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To simulate the real- and imaginary-time evolution of a many-electron system on a quantum computer based
on the first-quantized formalism, we need to encode molecular orbitals (MOs) into qubit states for typical
initial-state preparation. We propose an efficient scheme for encoding an MO as a many-qubit state from a
Gaussian-type solution that can be obtained from a tractable solver on a classical computer. We employ the
discrete Lorentzian functions (LFs) as a fitting basis set, for which we maximize the fidelity to find the optimal
Tucker-form state to represent a target MO. For npq three-dimensional LFs, we provide the explicit circuit
construction for the state preparation involving O(np,q) CNOT gates. Furthermore, we introduce a tensor decom-
position technique to construct a canonical-form state to approximate the Tucker-form state with controllable
accuracy. Rank-R decomposition reduces the CNOT gate count to O(Rn')). We demonstrate via numerical

prod
simulations that the proposed scheme is a powerful tool for encoding MOs of various quantum chemical systems,

paving the way for first-quantized calculations using hundreds or more logical qubits.
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I. INTRODUCTION

Among the various fields in which quantum computation
is expected to outperform the classical computation, quan-
tum chemistry is a particularly active research field where
quantum algorithms are developed and run on current hard-
ware. In fact, the second-quantized formalism for finding
ground states and calculating excitation properties [1-9] is
suitable for quantum computation not only for sophisticated
methodologies [10,11] but also for requiring few resources
to encode a many-electron state. Quantum chemistry in the
first-quantized formalism (or equivalently, quantum chemistry
in real space) [12-24], on the other hand, requires more
qubits than in the second-quantized formalism for performing
a meaningful calculation on a quantum computer even for
a small molecule. This fact has been hindering realization
of first-quantized calculations despite their favorable features
compared to second-quantized calculations. Looking at the re-
cent growth in the number of high-fidelity qubits on hardware
[25,26] and realized computation using logical qubits [27],
however, we can expect quantum computation using hundreds
of logical qubits to be available not far in the future. This
situation highlights the need to develop efficient techniques
for all the phases throughout the procedure of a first-quantized
calculation, or more broadly, a grid-based calculation
[28-30].

When performing a first-quantized calculation for sim-
ulating the real-time dynamics or finding the ground state
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[17,22,31] of a many-electron system, one has to prepare
an initial state. The first-quantized formalism for a quantum
computer requires explicit antisymmetrization of an initial
state for a many-fermion system [23,32,33], in contrast to the
second-quantized formalism. It is noted that there also exists a
work [34] applicable to symmetrization for a many-boson sys-
tem. The efficient antisymmetrization technique proposed by
Berry et al. [33] assumes that each of the occupied molecular
orbitals (MOs), or equivalently, the occupied single-electron
states, have been encoded in the corresponding data register.
Decisive efficient schemes for encoding individual MOs, how-
ever, have not been developed yet.

The generic scheme for efficient qubit encoding based
on the discrete Lorentzian functions (LFs) was recently pro-
posed [35] based on linear combination of unitaries (LCU).
This scheme is designed for a target state given as a linear
combination of localized functions in one- or multidimen-
sional space. We adopt it in the present study and specialize
it for practical use of the real-space quantum chemistry by
establishing a numerical procedure for constructing maximal-
fidelity Lorentzian orbitals (MFLOs), which can be used
as the input to the antisymmetrization technique to prepare
a many-electron state. In addition, we introduce a tensor
decomposition technique that allows for reduction of gate
operations in the circuit to encode an MFLO. The workflow
of our scheme is displayed in Fig. 1. We demonstrate via
numerical simulations that the proposed scheme is a pow-
erful tool for encoding MOs of various quantum chemical
systems. It is noted here that there is already a work [36] for
encoding MOs employing tensor train decomposition based
on plane-wave basis sets. We should keep in mind that how

©2025 American Physical Society
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FIG. 1. Workflow of the proposed scheme. For a target MO obtained from a quantum chemistry calculation on a classical computer, optimal
parameters for LFs are found via fidelity maximization to obtain the Tucker-form MFLO. Tensor decomposition of the core tensor turns the
MFLO into a canonical form. For each of the Tucker and canonical forms, efficient circuit implementation for probabilistic qubit encoding
is possible. These circuits can be used for preparing a many-electron state in subsequent quantum computation based on the first-quantized

formalism.

accurately given MOs are encoded and how the Slater de-
terminant is suitably composed of those MOs as a guess for
the many-electron ground state are distinct issues. Roughly
speaking, the former is a topic for quantum information pro-
cessing, while the latter is that for theories of electronic
correlation.

Here we recapitulate briefly initial-state preparation tech-
niques for second-quantized molecular systems as a reference.
Depending on the data format in which an initial second-
quantized many-electron state is treated on a classical
computer, mainly two types of approaches exist: sum of
Slater determinants (SOS) and matrix product state (MPS).
The implementation cost on a quantum computer for an SOS
approach is determined mainly by the number of Slater de-
terminants, while that for an MPS approach is determined
by the bond dimension in the tensor train. SOS and MPS
representations can be transformed to each other on a clas-
sical computer [37]. Various efficient MPS approaches for
state preparation have been proposed [38—45]. Meanwhile,
there exist systems for which SOS approaches are much more
efficient than MPS approaches [37]. An SOS approach is
efficient when the number of Slater determinants is much
fewer than the dimension of the Hilbert space, while the
required resources for an MPS approach are much smaller
than SOS approaches thanks to tensor train decomposition.
For a first-quantized system, significant amplitudes of a
wave function can exist at all points in real space, indicat-
ing that the amplitudes of all the computational bases are
basically distributed over the entire Hilbert space. It thus
seems to be difficult to develop first-quantized approaches
analogous to SOS approaches. The generic MPS approaches
are, on the other hand, also applicable to first-quantized
systems [36] as long as classical resources for obtain-
ing the MPS representation of an input wave function are
available.

II. METHODS

A. Preliminaries
1. Gaussian basis functions in continuous space

Modern quantum chemistry calculation software on clas-
sical computers often uses the so-called Cartesian Gaussian
(CG) functions [46]. The uth CG function among adopted
ones is defined to be of the form

Radial part
Cartesian part
ng
——e
—_ 2 ; P
Xuor) = <§ buse ™ ) Xty (1)
s

localized at the origin. The radial part is made up of con-
tracted ng Gaussian functions having radial exponents {y,};
via the coefficients {b,s};. Each MO in a target molecule
is expanded in terms of atomic orbitals (AOs) {x,}, that
comprise the basis set defined by locating {x,0}, at the po-
sitions {t,}, of individual atoms: x,(r) = x,o(r — 7,,). The
Cartesian exponents m,, (v = x,Y, z) in each yx, specify the
orbital angular momentum conveyed by an electron accom-
modated in the AO. ¢,, = m,, + m,,, + m,,. is the magnitude
of the orbital angular momentum. While the number of pos-
sible combinations of the three exponents is equal to the
dimension of multiplet for each of s-type (£,, = 0) and p-type
(¢, = 1) orbitals, that for d-type (¢, = 2) is different from
the corresponding dimension of the multiplet. Specifically,
the following six d-type CG functions exist: dy, & X%, dyy
V2, dy 22, dyy X xy, dy, X yz, d  zx, despite the five-
dimensional irreducible representation of the rotation group.
That is similar the case for higher (¢,, > 2) orbital angular mo-
menta. Although this fact makes a basis set constructed from
CG functions redundant, it brings about a striking feature, that
is, each of the ng terms in Eq. (1) is factorizable with respect
to the three directions as exp(—7y,,, x> )X - exp(—y,y*)y™ -

052615-2



TENSOR-DECOMPOSITION TECHNIQUE FOR QUBIT ...

PHYSICAL REVIEW A 111, 052615 (2025)

Data reg. f———

I

1

@n 1
_
1

1

1

1

1

1
_I‘\—|R(()12)0HR(()I())1|'""| ml|'

_____________________________________

FIG. 2. Unitary circuit Uyyp[c] used for generic relative-amplitude encoding of an n-qubit system in Eq. (2). The single-qubit y rotation

gate R;’") = R).(—ZOK(”’)), where A is empty or a bit string, is used in this figure. The explicit expressions for the rotation angles 6,

M a5 functions

of the amplitudes ¢ are provided in the original paper [4]. This circuit is assumed to be used with a data register entangled with the n-qubit

system from the beginning.

exp(—y,5z22)z™=. It is already known that such factorizability
in combination with tensor decomposition techniques allows
one to efficiently perform Hartree-Fock calculations on a clas-
sical computer [47,48]. We will see in the present study that
the factorizability is also favorable for efficient encoding of
MOs.

In what follows, we assume that the coefficients of
contracted Gaussian functions in ¥, are normalized in in-
finite continuous space such that the squared norm is unity:

S &@rixuo@)? = 1.

2. Circuit for a generic LCU

The qubit encoding technique [35] that the present study
is based on employs a generic LCU to a many-qubit system
[4,49]. The relevant part of the scheme for the present study
is the unitary operation U,mplc] to generate desired relative
amplitudes ¢ on the computational bases of an n-qubit system
entangled with a data register as

21 21
Uample] D 190 i o D ¢;19;)10), + (other states), (2)
=0 Jj=0

where [v;) is an arbitrary state of the data register. Since this
operation implements amplitude encoding probabilistically in
the most generic way, it requires an exponential cost with
respect to n. Composed of many multiply controlled y rotation
gates, the circuit is depicted in Fig. 2. Since the expressions
for the circuit parameters are known for given amplitudes c,
the success probability can also be calculated on a classical
computer.

3. Discrete LFs for qubit encoding

The qubit encoding technique based on discrete LFs [35]
was proposed so that a given linear combination of local-
ized functions in continuous space is mapped to grid points
represented by many-qubit states. For an n-qubit system,
the normalized discrete LF localized at the origin in one-
dimensional (1D) space is defined as

Cs(n,a) (1 — e 2)(1 — (—1)ke=®N/2)
VN 1 —=2e9cosuk/N)+ e 24’

Li(n,a) = 3)

for N=2"and k =0,...,N — l.a is the width and Cs(n, a)
is the normalization constant. The normalized LF state cen-
tered at an integer coordinate k. is defined as

N-1
ILia, k) = ) Li i (n, a)lk),, “)
k=0

where |k),, is the computational basis. A linear combination of
LFs can be efficiently encoded by first generating the discrete
Slater functions (SFs) [35,50] with appropriate phase factors
and then performing the quantum Fourier transform (QFT)
[51]. For details, see the original paper.

B. MFLO in Tucker form
1. Mapping MO to grid points
Consider an MO ¢ given as a linear combination

Mbas

Pr) = cuxu(r) ©)
"

using known MO coefficients {c,}, of the nps CG basis
functions in continuous space. Our goal is to amplitude en-
code ¢ as a many-qubit state as accurately as possible under
practical restrictions. To this end, we define a simulation cell
as a cube having a sufficiently large edge length L. While we
assume the simulation cell to be a cube for simple explana-
tions below, the edges can have distinct lengths. We locate
the cube at rq, so that it contains the entirety of the target
molecule. We then introduce n,, qubits for each direction to
define N, = 2" equidistant grid points in each direction in
the cube. The spacing between neighboring points is Ax =
L/Ny. The computational basis |k)3,, specified by three in-
tegers k then encodes the position eigenstate of an electron
at r® = roe + Ax(keey + kyey + kee;). From h(§;y,m) =
gme 78 and T, = T, — Forig, We define

hgcs) = 1_[ h(kv Ax — ?u,v; Yuss muv)v (6)

V=X,y,Z

where y,,; and m,,, are the radial exponent and the Cartesian
exponent of x,o, respectively [see Eq. (1)]. The 3ng.-qubit
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state representing the MO inside the simulation cell is then
written as

|Gigea) = NVAV D ¢ ® + rog) k),
k

=NVAV Y N cubuh® k), . 7

ks

where AV = (Ax)? is the volume element.

—1/2
N = (AV > lp® + rorig)|2> ®)
k

is a dimensionless constant for (@igear|@igear) = 1 to hold pre-
cisely. V' is close to 1 when L and ny, are sufficiently large
for encoding ¢. The index k of computational basis in Eq. (7)
measures the position eigenvalue from 7.

2. Trial state and fidelity

To establish an efficient scheme for amplitude encoding the
target state |@igeal), W€ propose to make use of a Lorentzian
basis set. Let us assume that, for each direction v = x, y, z, the
number ny, of available LFs is fixed. Let a,, and k., be the
width and center, respectively, of the £th LF in the v direction.
We then define a trial state as a linear combination of all the
possible npr0d = npyhpyhr, product basis states,

|@ruckerd, @, k1)

Nprod

= Z dee,e,

14

Liay,, kexe,)|Ls aye, , keye, )| Ls aze,, keze,)-

(€))

We refer to this state as a Tucker-form trial state since Eq. (9)
follows the contraction pattern of the Tucker decomposition
[52,53], which is one of the most famous tensor decomposi-
tion techniques. The coefficients d in Eq. (9) are called the
core tensor.

We need to find the optimal combination of the core tensor
d, the widths a, and the centers k. of the LFs. To this end, we
define the fidelity of the Tucker-form trial state as

F(d,a k) = |($ideal | Prucker[d, @, k]))* — Pla, k),  (10)

where the first term on the right-hand side is the squared
overlap between the trial and ideal states. The second term,

Qpen

P(a, k) = Tr{[S(a, k.) — 1%}, an

Nprod

introduces a penalty term with a strength parameter cpe, =
0.5(a, k) is the nyoq-dimensional overlap matrix between the
three-dimensional (3D) LFs appearing in Eq. (9) and [ is
the identity matrix. We maximize the fidelity while obeying
the normalization condition |||@rucker[d, @, kc])||*> = 1 to find
the MFLO. The penalty term vanishes if and only if all the 3D
LFs are orthogonal to each other. The larger apey, is, the closer
the LFs are to an orthonormalized set during the maximization
process. The penalty term may increase the success probabil-
ity of LCU at the cost of overlap, as will be demonstrated later.

The overlap between the trial and ideal states can be
written as

Mprod

(Pideat| Pruckerd, @, kel) = > Tolae, ke)de.  (12)
£

The definition of Ty(a, k.), which we call the T tensor,
and the derivation of Eq. (12) are described in Appendix A.
Due to the factorizable terms in the AO in Eq. (1) and the
Tucker-form trial state, the required spatial integrals for eval-
uating the T tensor are one dimensional. By using the overlap
between two LFs SEZ,)(av, ko)) = (Lyaye, keve|L; ave, keye) in
the v direction, we can write the overlap matrix between the
product bases as

See@k)= ] St (@ ke, (13)
V=X,),Z

This matrix is clearly symmetric: S, o (@, ko) = Sy 4(a, k).
The normalization condition to be respected by the trial state
is then written as

D deSee(akodg = 1. (14)
0
3. Maximization of fidelity
For fixed a and k., the stationarity condition for the fidelity
with the optimal core tensor d becomes

0= oF(d,a, k) _Ka|||¢Tucker[d7 a, kc]>”2
- 3d[ ad[ d=d

=Y (2Gye(@ kody — 2cSy v (@, ko))dy, (15)
-

where we defined the matrix G(a, k.) by
Goyla, ko) =Tolag, keo)Ty(ay, key). (16)

k 1is the Lagrange multiplier. Since the fidelity is quadratic
with respect to the core tensor, the stationarity condition in
Eq. (15) can be rewritten as the following 7,4-dimensional
generalized eigenvalue problem for the matrices:

Gla, k.)d = kS(a, k.)d. (17)

For any solution d of this problem, Egs. (12), (14), and (16)
allow us to write the corresponding eigenvalue as

« =d -G, k)d

2
= (Z Ty(a, kcl)gl)
¢

=F(d,a k) + P k), (18)

which indicates that the eigenvalue is equal to the fidelity
plus the penalty. Let {x,(a, k), gp(a, kc)}Z‘fg_l be the com-
binations of the eigenvalues and corresponding eigenvectors
of this problem. Although every combination among them
satisfies Eq. (18), we would like to find the combination that
achieves the highest fidelity. Since the second term on the
right-hand side of Eq. (18) does not depend on d, the first term
achieves its maximum when « is maximized. Specifically, the
globally optimal core tensor d(a, k) for the fixed a and k. is
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FIG. 3. Circuit C’%f{?r for probabilistic preparation of a Tucker-form state |@rycker[d, @, k.]). Each of the half-filled circles in this figure rep-
resents the multiple control and anticontrol bits. If the measurement outcome from the nﬁ\L) Lorentzian ancillae is all zero, the desired state has
been prepared in the data register. The dashed region defines the unitary Us_p[a, k.] for generating the SFs with appropriate phase factors.

nothing but the eigenvector belonging to the largest eigenvalue
Kmax (@, k) = max, «,(a, k.). That is,

da,k.) = ’cip(a, k) with p = argmax «,(a, k). (19)
14

This core tensor achieves the fidelity
F(a, k) =Fld(a, k),a k] = kmax(a, k) — P(a, k).
(20)

Considering the classical-computational cost O(n:)fstqe)
with respect to npoq and Ny for evaluating the T ten-
sor, that for obtaining the fidelity in the equation above is

3 1/3 . . . . 3
Olmax (r,44, 1r0qNge) . This efficient scaling is because n

does not involve the size of data register and nlfdeqe has the
low scaling thanks to the separability of CG functions and
3D LFs.

Next, we need to maximize the reduced fidelity F (a, k),
which no longer involves the variable d. Despite the lack of
an explicit expression for the reduced fidelity, it is possible to

calculate numerically its gradient with respect to a as

JoF (a, k.
% = 2f(a’ kc)gv(f\, (aa kc) - Kmax(aa kc)d(av kc)
aye,
0S(a, k. oP(a, k.
. Ld(a’kc)_ L’ (21)
3611,4” 8611,[

where we defined f(a,k.) = Y, Ty(a, kc)de(a, k) and

0Ty (a. ko)
g @k)=Y" g;—zcde,(a,kc). 22)
v ve,

The derivation of Eq. (21) is described in Appendix B. From
the results of numerical diagonalization for Eq. (17) and the
known explicit expressions for the overlap matrix in Eq. (13)
and the T tensor, we can evaluate all the terms on the
right-hand side of Eq. (21). We can thus use any gradient-
based optimization scheme to maximize F (a, k.) for fixed k.,
which further reduces the fidelity: F' (k.) = max, F'(a, k). We

should keep in mind that F' (k.) depends on initial values of a
in general.

To complete the optimization of the trial state, we need to
maximize F (k). Since k. are discrete variables, we cannot
employ gradient-based optimization.

C. Circuit for encoding a Tucker-form state

The circuit construction for qubit encoding of a Tucker-
form state in Eq. (9) directly uses the techniques proposed in
Ref. [35]. To be specific, the circuit C%rc‘])(be)r for probabilistic
preparation is shown in Fig. 3. We use

nay = [log, ny] (23)

Lorentzian ancillae for each direction v to discern the ancil-
lary states that designate the indices £, of |L; aye,, kcye, ). The
total number of ancillae is ng“) = nax + nay + na;. The par-
tial circuit Us_pnla, k.] generates the SFs with phase factors
according to the widths and centers of the LFs, which are then
provided with the desired amplitudes by Uympld] up to overall
scaling. Therefore, the normalized state of the entire system
immediately before the measurement is

STucker

|pTuckerld, @, kc])]0),,0) + (other states), 24)
Nprod A

where STucker 1S SOme value that can be calculated [4] from the
expressions for U,mp[d]. The success probability for encoding
the Tucker-form state is thus

STucker

IP)Tucker - (25 )

Nprod
The QFT operations can be applied to the data register after
the measurement is successful since the order of QFT and
the measurement does not affect the result of the probabilistic
encoding [35].

For enhancing the success probability, quantum amplitude
amplification [54,55] is applicable. Since the success proba-
bility can be calculated using a classical computer in advance,
we can render it rather close to unity without performing
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amplitude estimation. The ratio of the new expected time
spent until the completion of the encoding to the old ex-
pected time is O(1/,/fprod), achieving quadratic speedup. In
addition, if an extra ancilla qubit is available, we can make
the success probability strictly unity, leading to deterministic
encoding [35]. This is similarly the case when encoding the
canonical-form state introduced below.

D. Canonical-form state from tensor decomposition

Here, we employ the canonical decomposition technique
for finding more efficient qubit encoding of a known Tucker-
form state. Since the concept of this generic technique for
tensor decomposition was repeatedly reinvented historically,
there are many names for the technique. For details, see
Ref. [53] and references therein.

Here, we assume that we already know the optimal parame-
ters for the MFLO in the Tucker form. For a specified rank R,
the numerical machinery of canonical decomposition allows
us to approximate the three-leg core tensor d as

R-1
e~ YN, 2
r=0

where the right-hand side is represented by the three two-leg
tensors v (v = x, y, z). The right-hand side of the equa-
tion just above has a canonical form of rank R. For a generic
tensor, canonical decomposition with a higher rank leads to
a more accurate approximation. While exact decomposition is
possible for R = nyq in the present case, it is desirable to find
R as small as possible to achieve practical accuracy. We refer
to v as the canonical tensors.
Using the normalization constant

172

N(V) = Z v(V) )(z/)Sz(ZZ/)(ava kcv) ’ (27)

N

we define the normalized canonical tensor u via uiz) =

U£Z> /N®. We also define the normalized linear combination
of LFs as

nLy—1

|¢) = Z WL aye, keve) (28)

and the canonical coefficients A, = NN N®. Substituting
Eq. (26) into Eq. (9), we obtain the following approximation
to the Tucker-form state:

R-1
|¢Tucker[d: a, kc]) ~ Z )‘r |¢£X)>|¢£y))|¢;(~2))
—_———

r=0 =|canon,r)
= |Pcanon) - (29)

We refer to |¢canon) as the MFLO in the canonical form of
rank R. We can assume the canonical coefficients to be in
descending order without loss of generality.

It is noted here that the purpose of introducing the tensor
decomposition is different from that in MPS-based encoding
techniques. Specifically, an MPS representation for a many-
electron state living in a huge Hilbert space is exploited

primarily for data compression so that it is tractable on a
classical computer and/or storage requirements are reduced.
The low circuit implementation cost for preparing the approx-
imate state is achieved as a result. We introduced the tensor
decomposition, on the other hand, to the encoding technique
primarily for reducing the operation number on the quantum
circuit, as explained below. Since the original tensor d is for
the single-electron state, it requires much fewer resources on
a classical computer than a many-electron state does.

E. Circuit for encoding a canonical-form state

The circuit for qubit encoding of a canonical-form state
in Eq. (29) can be constructed by modifying the techniques
in Ref. [35] while considering the contraction pattern for the
canonical coefficients and the canonical tensors. The circuit
CP) for probabilistic preparation is shown in Fig. 4. Besides

the Lorentzian ancillae in Eq. (30), we use
n = log, R (30)

canonical ancillae to discern the R terms in the canonical
decomposition of the core tensor.

The normalized state of the entire system immediately
after the relative-amplitude encoding gates for the normalized
canonical tensors u (blue boxes in Fig. 4) is

\/Imz ® \/§|¢m )]10) w017}, + (other states),

€1y

where 5" is some value that can be calculated [4] from the
expressions for Uamp[uﬁ")] for each r. To resolve the discrep-
ancy between the coefficients in the equation above and those
desired, we modify the canonical coefficients as

by

/S(X)sy) 52)

The application of Uypp [3:] to the state in Eq. (31) gives

hy = (32)

;Znon Z)” |¢(x) ¢(y)>|¢(~ >|0) (L)|0) © + (other states),

(33)

where Scanon 15 SOme value that can be calculated analytically.
The state of the data register coupled to the all-zero ancillary
state in Eq. (33) iS |@canon), Meaning that C2r) implements
the desired probabilistic encoding. The success probability
is thus

S
IP>canon = R;zlinon . (34)
prod

F. Circuit complexities

The CNOT gate count in a given circuit is often used to
quantify its complexity and susceptibility to errors. While the
circuits depicted in Figs. 3 and 4 are direct applications of
the circuit in the original paper [35], we rearrange the gate
operations to allow for the implementation of a uniformly
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FIG. 4. Circuit C™ for probabilistic preparation of a canonical-form state |eaon) Originating from a Tucker-form state |@rycke[d, @, kc]).

canon

The blue dashed region indicates the Us_pp[a, k.] operation, the same partial circuit as in CP "If the measurement of the Lorentzian and
canonical ancillae yields all zeros, the desired state has been prepared in the data register.

controlled rotation (UCR) [49] and a diagonal unitary [56] to
minimize the CNOT gate count. For details, see Appendix C.
The gate count in the state preparation circuit for a Tucker-
form state excluding QFT is

Tucker

Nex (CES0) = 2'8 — 11430, Y 2", (35)

while that for a canonical-form state is

Nex (Cman)) = =284 = 11+ (3n,e +27%) 72" (36)

v

For a typical case where the LFs are defined with ny, =
nLy = nr;, the scaling of the gate counts derived above
in terms of R and npod is Nex (C;Iﬁ?r) = O(nproa) and
Nex (CEb)y — O(Rnll){jd). The canonical-form state thus re-
duces the gate count compared to the Tucker-form state when
low-rank decomposition of the target state is permissible.
Conversely, high-rank decomposition may require more gates
than the Tucker-form state preparation.

While we focus on the CNOT gate counts in the present
study, efficient implementation of controlled unitaries with
few gate counts of T or Toffoli operations have been proposed
in literature [57—-60]. The implementation of the proposed cir-
cuits depends heavily on the multiply controlled operations. If
an elementary gate that acts directly on more than two qubits
is available, the actual circuit depths will be reduced largely
from those forced to useCNOT gates. At a physical level, three-
qubit (doubly controlled) iToffoli [61,62] for superconducting
hardware, C3Z [63] and C*Z [64] for trapped ions, C>Z [65]
for neutral atoms, and C2Z [66] for linear optics have been
reported to be realized. Such physical realization of native
multiply controlled gates may also help to construct logical
circuits since there exist error-correcting codes for which a
logical C?>Z operation consists only of physical C2Z opera-
tions [67].

Tucker *

The circuit depths can be estimated similarly to the pre-
vious work [35]. Those of C}‘:C‘f(be)r and CP including the
QFT operations, scale linearly in terms of ng.. As for nyq,

the depth of CP™” scales as O(Nproq 10g nproa), While that

Tucker
of CP™ scales as O(n:,ﬁjd 10g Mproa) thanks to the canonical
decomposition. n,, scales typically as O(logn,) in terms of
the number n, of electrons contained in a target molecule [17].
Nprod 18 NOt directly related to ., but depends on how precisely
the user wants to reproduce the significant amplitudes of the
ideal MO, as will be demonstrated in the examples.

We mention here nontrivial additional cost for imple-
menting fault-tolerant (FT) versions of the proposed circuits
briefly. As seen in Figs. 3 and 4, the circuits contain multiply
controlled y and z rotations, each of which can be decomposed
into CNOT s and y and z rotations. Remembering that CNOT
and such rotations form a universal gate set [S1] and that
no error-correcting code admits a universal logical gate set
composed only of transversally implementable gates [68], the
logical versions of the proposed circuits inevitably involve
nontransversal operations. We will therefore have to pay atten-
tion to suppressing or avoiding error propagation. In addition,
FT implementation of logical non-Clifford operations for the
logical rotations is required. One of the typical techniques
for a logical non-Clifford operation is the magic state dis-
tillation [69,70], which can be implemented via FT Clifford
operations and FT measurements. Resource estimation taking
nontransversal implementation and non-Clifford operations
into account for specific error-correcting codes will thus be
in order for the FT versions of the proposed circuits.

G. Adoption in an initial many-electron state

As will be seen in the examples below, the fidelity between
an ideal state and an encoded state may not be close to 1 for the
few LFs compared to the system size. When such an encoded
state is used in an initial guess for imaginary-time evolution
(ITE) (see, e.g., Ref. [17]), the deviation of the encoded state
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from the ideal one may not lead to large additional cost thanks
to the exponential decay of the weights of undesired states.
For real-time evolution (RTE), on the other hand, the devia-
tion can lead to distinctly different dynamics from the ideal
one. One possible workaround for that is to perform a small
number of steps of variational or nonvariational ITE before
starting the RTE so that the undesired states diminish.

III. RESULTS AND DISCUSSION

For all the molecular systems considered below, we per-
formed electronic-structure calculations by using PYSCF [71].
We used TENSORLY [72] for the canonical decomposition of
the core tensors. In all of the cases below, we fixed the centers
of LFs at their initial values.

A. H; molecule

As the first example, we discuss a hydrogen molecule. We
adopted the 6-31G basis set and the Perdew-Burke-Ernzerhof
(PBE) [73] functional for the calculations based on the density
functional theory. We performed qubit encoding of the highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) by using a simulation cell of L =
8 a.u. and ny, = 6 qubits for the data register in each direction.
We used np, =2 LFs for the x direction along the bond,
while iy, = nr, = 1 for the other directions. We adopted two
patterns to define the centers of the 1D LFs. Specifically, the
first pattern set the two x centers to the atomic positions, while
the second pattern placed them 0.7 a.u. away from the atoms
outward the bond [see the inset of Fig. 5(b)].

The integer coordinates of centers in the first pattern were
kexo = 26 and k¢ = 37 along the bond, while those for
the other directions were k¢yo = ke;0 = 32. The MFLO in
the Tucker form (ape, = 0) for the HOMO using the first
pattern was found to have the dimensionless widths a,y =
a1 = 0.643 and ayy = a;o = 0.744. The optimal core tensor
do,0.0 = 0.523 and d; o0 = 0.581 achieved the squared over-
lap 0.953 with the HOMO. The success probability was 0.82,
satisfactorily high despite the absence of a penalty term in the
fidelity. The discrepancy between the two components of the
core tensor despite the reflection symmetry of the diatomic
molecule came from the inconsistency between the grid mesh
and the atomic positions. The bonding nature of the HOMO
was well reproduced by the MFLO, as seen in Fig. 5(a).

The success probabilities for the LUMO were, on the
other hand, found to be much lower than for the HOMO,
as plotted in Fig. 5(b). It was also found that the increase
in the penalty strength can remedy the low probabilities at
the cost of the squared overlap with the ideal state. It is also
interesting to see that the x centers of LFs away from the
bond can give a success probability much higher than for the
centers at the atoms. The MFLO in the Tucker form (otpe, =
0.097) for the LUMO using the second pattern (k..o = 20
and k., = 43) was found to have the dimensionless widths
axo = ay; = 1.34 and a9 = a;0 = 0.960. The optimal core
tensor do o0 = 1.56 and d; 0,0 = —1.55 achieved the squared
overlap 0.921 and the success probability 0.10. The nodal
structure of the LUMO was well reproduced by the MFLO, as
seen in Fig. 5(c). The lower success probability for the LUMO

o ®
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(b)
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|Pigear) for LUMO 0.097)

|¢Tuckcr> (apcn =

FIG. 5. (a) HOMO of an H, molecule (left) was used as |®;deal)
to be represented as a linear combination of 3D LFs. The MFLO in
the Tucker form (right) encoded as an 18-qubit state was constructed
from 3D LFs centered at the two atoms. This figure was drawn using
VESTA [74]. (b) Upper panel shows the deviations of the MFLO from
the LUMO as functions of the penalty strength for two patterns of
Lorentzian centers. The red data points are for the centers at the
atoms, while the blue ones are for the centers outside along the bond,
as depicted in the inset. Lower panel shows the success probabilities.
(c) The LUMO (left) and the corresponding MFLO (right).

than that for the HOMO might be due to a generic tendency,
that is, an out-of-phase superposition of LFs leads to a lower
success probability than an in-phase superposition. A simple
explanation for understanding this tendency is provided in
Appendix D.

The cNOT gate count (without QFT) for the state prepara-
tion circuit C{P"") was 63. This count came only from the SFs
and their phase factors since the amplitude encoding for the

core tensor is implemented with no CNOT gate in this case.

B. H,0 molecule

As the second example, we discuss a water molecule. We
adopted the 6-31G basis set and PBE functional. Among the
doubly occupied MOs (lay, 2a;, 1b,, 3a;, and 1b;) of an H,O
molecule, the 1a; orbital originates almost only from the 1s
orbital of the O atom. We tried qubit encoding of the other
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FIG. 6. (a) 2a; MO of an H,O molecule is used as |¢igea1) to be represented as a linear combination of 3D LFs. The centers of 1D LFs are
designated as circles on the Cartesian axes shown in the orthographic projections. The MFLO encoded as a 21-qubit state is also shown. Similar
descriptions of 1b,, 3a;, and 1b; MOs are provided in (b), (c), and (d), respectively. (e) Upper panel shows the squared overlaps between the
ideal states and the MFLOs as functions of the penalty strength. Lower panel shows the success probabilities of the state preparation.

four MOs. We used a simulation cell of L = 8 a.u. and ng =7
for all the calculations below.

For the individual target MOs, we defined the centers of 1D
LFs as depicted in Figs. 6(a)-6(d). We located those centers
by seeing the shapes of ideal wave functions. The MFLOs in
the Tucker form (ape, = 0) are also shown as 21-qubit states
in the figures, exhibiting the successfully reproduced nodal
structures. Figure 6(e) shows the squared overlaps between
the ideal states and the MFLOs as functions of the penalty
strength. It is found that the introduction of the penalty can
increase the success probability for each target MO, as ex-
pected. These probabilities can, however, be lowered as the
penalty becomes stronger. These results tell us that we should
find a moderate value of ape, depending on a target system.

We also performed the tensor decomposition to construct
the canonical-form MFLOs from the Tucker-form ones ob-
tained above. The results are summarized in Table I, where the

decomposition rank R and the deviation 1 — [{¢rycker |Pcanon) |2
of the canonical-form state from the Tucker-form state for
each MO are shown. We can see that rank-3 decomposition
is sufficient for approximating well all the Tucker-form states.
The estimated CNOT gate counts Ncy are also provided in the
table. It is seen that the benefit of tensor decomposition is
small due to the small system size. For more details of the
canonical-form MFLOs, see Appendix E.

C. Delocalized HOMOs of polyacenes

As the third example, we discuss the HOMOs of poly-
acenes Cy,4+2Hj,4+4 composed of n benzene rings. We adopted
the 6-31G basis set and PBE functional. For each of n =
2,...,15, we found the HOMO to be delocalized over the
entire molecule. When finding the MFLOs in the Tucker form,
we defined the centers of LFs systematically by referring

TABLE I. Numbers ny,q of LFs for product bases fitted to target MOs of an H,O molecule and CNOT gate counts Ncy in the probabilistic
state preparation circuits (without QFT) for the Tucker- and canonical-form states. The rank R and the deviation of the canonical-form MFLOs

from the Tucker-form ones are also shown.

MO Mprod (s iy, ML) Nex (CE0)y Nex (Us_pla, k1) R and deviation Nex (Crob)y
2a, 27 (3,3,3) 305 243 3(1.1 x 10*") 281
16, 24 (3,4,2) 231 201 2(22x 10‘5) 215
3a, 18 (3,3,2) 231 201 3(6.8 x 10*7) 231
1b; 16 4,2,2) 173 159 2 (8.5 x 10*8) 169
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FIG. 7. (a) Centers of LFs for expanding the HOMO of a Cy,;,H,,+4 molecule composed of n benzene rings. This figure shows examples
for n = 5 and 6. For each molecule, red and green circles represent the centers for x and y directions, respectively, while the two centers for
z direction (not shown) were located at 0.6 a.u. below and above the molecular plane. (b) Squared overlaps between the ideal states and the
optimal Tucker-form states as functions of the penalty strength for various n. (c) Isosurfaces of HOMO for n = 6 as |¢igea) (left), the MFLO
for e = 0.09 encoded as a 24-qubit state using the 96 basis functions (middle), and that for o, = 0.72 (right).

to the highly symmetric shapes of molecules. Figure 7(a)
shows the centers for pentacene (n = 5) and hexacene (n = 6)
molecules as examples. For an even (odd) n, our pattern
introduced ny, = 2n (n;, = 2n — 1) LFs for the x direction,
while ny, = 4 and n; = 2 were fixed. We used a simulation
cell whose edge length L was longer than the molecule length
by 7 a.u. for a target n, while n,, = 8 was fixed.

Figure 7(b) shows the squared overlaps between the ideal
states and the MFLOs for various ring numbers. The abrupt
changes seen in the overlaps for the varying ape, may have
come from the nonlinear nature of the optimization problem
in terms of the widths of LFs. Figure 7(c) shows the ideal
state for n = 6 and the corresponding MFLOs. Although the
nodal structure of the ideal wave function is reproduced by the
MFLOs for apen = 0.09 and 0.72, the latter exhibits the
rugged shape. This feature has come from the large penalty
strengths, which caused effective repulsion between the LFs
and forced their widths to be narrow in the optimization pro-
cess.

Figure 8(a) shows the deviations of the canonical-form
MFLOs from the original Tucker-form ones as functions of
the rank R for tensor decomposition for various combinations
of n and ope,. It is interesting to see that even the canonical-
form state for R = 2 is in rather good agreement with the ideal
state for each case. The success probabilities for preparing
|§Tucker) and |@eanon) (R = 2) as functions of o, are plotted
in Fig. 8(b). We can see the overall tendency for the proba-
bilities to be higher as the penalty becomes stronger. While
the calculated success probability for |@rycker) 18 7.2 X 1074,
that for |@eanon) is 3.6 x 107*. For n = 6, the contributions
|canon, ) to the Tucker-form MFLO (otpen = 0.09) from rank-
2 decomposition are depicted in Fig. 8(c). We can see that the
features of the Tucker-form state are already reproduced well
by |Pcanon,0), to Which |Pcanon,1) adds modifications near the

two ends of the molecule. Since each |@canon,r) 1S separable in
terms of the three directions, it can be plotted as 1D functions,
as shown in Fig. 8(d). Since there exists only a single node
along the z direction in |@rycker), the small number of 1D LFs
in the z direction suffice to approximate the |@rycker). It is
similarly the case with the y direction. In contrast, many LFs
are needed for the x direction to represent the nodes along the
chain of benzene rings.

Figure 8(e) plots the CNOT gate counts for the preparation
of the Tucker-form and rank-2 canonical-form states as func-
tions of n. The plateau-like behavior of the gate counts is due
to the ceiling functions in Egs. (23) and (30) for evaluating
Eqgs. (35) and (36). The gate counts are found to consist mainly
of the process for generating the SFs and their phase factors
(see the green points in the figure). Recalling that this process
is common to the Tucker- and canonical-form states, we can
understand that the gate counts coming from the amplitude
encoding are reduced drastically by the tensor decomposition.
This benefit comes mainly from the fact that the Tucker-form
states allow for the low-rank canonical decomposition in the
present system.

D. Localized MOs of iron porphyrin complex

As the fourth example, we discuss a phenolate-bound
iron porphyrin complex (POR). The ground state of a POR
in a noncoordinating solvent is known to contain the five-
coordinate high-spin Fe™ atom [75,76] with the total spin
S =5/2. For the element Fe, we used LANL2DZ effective
core potential [77-79] and its associated basis set. For the
other elements, we adopted the 6-31G* basis set. We used
BP86 [80,81] functional. We set the difference in electron
number between the majority- and minority-spin states to 5
for solving the unrestricted Kohn-Sham equation, that is, we
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FIG. 8. (a) Deviations of the canonical-form states from the original MFLOs in the Tucker form for C,,,H>,4 molecules as functions of
the rank R for tensor decomposition. The shown values are for various combinations of the number 7 of rings and the strength a,,, of penalty.
(b) Success probabilities for preparing the MFLOs in the Tucker and canonical forms as functions of @pe,. (c) Two normalized states |@canon, r)
comprising the MFLO |@canon) (R = 2) in the canonical form for n = 6. (d) |¢") states projected along the computational basis |k), o TOT
directions v. They constitute |@canon. ) in (c). (€) CNOT gate counts for the preparation of the MFLOs as functions of n. Those for the SFs and

their phase factors are also shown.

allowed the spatial orbitals of distinct spins to differ from each
other. We used the optimized molecular geometry provided by
Das and Dey [76].

We tried qubit encoding of the first and fourth highest
singly occupied molecular orbitals (SOMO) of the calculated
ground state. The lower-energy MO among the two was found
to be derived from the a;, MO of a porphine molecule [82] and
has no significant amplitude around the Fe ion and the phe-
nolate ligand. We denote this MO as the a;, SOMO in what
follows. In contrast, the higher-energy MO was found to have
not only the amplitudes around the porphyrin macrocycle, but
also those from the Fe d,. orbital and the ligand. We denote
this MO as the d. SOMO in what follows. It is noted that
the notation z in d,. is for the direction perpendicular to the
molecular plane of the porphyrin macrocycle. We used a sim-
ulation cell of L = 36 a.u. and n,, = 8 for all the calculations
below.

The qubit encoding for this system is challenging since
the atoms in the POR are not located in highly symmetric
positions in contrast to the other example systems discussed
above. We therefore decided to introduce a box for defining
the centers of 3D LFs for encoding an MO. Specifically, we
defined the box inside which the centers are located reg-
ularly according to the edge lengths Ly, (v =x,y,z) of
the box. When encoding the a;, SOMO, we used a small
box (Lyox,x = Lpox,y = 12 a.u. and Ly . = 8) for 384 ba-
sis functions (n , =ny, = 8 and n; = 6) and a large box

(Lvox,x = Lvox,y = 18 a.u. and Ly ; = 8) for 1960 basis func-
tions (nLx = n.y, = 14 and n; = 10). When encoding the d2
SOMO, we used a small box (Lpox,x = Lpox,y = 12 a.u. and
Liox,; = 14) for 1000 basis functions (np, = n, = ny, = 10)
and a large box (Lyox,x = Lbox,y = Lbox,; = 14) for 2744 ba-
sis functions (ny, = ny, = nr; = 14). Figure 9(a) shows the
orthographic projections of the POR and the boxes.

The squared overlaps between the ideal states and the
Tucker-form MFLOs for the small and large boxes are plotted
in Fig. 9(b). Going through the results we obtained for various
settings, including those not shown here, we found that an
increase in the basis functions tends to cause larger effects on
the overlaps than the extension of the boxes does. Figures 9(c)
and 9(d) show the ideal states and the Tucker-form MFLOs
(apen = 0.036) using the large box for the ay, and d,» SOMOs,
respectively. We see that these Tucker-form MFLOs capture
the overall features of the ideal states well. The rugged shapes
of the Tucker-form states looking like kompeitos have come
from the effective repulsion between the regularly distributed
many 3D LFs as well as for polyacenes mentioned above. The
overlap for the d_. orbital tends to be lower than that for the
ay, orbital [see Fig. 9(b)]. It may be due to the longer box
edge length in the z direction and the larger number of nodes
of wave function for the d,. orbital than for the a,, orbital.

Figure 10(a) shows the deviations of the canonical-form
MFLOs from the original Tucker-form ones as functions of
the rank R for tensor decomposition for e, = 0.036, where
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FIG. 9. (a) Orthographic projections of the POR contained in the simulation cell of L = 36 a.u., where the boxes are for defining the
centers of LFs for qubit encoding of a;, and d,> SOMOs. (b) Squared overlaps between the ideal states and the MFLOs in the Tucker form as
functions of the penalty strength when the MOs are encoded using the small and large boxes. (c) Isosurfaces of a;, orbital as |@igear) (left) and
the MFLO for o, = 0.036 encoded as a 24-qubit state using the large box (right). (d) shows the same for the d. SOMO.

it is seen that the large boxes require higher R than the
small boxes for achieving high accuracy in the decompo-
sition. There may exist two main reasons for the necessity
of high-rank decomposition. The first one is simply that the
sizes of core tensors in the large-box cases are larger than
the small-box cases, that is, the large-box cases involve more
basis functions. The second one is that the target MOs in the
POR have shapes that essentially require high-rank decom-
position. The second reason comes from the low-symmetric
molecular geometry of the POR, in contrast to the cases of
polyacenes discussed above. The success probabilities for
preparing |@rycker) and |Peanon) (R = 16 and 32) as functions
of the penalty strength are plotted in Fig. 10(b). Those for
|canon) are rather lower than for |¢rycker). The oscillatory
behavior of the probabilities is a consequence of the compli-
cated interferences between the many 3D LFs.

Figure 10(c) plots the CNOT gate counts for the prepa-
ration of the Tucker-form and canonical-form MFLOs as
functions of the decomposition rank. The gate counts for the
SFs and phases are constant in the plot since they do not
depend on the decomposition rank. For the a;, SOMO using
the small box, the gate count for preparing |Pcanon) €Xxceeds
that for |@drycker) When R > 16, meaning that the high-rank
decomposition (compared to 7n,04) brings about no benefit.
In contrast, for the other cases, the gate count for prepar-
ing |Pcanon) 1S approximately half of that for |@rycker) €ven
when R = 32. Recalling that the success probabilities for
the |@eanon) States are roughly 1073 to 1072 of those for the
|pTucker) States [see Fig. 10(b)], the expected computational
time for completing the state preparation using the canonical-
form states is found to be much longer than using the
Tucker-form states. We are thus left with two choices: the
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FIG. 10. (a) Deviations of the canonical-form states from the original MFLOs in the Tucker form for the a;, and d.» SOMOs of the POR
as functions of the rank R for tensor decomposition. (b) Success probabilities for preparing the MFLOs in the Tucker and canonical forms
as functions of penalty strength. (c) CNOT gate counts for the preparation of the MFLOs as functions of R. Those for the SFs and their phase

factors are also shown.
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larger gate counts with higher success probabilities (Tucker-
form states) or the smaller gate counts with lower success
probabilities (canonical-form states). We may be confronted
with such choices in a generic case where a target MO re-
quires high-rank tensor decomposition. Which one should be
adopted practically needs to be determined by referring to the
coherence time of the hardware being used, which dominates
the permissible time for a single run of a circuit.

IV. CONCLUSIONS

In summary, we proposed an efficient scheme for encod-
ing an MO as a many-qubit state referred to as the MFLO,
numerically constructed via maximization of the fidelity of a
trial state. Since the proposed scheme exploits the fact that a
typical MO consists of a small number of localized orbitals,
independently of the grid resolution for encoding, the CNOT
gate count is not affected largely by the size of a data register.
We demonstrated that the scheme works and the tensor de-
composition technique can reduce the gate count. This scheme
will be a powerful tool for performing quantum chemistry in
real space on a quantum computer using hundreds or more of
logical qubits in the future.

We mention here the Fourier interpolation scheme [83,84]
for encoding an MO. One of its fascinating features against
the present scheme is the unitarity [49,84]. For a case in which
the determination of circuit parameters from the Fourier com-
ponents on the coarse grid for interpolation can be completed
within practical time, the interpolation scheme will be a good
option.
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APPENDIX A: DERIVATION OF EQ. (12)

For v = x, y, z, we define quantities
Nye—1

D Rk AX = Ty Vs My
k=0

VNoe

X kakC (nqe s Cl)

MU;LS(av kc) =

(AL)

that depend not on the target MO ¢, but on the AO x,,. These
are nothing but the numerical integrals of the products of the
CG functions and the LFs in 1D space. M, ,s(a, k) has the di-
mension of lengthmﬂ““. From them, we define dimensionless
quantities

1 &
Rue(ag, ko) = \/? Z busM.ys(ase,, kexe,)

X My, (ayey, kcyKy)Mz;m (azéza kczlz)~

From the expression of the ideal state in Eq. (7) and that of
the Tucker-form trial state in Eq. (9), we have

(A2)

~ . k)~ . 0~ .
= Tuxs Yus» mux)h(y( ) — Tuys Yus» mp,y)h(z( D — Tuzs Yus» muz)

. Z dZ,‘Z‘.ZszX—kmx (nqea axKX)ka—kc_vg“. (nqea ayZy)Lkz—kczgZ (nqe’ az&)

1]

Rprod

=) Ti(ag, kee)ds,
¢

where we defined the dimensionless quantity

that depends on the target MO via the coefficients {c,.},.

APPENDIX B: DERIVATION OF EQ. (21)

For any one d of the eigenvectors for Eq. (17), we differ-
entiate both sides of the normalization condition in Eq. (14)

(A3)
Hbas
To(ag. kee) =N Y cuRyue(ae. kee) (A4)
"
{
with respect to a, to obtain
ad ~ ~ 3S(a, k)~ ~ ad
9 sarydrd BO*IT T @) —o,
Bavg Ayy 8(11)(
(BD)
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FIG. 11. (a) The original implementation of the part of Us_p[a, k.] for generating ny,, 1D LFs at the origin for the v direction (v = x, y, 2).

(

R%9 in the figure is the y rotation gate acting on the kth qubit in the data register to generate the ¢th SF. (b) Definition of Usf) (k=0,...,n4 —
1) for a single qubit and the n,, Lorentzian ancillae. By rearranging the controlled rotations in (a) appropriately, the circuit is expressed using
the product of Us(ﬁ) operations. Also, the partial circuit for giving rise to the phase factors of SFs can undergo similar rearrangement of the
phase gates, leading to the circuit depicted in (c), that still implements the v direction part of Us_p[a, k.].

The derivative of the fidelity can be obtained by differentiating
Eq. (18) with respect to a,, as

dF(d,a, k ad ~ ~ 3G(a k)~
@.ake) 0 Grod +d. 200 k)G
3611)@ aClV@ 361,,@
~ ad  oP(a, k
+d-Ga k) _ 9P@. k)
8(11)( aavé
d ~ ~ 3G(a k)~
=M s@kod +d - 26k
0a,¢ Ayy
~ ad  dP(a,k
+xd - S(a ko4 _ @ k)
daye dayg
~ [(3G(a, k. 3S(a, ko) \~
_ 5 (9G@k) _ 9S@ k)~
daye dayg
Pa. k
_0P@ k) )
8avl

where we used Egs. (17) and (B1) for obtaining the second
and third equalities, respectively. As a special case, we sub-
stitute the optimal core tensor d(a, k.) given by Eq. (19) into
Eq. (B2) to obtain Eq. (21).

APPENDIX C: CNOT GATE COUNTS BASED ON UCRs

1. Generic amplitude encoding

A UCR for a generic n-qubit system is defined as 2!
single-qubit rotations on one qubit controlled by the other
n — 1 qubits where every possible control pattern (being con-
trolled or anticontrolled) appears only once. This UCR is
known to be implemented by using 2"~! cNOT gates [49].

Given this fact, the CNOT gate count in the generic amplitude
encoding circuit in Fig. 2 is calculated as

n—1

Nex Uanple]) = ) 24 = 2" —2.
k=1

(ChH

2. Tucker-form state

The original implementation of the part of Us_ppla, k]
used in Fig. 3 for generating ny, 1D LFs at the origin for the
v direction (v = x,y, z) is shown in Fig. 11(a). This partial
circuit consists of multiply controlled multiple y rotations.
By defining Us(ﬁ) (k=0,...,n4 — 1) for a single qubit and
the na, Lorentzian ancillae as shown in Fig. 11(b) and rear-
ranging the controlled rotations in Fig. 11(a) appropriately,
the circuit is expressed using the product of operations Us(ﬁ).
Also, the partial circuit for giving rise to the phase factors
of SFs can undergo similar rearrangement of the phase gates.
The v direction part of Us_p[a, k.] can thus be implemented

by the circuit shown in Fig. 11(c). Since each Us(ﬁ) forms a

UCR, we have NCX(US(ﬁ)) = 2", Since each Us(hki)ftv is mul-
tiply controlled phase gates for an (na, + 1)-qubit system,
it is a diagonal unitary. This can be implemented by using
the technique in Ref. [56] with Nex(Ud,) = 2"+ —2.
When we adopt the implementation of consecutive CNOTS in
Ref. [35], we have Ncy(CNOT®™) = 2n,, — 3. The CNOT
gate count for generating the SFs and their phase factors is
thus calculated to be

Nex (Us—phla, ke]) = =9 + 3nge Z 2,

V=X,9,2

(C2)
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FIG. 12. (a) The original implementation of the part of Ucanon,amp for amplitude encoding of the normalized canonical tensors u® for the v

direction (v = x, y, z). By rearranging the controlled operations appropriately, the equivalent circuit in (b) is obtained. Each U®)

0,...,na, — 1) is a UCR having nff) + k control bits.

The CNOT gate count for the amplitude encoding of the core
tensor is, similarly to Eq. (C1), calculated to be

Nex (Uampld]) = 273 — 2. (C3)

From this and Eq. (C2), the gate count in the state preparation
circuit for a Tucker-form state without QFT is

Nex (C80) = 2% — 11+ 3 Y 2.

Tucker

(C4)

v

3. Canonical-form state

The cCNOT gate count for the amplitude encoding of
the normalized canonical coefficients is, from Eq. (Cl),
Nex (Uamp[X]) = 28" — 2. The part of Uggnon.amp for ampli-
tude encoding of the normalized canonical tensors can be
expressed by using UCRs as well as the case of Us_pula, k.].
Specifically, Fig. 12(a) shows the original implementation of
the part of Ucanon,amp in Fig. 4 for amplitude encoding of the
normalized canonical tensors #") for the v direction. This cir-
cuit acts on the nf) canonical ancillae and the n,, Lorentzian
ancillae. We rearrange the controlled operations appropriately
to obtain the equivalent circuit shown in Fig. 12(b), that is the

product of operations U%)  [u™"]. Since each UX)  [u")]

canonv canonv

[u®™] (k =

canonv

is a UCR, it can be implemented with Nex (UK [u™]) =
278"+ The cNOT gate count of the circuit in Fig. 12(b) is thus

given by

ol (©) (c)
PSP AN AT b (C5)
k=0
This fact enables us to implement the partial circuit with
n(C) n(c) NAw
Nex (Ueanonamp) = 2" =24 2" (2™ — 1), (C6)

v=x,y,z

From this and Eq. (C2), the gate count in the state preparation
circuit for a canonical-form state without QFT is

Nex (COIR) = =281 — 11+ (3ng, +27%) Y2,
v
(€7
APPENDIX D: SIMPLE EXPLANATION OF A LOW

SUCCESS PROBABILITY FOR AN ANTIBONDING
OVERLAP

In order for the discussion to be simple, we consider here
two atoms A and B in 1D space. We assume that we have
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FIG. 13. (a) |¢p") states projected along the computational basis [k), 4. tor directions v. They constitute the rank-3 canonical-form state
for the 2a; MO. Similar plots for the 1b,, 3a;, and 1b; MOs are shown in (b), (c), and (d), respectively. (e) Success probabilities of state

preparation for the canonical-form states.

a trial state |y) = (cos U, + sin@Up)|0) as a linear combi-
nation of the LFs with an angle parameter 6.U4 and Uy are
the unitaries that generate the discrete LFs centered at the
position of A and B, respectively. The success probability
for generating this state via LCU for the two unitaries is
P =1/2 4 sin(20)(L4|Lg)/2. Since the LFs are positive from
their definitions, we can write (Ls|Lg) = 1 — A with some
A > 0.

If the trial state is of bonding nature, we can parametrize
it as 8 = /4 4+ 6 with a small §. The success probability
in this case iS Pponding & 1 — A/2 — 82(1 — A). If the trial
state is of antibonding nature, on the other hand, the suc-
cess probability with an angle parameter 0 = —m /4 +§ is
Pantibonding & A/2 + 8%(1 — A). This analysis tells us that the
success probability for a bonding MO between A and B tends

to be higher than that for an antibonding MO between the
same atoms. In particular, as the two centers get closer to
each other, A becomes smaller and the tendency is more
pronounced. This discussion may apply basically to generic
trial states consisting of more than two LFs in 3D space.

APPENDIX E: CANONICAL-FORM STATES
FOR AN H,0 MOLECULE

For each of MOs 2ai,1by,3a;, and 1b; of an
H,;0 molecule, we provide here the plots of the states
l¢p&on») (v =x,y,2) that constitute the rank-R canonical-
form state |¢canon), as shown in Figs. 13(a)-13(d). The success
probabilities of state preparation for the canonical-form states
are plotted in Fig. 13(e).
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