi, = —oy
ground state. Figure 3 shows the calculated pulses for FVQOC
and VQOC. For VQOC, there is no preference for the oy
and oy directions, resulting in uniform pulses. In contrast,
FVQOC produces more intricate pulses due to fidelity reg-
ularization. Nevertheless, these pulses are continuous and,
with adequate experimental control, should be realizable on
contemporary quantum systems.

In this specific example, we see that the choice of the target
Hamiltonian and noise strengths leads to FVQOC obtaining
an intuitively higher-fidelity path than VQOC. However, it
is important to note that FVQOC consistently outperforms
VQOC, even in cases where the optimal control pulse is less
apparent. To illustrate this point, we perform FVQOC simula-
tions using randomized one-qubit target Hamiltonians paired
with uniform random noise strengths y; € [0, 0.1]. Instead of
a random target state and setting Hiarg = I — |@rarg) (Prarg |, We
choose to randomize the entire Hamiltonian H,. This Hamil-
tonian has a broader spectrum, making the ground state harder
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end \
— cont.
—— VQOC
0 5 10 15
iterations

(b)
¢0IO)

FIG. 2. (a) Empirical average energy found per iteration for
FVQOC vs VQOC with (A, u, v) = (0.1,250, 1), H; = 03, S; = H;
with OU noise with (yx, yv, ¥z) = (0.07,0.01, 0.01), and k; = 0.1,
fori € {X,Y, Z}. (b) Paths found on the Bloch sphere from ¢, = |0)
to ¢, = |+) by the various methods.

end Zx
0.4 — cont. —— Zy
— VQOC  :::-: Zz
N\
3 0.21
=}
=
a
E 0.04 sanmmmmmmommoooE P N
[} s
1] N
2 -0.21
—\\\_—_/// =
—-0.41
0 2 4 6

time

FIG. 3. Pulses generated for the example of Fig. 2. Here z; = o
is shown for FVQOC with continuous and end times, as well as for
VQOC.

' ¥ End Time: 85.0%
2.51 : : mmm Continuous: 89.0%
11 == Mean
2.0 11
11 [
. |
‘w 1.5 11
c
(0] |
@) |
|

-0.5 0.0 0.5 1.0
Relative Error Increase (J¢_ yooc = Jvooc)Ivooc

FIG. 4. Distribution of relative ground-state energy error in-
crease for FVQOC vs VQOC with (A, u,v) = (0.1,250,1) for
random one-qubit Hamiltonians Hy,,, H; = S; = 0; with OU noise,
(vx, Yy, ¥z) ~ Unif[0, 0.17%,and k; = 0.1,i € {X, Y, Z}. The legend
indicates the percentage of FVQOC trials outperforming VQOC
counterparts. Mean lines indicate mean relative error increase.

to find [51], showcasing the strength of our method. Figure 4
displays the distribution of relative error between FVQOC
and VQOC for the end- and continuous-time costs for 300
of these random problem initializations. We observe similar
performance improvements both for end- and continuous-time
costs, achieving an average reduction in error by 20% and a
decrease in error in 87% of the cases examined. Notably, the
relative error increases for FVQOC seem to mostly happen
when the absolute fidelity of VQOC is already high.

It is worth mentioning that these results could likely be
further improved by fine-tuning the regularization parameters
within a fixed experimental setup, where the values of y;
are kept constant. Overall, these findings demonstrate that
the FVQOC method effectively balances the minimization
of ground-state energy while conserving fidelity, thereby en-
abling the identification of lower error paths through Hilbert
space.

B. Scaled noise

For scaled noise, the experiment proceeds similarly,
with modifications only to the regularization parameters
set to (A, u,v) =(0.1,60, 1), and u =0 is set only after
15 iterations, as this leads to better convergence perfor-
mance. Furthermore, the target Hamiltonian is specified as
Hiag = —11)(1].

Figure 5 shows the results of the algorithm addressing this
problem. Here VQOC drives ox and oy simultaneously, as this
leads to a lower pulse norm J, = ||z]|;. Consistent with the
findings of the fixed noise case, FVQOC outperforms VQOC
on both occasions by navigating a path closer to the noise
immune eigenstates of oy.

Interestingly, as seen in Fig. 6, while the end-time cost
performs similarly to VQOC, the continuous-time cost signif-
icantly outperforms it in most of the randomized trials. We
hypothesize that this behavior emerges from the scaling of
noise with pulse strength, making the direction of the path
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(@) 100_' 1.000
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1074y — cont.
] — vaoc
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iterations

(b) 10)

FIG. 5. (a) Average energy found per iteration for FVQOC
vs VQOC with (A, i, v) = (0.1,60, 1), H; = 0;, S; = H; with OU
noise with (yx, vy, yz) = (0.07,0.01,0.01), and k; = 0.1, for i €
{X,Y,Z}. (b) Paths found on the Bloch sphere from ¢y = |0) to
¢, = |1) by the various methods.

critically important, rather than its strength. A continuous cost
would then find a path that goes to a noise-insensitive area
early in the evolution, contrasting with the delayed responses
of an end-time cost. Another reason could be due to bad
choices of the regularization parameters (A, u, v). However,
variations of these parameters were tested, and initial findings
suggest that this is not likely.

C. Gate optimization

We implement the gate construction method outlined in
Sec. IV C with the same control Hamiltonians as in the pre-
vious experiments. We consider white-noise processes Sy =
|0)(0] and Sy = |1)(1], with yy = 0.14 and y; = 0.07 respec-
tively. To quantify errors, we analyze the mean and variance
of the quantity Jo,:=1— Tr(UTTVT). Note that S;S; #*1,
indicating that the fidelity J3 may depend on the control
Hamiltonian, as shown in Sec. IV C.

Figure 7 illustrates one specific random target unitary
demonstrating a significant decrease in both infidelity J and

41 ¥ 1 End Time: 38.0%
: : B Continuous: 93.0%
I I = = Mean
3-
| 1
[ | Scaled
fny | |
@ _ | | 1
G2 I I
o [ [
|
I
1
|
|

-0.5 0.0 0.5 1.0
Relative Error Increase ( Jf—VQOC — JVQOC)/JVQOC

FIG. 6. Relative ground-state energy error increase density plots
for FVQOC vs VQOC with (A, u, v) = (0.1,60, 1), H; =0y, S; =
H; with OU noise with (yy, vy, yz) ~ Unif[0, 0.1]%, and k; = 0.1,
for i € {X,Y,Z} and Hy, a random single-qubit Hermitian. The
legend indicates what percentage of FVQOC trials outperform their
VQOC counterpart. Mean lines indicate mean relative error increase.

variance VJ over all possible initial states of the gate. In-
terestingly, we observe that the paths tend to loop around a
certain axis of the Bloch sphere, resembling trajectories that
stay close to the noiseless eigenstates, as shown in Fig. 2.
However, Fig. 8 shows that when sampling many possible
target unitaries, the mean fidelities for VQOC and FVQOC
are similar. This is not surprising given the small gradients
observed in the fidelity term J3. Still, we do see different paths
being taken through the Hilbert space (see Fig. 7), highlight-
ing the effect of the method, which is notable in the variances
of the fidelities. Fidelity-enhanced VQOC shows a preference
towards constructing pulses that result in similar fidelities for

Cont.
VQOC e

F—=VQOC — |VQOC
err err

Jvaoc =-0.11

err

V)£ - vQoc — jveoc
VjeV"T =-0.28

FIG. 7. Example of gate optimization for a single random tar-
get unitary Uy, done using FVQOC vs VQOC with (A, u, v) =
(0.1, 60, 1), H; = 0, Sy = |0)(0], and S; = |1)(1]| with white noise
with (3, 1) = (0.14, 0.07). Shown are three random initial states
(green) and their paths taken by FVQOC (blue lines) and VQOC
(pink lines) to their target states (red).
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FIG. 8. Relative unitary overlap error increase density plots
for FVQOC vs VQOC with (A, u, v) = (0.1, 60, 1), H; = 0;, Sy =
|0)(0], and S; = [1)(1]| with white noise with (yp, y1) = (0.14, 0.07)
and 300 randomly sampled single-qubit unitaries Uy, (one of which
is shown in detail in Fig. 7): (a) relative variance increase and
(b) relative mean increase. The legend indicates what percentage of
FVQOC trials outperform VQOC counterparts. Mean lines indicate
mean relative error increase.

a "
@ ]
3 — end
< —— vQoc
g
10—1 4
\_\_____
0 10 20 3(_) 4Q 50 60 70 80
Iterations
1.00 1.0 A
? 0.99 A "‘é
< +~ 0.51
T 0.98 - =
0.97 1, . . 0.0, . .
0.0 2.5 5.0 0.0 2.5 5.0
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each input state, in contrast to having widely varying fidelity
levels.

D. Multiple qubits

To demonstrate the effectiveness of our methods for multi-
qubit state preparation, we focus on generating Greenberger-
Horne-Zeilinger (GHZ) states on two qubits, represented as
Hyg = |IGHZ)(GHZ|. For each run, we use the parameters
(A, i, v) = (0.1,600, 1). The control Hamiltonian is given
by H = Hi 0z + Zi 2X,i0X,i + 27,i0Z7,i» where index i corre-
sponds to qubit i. For the noise operators, we consider S; =
0x,i with Yy = 007, and Sij = 07,i0Z7,j with Yy = 001, ac-
counting for noise at both single-qubit and multiqubit levels.
We typically find that for two-qubit problems, the conver-
gence of the FVQOC algorithm is reached after 40 iterations.
This is more than the single-qubit case, which is not surprising
given the additional control functions and the higher dimen-
sionality of the space. This scaling behavior is also reported
for VQOC [39].

Figure 9 shows that our method is capable of outper-
forming VQOC on a noisy multiqubit system. As in the
single-qubit case, for general target states, the end-time con-
dition works well only with fixed noise, while the continuous
case performs better in both fixed and scaled noise situations.
This indicates that our method can effectively create control
pulses for preparing important multiqubit states, such as the
GHZ state.

VI. DISCUSSION

This work introduces a versatile pulse optimization strat-
egy based on the stochastic Schrodinger equation. It offers
insights into the fidelity landscape by utilizing the full dis-
tribution of states. The information this gives on individual
realizations proves vital in developing noise-informed control
methods. Our gradient-based method, derived from stochastic
optimal control, constructs high-fidelity pulses for a wide

b
© 10
=
\_,: 10—1 4
=
10_2 k- \ﬁ-—
0 10 20 39 4Q 50 60 70 80
iterations
1.0000 + 1.0
— 0.9995 4 ~
= 0.9990 - < 07
0.9985 A
T T T 0'0 a T T T
0.0 2.5 5.0 0.0 2.5 5.0

time time

FIG. 9. Average energy found per iteration for FVQOC vs VQOC with (A, u, v) = (0.1, 600, 1), H = )", zx ;0x.; + 22,0z, Si = 0x,;, and
Sij = 02,07, with white noise with yx = 0.07 and y,; = 0.01: (a) fixed noise strength and (b) scaled noise strength. The lower plots show
fidelities plus overlap between the target-state GHZ state and the noiseless state, indicating the path taken through state space.
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range of problems affected by various colored-noise pro-
cesses. This approach significantly reduces errors compared
to noise-ignorant methods such as VQOC, particularly in
ground-state preparation tasks. A key advantage of this al-
gorithm 1is its ability to tailor pulses to the specific noise
characteristics of a system. By inputting the noise operators
and their strengths, the algorithm generates pulses that guide
qubits through the least noise-sensitive areas of the Hilbert
space.

In future research, our objective is to establish clearer re-
lations between the optimal regularization constants (A, i, v)
and the system parameters. We also plan to expand our in-
vestigation to include arbitrary noise scaling. Additionally,
we seek to gather more evidence supporting our hypothesis
that continuous-time costs outperform end-time costs in cases
of linear noise scaling. We intend to experimentally vali-
date our methods by comparing the fidelities of VQOC with
FVQOC pulses on a physical quantum computer. This could
be achieved in an early-stage NISQ device by introducing
artificial noise profiles to enhance the observed effects.

J
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APPENDIX A: MATRIX TRANSFORMATIONS

Our quantity of interest is the fidelity F := |¢T1/|?, as the overlap between ¢ (the desired state without noise) and the noisy
state ¢ evolving according to (4). To derive an explicit formula for F, a system of real-valued stochastic differential equations for

avectory € C”, m > 1,is derived where 5, = [¢, Pos, &, P, . .

., @/ Py_1v,]. Here N is the number of qubits and P; is one of

the 4V individual Pauli matrices. Fixing Py = I®N ensures 5 Aoy, = F;, with Ag = [1,0,0,...,0][1,0,0, ..., 0]". The system

of equations for 7 is given by

dn,

where the anti-Hermitian matrices A; and B; have elements

1 2
;Zj(t)Ajﬂrdt 3 Xz: v BB, dt + Z YiBim,dX

l

Lb(t, m, 2+ ) ot m, 2)d Xy,
1

(Aj)m,n = iTr(Pm[Hja B = _(Aj)n,ma
(Bl)m,n = lTr(PmPnSl) = _(Bl)n,m'

From (7) one can show that 5y, = 1]8170 = 2 is a conserved quantity. As xo o = 1, the rest of the initial state can be seen as a point
on the (4" — 1)-dimensional sphere. In certain cases, it is easier to consider the variable Q := gy, which evolves according to

1
dQ = z;()(A;Q — QADdr + 5 ) |y} (=2B10B] + BIBQ + QB[ B)dt + ) _ vi(B10 — QB )Xy,
J l /

which through the Fock-Liouville isomorphism [53] is equivalent to

dV = AVdr + Y BVdX;, +adt + > bidX,,,
l 1

where constant entries of V have been incorporated in the inhomogeneous parts a and b. Note that the first component of V
now directly corresponds to the fidelity F = |¢7v/|>. The size of the system varies depending on the properties of the noise

operator S.

APPENDIX B: DERIVATION OF THE GATEAUX DERIVATIVE

Here we establish the derivation of the Gateaux derivative V.J3 term in (6). We want to find the gradient of

T
J(z) = —puE [ﬂ,TAom + V/ nIAomdS}»
0
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where x evolves under the system of controlled stochastic differential equations given by

1
dn, = zj(O)A;n,dr — 2 > VPlzeny VBB dIX s + Y vilzeny (OB dX,.,.
J l 1

Setting g = 0 or 1, respectively, results in the fixed noise and scaled noise versions. We denote the filtration of all combined
noise processes X;; by F; [54]. For this derivation, we combine the approaches in Ref. [27] (Chap. 11) and Ref. [55], which
generalizes the results in Ref. [27] from white-noise processes to general colored-noise processes.

According to Ref. [55], the Gateaux derivative can be expressed as

T
VJ(Z)(SZj)=]E/ Kz,-(m,Z(t),P(t),r(t))SZj(t)dt]

T
=E /0 piOAm — Y (zy,puw B+ 5 (y)lq/z x (1)B] rz(t)> 82(t)dr
le(h=j

T T T
_ FOVA S _4.2 i gt . 9_ Y i
=K _fo p (t)A,ﬂ,Szj(t)dt} +1|C(12):=,E[/0 2;/, p (t)Ble,Sz,(t)dt} +E[/0 2 O l(t)Bm,(Szj(t)dt]

=: VJ3,(2)(6z;) + VI3 ,(2)(6z;) + VI3 (2)(82;), (B1)

where 7;(t) 1=y, |zc<1)(t)|q/ 27(t)B; 1,, and p and 7 are the unique adjoint processes satisfying

—dpt) = | D zjOATp+ Y VP lzewyO1B]FOBm, + Aom, |dt — (1) Y vilzeay (1Y Bim,dXi, + dN,

j I I

D G OAp+ Y vilzeny 1B r@) + Aon, |dt =Y r(@0)dX, +dN,,  p(T) = Aoy,

J i 1

According to Ref. [55], the solution triplet (p, 7, N) is uniquely determined. Here N is a mean-zero local martingale orthogonal
to all white-noise processes generating the noises X;,. As we assume our noise processes are fully generated by white-noise
processes, this can only be true if N = 0.

From Ref. [27] we find

P / ' (s)Aomds + W (OE[L (0)|F'1,
n(t) = ¥(0)G(t) — yilz(t)9B] p(t),

T
() = N (T)Aon, + V/ @7 (s)Aon,ds,
t
where @ and W are solutions to the forward stochastic differential equations given by

1
o) =) 2{OA; @M — 5 3y lzea/OI"BIBIO@d + ) yilzea I Br®@)dXi,,  @0) =1,
j ! !

1 .
—dV(1) = gjz,(z»v(r)A,dt +5 le Ve |zey (179 (2)B] Bidt + W(r) ; VilzewyOI*BidX;,  W(0) =1,

and G; are martingales defined using the representation theorem of martingales [56] by

Bl O - Bl 017 = Y [ Gilsyw.
/ 0
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Filling this into (B1) yields

T
VZJ3,a(8zj)=]E/. pT(I)Ajﬂt(SZj(t)dt}
0

+

T t
—E / <_uqf"<z) DT (s)Aox(s)ds + w'*(r)lE[q"‘(O)lFﬂ) Ajm&.ﬂt)}
0 0

r T
=]E/ g(r)xy(t)Ajn,szj(z)dt}
LJO

and

T T
VZJ3’b(8Zj) + VZJ3,C(5Z]') Z E[/(; —E)/Z p (l)BTBlﬂt(SZJ(l)dti| I:/() gk‘é/wr;(l)Bﬂh(st(I)dt}
J

le()=j

2 E[/ ——y;p(z)BZBmtazj(t)dt]HE[/ gylzpl(t)B;BlmﬁZj(t)dt}
0

le)=j

T
- E[/o ZWGI ( )\I’(t)Bm,SZj(t)dt:|
I

—E Z/ G, (t)dWy Z/ 2|Z](t)|q/2lI/(t)BmtcSzJ(t)dW,,

le)=j

=E|{E[O)Fr] - EZ ORIl Y f o (t)lq/z‘ll(t)BmszZj(t)dVVn

He)=j

—E /0 > s v BB v,

leh=j

=E / > 0w o ()|q/szn,6z,<z>dvvl,

le()=j

Combining these terms gives

V:J3(82)) = V2J3.4(825) + Vo J3,5(825) + V. J3.0(82)

=E DY) A;de + B dw, 8z;(t) |.
/ S@E)W(r) 1|c(12);2|zj(t)|q/2 1dWi | m,8z;(1)

APPENDIX C: STOCHASTIC INTEGRATION

Numerical calculation of the gradients is performed using stochastic integration. Throughout this work, stochastic differential
equations of the form

dY = a(Y)dr + b(Y)dW,
are solved using the explicit (weak) second-order scheme due to Platen [57,58]. This scheme is given by
Yort = Yo + Ha(T) + a(Y )AL + LHb(TH) + b(Y7) 4+ 26(Y,)INVAL + LbB(TH) — b(YHIWN? — DVAT,
with supporting values T =Y, 4+ a(Y,)Ar + b(Y,)NVAt and Y+ =Y, + a(Y,)At + b(Y,)v/At. Here N is a sample from
a standard normal distribution and At > 0 is a time step. Heuristically, for our types of problems, this scheme leads to better

convergence than standard Euler-Maruyama methods [57], most likely due to non-Euclidean nature of the Hilbert space and
non-Lipschitz behavior of colored noise [26].
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