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Informational contributions to thermodynamics can be studied in isolation by considering systems with fully
degenerate Hamiltonians. In this regime, being in nonequilibrium (termed informational nonequilibrium) pro-
vides thermodynamic resources, such as extractable work, solely from the information content. The usefulness
of informational nonequilibrium creates an incentive to obtain more of it, motivating the question of how
to concentrate it: can we increase the local informational nonequilibrium of a product state ρ ⊗ ρ under a
global closed system (unitary) evolution? We fully solve this problem analytically, showing that it is impossible
for two-qubits, and it is always possible to find states achieving this in higher dimensions. Specifically for
two-qutrits, we find that there is a single unitary achieving optimal concentration for every state, for which we
uncover a Mpemba-like effect. We further discuss the notion of bound resources in this framework, initial global
correlations’ ability to activate concentration, and applications to concentrating purity and intrinsic randomness.
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I. INTRODUCTION

Information is central to our modern understanding of
thermodynamics [1]. To model a system’s thermodynamic
behaviors, one must consider both its energy and information
contents [2]. In fact, control over one allows influence over
the other: by manipulating a system’s information content,
one can cool the system down via algorithmic cooling [3],
convert bits into work via Szilard engine [4], or transmit
energy [5]. Alternately, by consuming energy, one can ma-
nipulate encoded information, e.g., by erasing information via
Landauer’s principle [6] or performing computation [7–9].

The informational contributions to thermodynamics can
be isolated from the energetic ones (allowing them to be
independently studied and quantified) by considering fully
degenerate Hamiltonians [10]. In the absence of energy gaps,
thermodynamic transformations must arise from information
processing. In this regime, thermal equilibrium is described by
the maximally mixed state, and all other states are considered
to be in informational nonequilibrium. This notion coincides
with purity when considering a fixed system size [10], al-
lowing purity also to be studied within this framework. By
understanding this special case of thermodynamics, insights
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can be gained into the general case, where both energy and
information are considered.

Given that informational nonequilibrium (and hence pu-
rity) is a resource in thermodynamics [10–15], it is natural
to want to increase the amount one has. Such questions were
previously considered via resource distillation [11], where
several copies of a less resourceful state are converted into
fewer copies of a more resourceful state, with the help of an
arbitrary (possibly infinite) supply of free states. Additionally,
these protocols may also require global operations that act
simultaneously on many copies of the system and free states.
Practically implementing resource distillation can, therefore,
be highly expensive in labs, well beyond the ability of ex-
isting quantum technological platforms (e.g., Refs. [16–18]).
As being able to concentrate multiple noisy objects into a
single, more resourceful object is crucial for quantum tech-
nologies, we here focus on the smallest (and hence most
practically feasible) setting for which resource enhancement
can be studied. We coin the term resource concentration to
describe this paradigm: given two copies of a state, ρA ⊗ ρB,
can we enhance the informational nonequilibrium in A via
a global unitary? The aim is thus to concentrate as much of
the resource as possible locally, using only globally resource
preserving operations. Note, we define the task without access
to any free states: it is a closed system dynamics, which will
also allow us to keep a complete accounting of the information
changes. This differs from resource distillation protocols that
only concern the input and output states, ignoring any “junk”
produced in the process.

Here, we fully solve the resource concentration prob-
lem for informational nonequilibrium and purity and fur-
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ther investigate the concentration of intrinsic randomness
[19]. Unexpectedly, our framework uncovers a phenomenon
in resource concentration that is similar to the Mpemba
effect [20–24].

II. PURITY AND INFORMATIONAL NONEQUILIBRIUM

Consider a quantum system with dimension d < ∞. Qual-
itatively, purity of this system is a physical property about
whether it is in a pure state. However, informational nonequi-
librium of this system is another physical property about
whether it is not in the maximally mixed state I(d )/d , where
I(d ) is the identity operator [the superscript “(d )” denotes the
dimension dependence whenever needed]. Hence, purity is
independent of the actual physical dimension d , while infor-
mational nonequilibrium is, by definition, dependent on d . It
is thus clear that informational nonequilibrium and purity are
two different properties. In a more quantitative language, if
the system is in a state ρ, then its purity captures how close ρ

is to some pure state, while its informational nonequilibrium
quantifies how distant ρ is from I(d )/d . As an example, as is
well known, most practically realisable “qubits” are actually
two levels of a multilevel system. The state I(2)/2 of those
two levels is not a resource if one stays in that subspace, but
becomes a resource if one starts accessing other levels. Its
purity is, of course, the same. Since our aim is to study how
the informational nonequilibrium can be increased, we have
to steer clear of the trivial way that consists in just redefining
the dimension. In all that follows, the dimension is fixed, and
we aim at increasing the resource by quantum operations on
states.

Quantifying informational nonequilibrium

Before stating our central question, we need to quantify in-
formational nonequilibrium. To this end, for a d-dimensional
state ρ, we adopt the following figure-of-merit:

P (ρ) := Dmax(ρ ‖ I(d )/d ). (1)

Here, Dmax(ρ ‖ σ ) := log2 min{λ � 0 | ρ � λσ } is the max-
relative entropy [25], widely used for its numerical feasibility
and operational relevance [26–29]. Explicitly,

P (ρ) = log2 d‖ρ‖∞. (2)

Hence, P quantifies informational nonequilibrium by check-
ing ρ’s most “nonmaximally mixed” eigenvalue. In general,
P can also act as a dimension-dependent measure of purity.
When the system is a qubit, up to a unitary, any state reads ρ =
‖ρ‖∞|0〉〈0| + (1 − ‖ρ‖∞)|1〉〈1| with ‖ρ‖∞ � 1/2. Thus,
any nondecreasing function of ‖ρ‖∞ can quantify purity.

III. INFORMATIONAL NONEQUILIBRIUM
CONCENTRATION PROBLEMS

A. Defining the concentration problems

Now, we can define informational nonequilibrium con-
centration problems (INCPs). For a d-dimensional state ρ,
its INCP asks: is there a two-qudit unitary UAB achieving
P (σ (U )

A ) > P (ρA), where σ
(U )
A := trB[UAB(ρA ⊗ ρB)U †

AB]? See
also Fig. 1. Namely, can one use a closed system operation in

FIG. 1. Informational nonequilibrium concentration problems.
For two copies of a state ρ, we study whether one can use a global
unitary UAB to enhance the informational nonequilibrium locally in
A, in the sense that P (σ (U )

A ) > P (ρA) [P is defined in Eq. (1)].

the two-qudit system to concentrate informational nonequilib-
rium into the first system (A)? When this is possible, we say
the unitary U is a solution to the state-dependent INCP of the
state ρ. Note, in this work, subscripts denote the subsystems
the operators live.

Here, we only consider closed system dynamics (i.e.,
unitary), rather than channels (i.e., completely positive trace-
preserving linear maps [30]). In addition to allowing for
detailed accounting of information changes in the system, this
prevents situations in which a channel could discard a state
and replace it with a pure one (i.e., using the environment as
a “purity bank”). Moreover, we only assess the ability to con-
centrate informational nonequilibrium when given two copies
of the same state. This is the simplest instance of an INCP,
and relaxation of this restriction is left for future work. As a
remark, INCPs are related to (but different from) algorithmic
cooling [3]. More precisely, INCPs can be considered as a
specific form of algorithmic cooling in which both the target
system and machine are initially in the same state and only
unitary evolution is allowed to achieve the cooling. Applying
these restrictions allows for a complete analytical solution to
the optimal algorithmic cooling protocol to be found when
considering the figure-of-merit defined in Eq. (1).

To solve INCPs, we first present a result including INCPs
as special cases. With a given bipartite system AB with (not
necessarily equal) local dimensions dA, dB, we define the map

E(UAB,ηB )(ρA) := trB[UAB(ρA ⊗ ηB)U †
AB], (3)

where ρA (ηB) is with dimension dA (dB), and UAB is a unitary
acting on AB. Then, in Appendix A, we show that

Result 1. Given dA, dB, then, for every UAB, ρA, ηB, we
have

max
UAB

2P
[
E(UAB ,ηB )(ρA )

]
= max

�
(dB )
AB

dAtr
[
�

(dB )
AB (ρA ⊗ ηB)

]
. (4)

Here “max
�

(dB )
AB

” maximizes over all rank-dB projector in AB.

B. Solving informational nonequilibrium
concentration problems

Result 1 fully quantifies the optimal performance of re-
locating informational nonequilibrium from B to A. We can
solve an INCP by computing the following difference:

�P (ρ) := max
UAB

P[E(UAB,ρB )(ρA)] − P (ρA)

= max
�

(dB )
AB

log2

(
tr
[
�

(dB )
AB (ρA ⊗ ρB)

]
/‖ρA‖∞

)
, (5)

where we set η = ρ in Result 1. By solving the above op-
timization, once the optimal value is positive, informational
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nonequilibrium can be concentrated in A with the initial state
ρA ⊗ ρB; namely, ρ’s INCP has a solution. To further solve
this, let us write ρ = ∑d−1

i=0 a↓
i |i〉〈i|, where d = dA = dB and

a↓
i � a↓

i+1 for every i. Then we have

max
�

(d )
AB

tr
[
�

(d )
AB (ρA ⊗ ρB)

] = max
�

(d )
AB

∑
i j

a↓
i a↓

j 〈i j|�(d )
AB |i j〉. (6)

Let us order the sequence {a↓
i a↓

j }d−1
i, j=0 again in a nonincreas-

ing way, and let us call the reordered sequence {c↓
k (ρ)}d2−1

k=0 ;
namely, for every k, we have c↓

k (ρ) = a↓
i a↓

j for some i, j

such that each pair (i, j) appears exactly once, and c↓
k (ρ) �

c↓
k+1(ρ). Physically, {c↓

k (ρ)}d2−1
k=0 is the set of ordered eigen-

values of ρ ⊗ ρ. Finally, for a normal operator M, its Ky Fan
K-norm [31], ‖M‖K-KF, is defined as the sum of its K largest
eigenvalues. With this notion, we obtain

max
�

(d )
AB

tr
[
�

(d )
AB (ρA ⊗ ρB)

] =
d−1∑
k=0

c↓
k (ρ) = ‖ρ ⊗ ρ‖d-KF; (7)

i.e., it is the Ky Fan d-norm of ρ ⊗ ρ. Then, we arrive at
the following analytical expression, serving as the complete
solution to any finite-dimensional INCP:

Result 2. For a d-dimensional state ρ, we have

�P (ρ) = log2 (‖ρ ⊗ ρ‖d-KF/‖ρ‖∞). (8)

ρ’s INCP has a solution if and only if ‖ρ ⊗ ρ‖d-KF > ‖ρ‖∞.

The Ky Fan norm has previously been used to bound the
ability of thermal operations [32] to cool systems [33]. Result
2 now provides it with a novel operational meaning: it quanti-
fies the optimal amount of informational nonequilibrium (and
also purity) that can be concentrated given two copies of a
state via unitary dynamics. Moreover, as well as providing an
analytical necessary and sufficient condition for the existence
of INCPs’ solutions, Result 2 also tells us the fundamental
limitation of purity concentration; i.e., �P (ρ) is the highest
concentratable amount with a fixed dimension.

C. No two-qubit concentration of informational
nonequilibrium and purity

It is rather surprising to know that we (only) cannot
concentrate informational nonequilibrium and purity in the
simplest case: two-qubits. Before stating the result, we recall
that, as we argued before, for a qubit state ρ, increasing purity
is equivalent to enhancing ‖ρ‖∞. Then, in Appendix B, we
prove the following no-go result.

Result 3. INCPs of qubit states have no solution. More-
over, this conclusion is independent of the choice of purity
measure.

Hence, for two qubits, the structure of quantum theory
forbids any possible concentration of informational nonequi-
librium and purity. Moreover, this fundamental limitation is
truly independent of the measure that we use.

D. Informational nonequilibrium concentration
beyond qubits is possible

It turns out that informational nonequilibrium concentra-
tion is a generic phenomenon existing beyond qubits. This

is because the necessary and sufficient condition for INCP’s
solutions to exist (Result 2) can always be satisfied by some
ρ when the local dimension d is strictly greater than 2. To
better illustrate this, let us consider a simple example, which
is an effective qubit in a qudit: ρ = p|0〉〈0| + (1 − p)|1〉〈1|
with 1/2 � p � 1 in a d-dimensional system with d > 2. As
long as p < 1, we have

‖ρ ⊗ ρ‖d-KF � p2 + 2p(1 − p) > ‖ρ‖∞, (9)

which implies concentration due to Result 2. This means
that concentration of informational nonequilibrium and purity
can indeed happen. In fact, the following state-independent
unitary can do the job:

U simple
AB : |10〉AB ↔ |02〉AB. (10)

Hence, when the local system is beyond a single qubit, INCPs,
in general, can have solutions. Finally, we note a simple upper
bound

�P (ρ) � P (ρ), (11)

which means that the initial informational nonequilibrium
limits the optimal concentration. See Appendix C for proof.

E. Optimal two-qutrit purity concentration
must generate global correlations

Now, we know concentrating purity is possible via IN-
CPs. A natural question is the following: Can we concentrate
local purity without generating global correlation? In the
two-qutrit case, we show that, surprisingly, it is impossible
due to the special structure of qutrits. More precisely, the
three largest eigenvalues of a two-qutrit state ρA ⊗ ρB are
a↓

0 a↓
0 , a↓

0 a↓
1 , a↓

1 a↓
0 . Then, Result 2 implies that

�P (ρ) = log2(a↓
0 + 2a↓

1 ). (12)

For a better understanding, we plot the analytical result
Eq. (12) in Fig. 2. Also, one can check that the unitary U simple

AB

defined in Eq. (10) achieves Eq. (12); i.e., U simple
AB is optimal.

Let σ
opt
AB (ρ) := U simple

AB (ρA ⊗ ρB)U simple,†
AB be U simple

AB ’s global
output. To quantify the global output’s correlation, we use the
quantum mutual information, a widely used correlation mea-
sure. Formally, for a bipartite state ηAB, its quantum mutual
information [30] is I (A : B)ηAB

:= S(ηA) + S(ηB) − S(ηAB),1

where S(η) := −tr(η log2 η) is the von Neumann entropy [30].
Then, in Appendix D, we show that following result.

Result 4. Two-qutrit optimal purity concentration must
generate global correlation: I (A : B)σ opt

AB (ρ) > 0 if �P (ρ) > 0.
Hence, counterintuitively, one must increase global cor-

relation and local purity simultaneously. Since a pure state
cannot be correlated with any other system, this result means
that it is impossible to map a nonpure qutrit state to a perfect
pure state in the current setting. This finding further uncovers
a trade-off relation between making local states purer and gen-
erating global correlation (and makes local states less pure).

1Here, ηA := trB(ηAB) and ηB := trA(ηAB).
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(a) (b) (c)

FIG. 2. Graphical depictions of two-qutrit cases. Here, we plot the analytical result Eq. (12). Each point in the triangle, (a0, a1, a2),
represents the eigenvalues of the qutrit state, ρ, with the color giving the change of informational nonequilibrium. (a) Optimal increment in A
according to Eq. (12). States with bound resources are those on the white lines running from the corners to the center of the triangle. (b) Change
in B when A achieves the optimal increment �P (ρ ). (c) The mutual information between A and B after the optimal concentration. One can
then see that �P > 0 is accompanied with nonvanishing correlation, as claimed in Result 4. States for which no correlations are created have
been explicitly highlighted in white, and can be seen to coincide with the states possessing bound purity.

IV. PHYSICAL IMPLICATIONS

A. “Mpemba-like” effect for purity concentration

Equation (12) implies that, when we optimally concen-
trate purity in A, B’s local purity, as measured by P , can be
invariant. To see this, consider the one-parameter family of
qutrit states

ρ (p) = p|0〉〈0| + (1 − p)|1〉〈1|, (13)

with 1/2 � p � 1. Letting ρ (p) ⊗ ρ (p) evolve under the opti-
mal unitary U simple

AB [Eq. (10)], B’s local output reads

σ
opt
B (ρ (p) ) = p2|0〉〈0| + (1 − p)|1〉〈1| + p(1 − p)|2〉〈2|,

(14)

meaning that B has output purity

P
[
σ

opt
B (ρ (p) )

] = log2(3max{p2; 1 − p}). (15)

Now, by setting p = 1/2, Eq. (12) says that the optimal purity
increment in A is �P (ρ (1/2)) = log2(3/2) > 0. Meanwhile,
locally in B, we have

P
[
σ

opt
B (ρ (1/2))

] = log2(3/2) = P (ρ (1/2)) (16)

[see also Fig. 2 and Eq. (D2) in Appendix D]. Hence, purity,
as measured by P , does not change in B when we optimally
increase it in A.2 In other words, the sum of local resources is
not conserved.

More intriguingly, our calculation uncovers a phenomenon
similar to the Mpemba effect [20–24]. Loosely speaking, the
Mpemba effect describes the phenomenon that, evolving un-
der a given dynamics for a fixed amount of time, an initially
colder system may reach a higher final temperature than an

2Physically, this is because P only focuses on the “purest” oc-
cupation (i.e., the maximal eigenvalue). Manipulating less pure
occupations cannot change P’s value.

initially hotter system (and vice versa). Here, under the dy-
namics U simple

AB , we observe that in system B a purer initial
state can be mapped to a more mixed final state. As an exam-
ple of this, consider p = p+ := (

√
5 − 1)/2. Clearly ρ (p+ ) is

purer than ρ (1/2). Now, when ρ (p+ ) ⊗ ρ (p+ ) undergoes U simple
AB ,

B’s local output σ
opt
B (ρ (p+ ) ) satisfies

P
[
σ

opt
B (ρ (p+ ) )

]
< P

[
σ

opt
B (ρ (1/2))

]
. (17)

So a purer environment interacting with a purer state is left in
a more mixed state than an initially more mixed environment
interacting with a more mixed state. Intuitively, one might ex-
pect that if the environment (B) is initially purer, then optimal
concentration in A would leave the environment less mixed.
However, here we see the opposite, with purer initial states
leading to more mixed environments, which is a phenomenon
that captures a similar flavor to the Mpemba effect. We leave
further explorations for future projects.

B. Notion of “bound” informational nonequilibrium

From Result 3, if a nonpure qubit state is not maximally
mixed, it carries nonvanishing resources that are not yet the
highest but cannot be concentrated further. We coin the term
bound informational nonequilibrium for such states, and we
briefly discuss their properties here beyond qubit. First, in
qutrits, Eq. (12) implies that �P (ρ) = 0 if and only if a↓

1 =
a↓

2 . Namely, all nonpure qutrit states with exactly two-fold
degeneracy in their smaller eigenvalue have bound informa-
tional nonequilibrium. Notably, in qutrits, small perturbations
are enough to remove bound informational nonequilibrium
by breaking the equality a↓

1 = a↓
2 . Meanwhile, in qubits, no

perturbation can do so. Hence, interestingly, depending on the
physical system’s dimension, bound informational nonequi-
librium could be either very robust (when d = 2) or very
fragile (when d = 3) against noises. Now, generally, for a
d-dimensional state ρ, Result 2 implies that �P (ρ) = 0 if
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and only if ‖ρ ⊗ ρ‖d-KF = ‖ρ‖∞. This thus implies all non-
pure qudit states with exactly (d − 1)-fold degeneracy in their
smaller eigenvalue have bound informational nonequilibrium.
This is because all such states are of the form ρ(p, |ψ〉) :=
p|ψ〉〈ψ | + (1 − p)I/d for some pure state |ψ〉 and 0 < p <

1, and one can check that ‖ρ(p, |ψ〉) ⊗ ρ(p, |ψ〉)‖d-KF =
‖ρ(p, |ψ〉)‖∞. Physically, this means that dephasing pro-
cess (·) 
→ pI (·) + (1 − p)tr(·)I/d on pure states produces
bound informational nonequilibrium as long as 0 < p < 1.
Namely, dephasing processes are strong enough to negate the
possibility of concentration.

C. Initial correlations can activate informational
nonequilibrium concentration

Importantly, by allowing initial correlation, even an
almost-vanishing amount, can make informational nonequi-
librium concentration possible. To see this, suppose one
has the two-qudit isotropic state [34] p|	+〉〈	+|AB + (1 −
p)IAB/dAB, where |	+〉AB := ∑d−1

i=0 |ii〉AB is maximally en-
tangled and 0 � p � 1. Locally, both systems are maximally
mixed, a state for which no informational nonequilibrium
can be concentrated. However, by considering the two-qudit
unitary that maps |	+〉 ↔ |00〉, one can obtain nonmaximally
mixed marginal, resulting in informational nonequilibrium
concentration. The physics is that one can consume the global
correlation (even a classical, nonentangled one) to generate
local purity. Namely, we can relocate the genuinely global
purity into local systems. This also shows that the two-qubit
no-go result (Result 3) is not robust to practical noise and
experimental error bars and one can consume global cor-
relation to break it. Notably, the same argument works for
arbitrary ρ = ∑

i ai|i〉〈i| by considering p|ρ〉〈ρ|AB + (1 −
p)ρA ⊗ ρB, where |ρ〉AB := ∑

i
√

ai|ii〉AB is ρ’s purification.
Hence, global correlations are useful resources for activat-
ing local concentrations of informational nonequilibrium and
purity.

At this point, one may wonder the following: To what extent
can global entanglement enhance the concentration? This is,
again, captured by the Ky Fan norm. To see this, if two copies
of ρ are entangled via |ρ〉AB, a global unitary mapping as
|ρ〉AB ↔ |00〉AB can achieve concentration in A with the in-
crement �Pcorr (ρ) := log2 d − log2 d‖ρ‖∞ = − log2 ‖ρ‖∞.
Using Result 2, the optimal concentration without any global
correlation is �P (ρ) = log2(‖ρ ⊗ ρ‖d-KF/‖ρ‖∞). Consum-
ing |ρ〉AB’s entanglement leads to the additional concentration

�Pcorr (ρ) − �P (ρ) = − log ‖ρ ⊗ ρ‖d-KF. (18)

Thus, the Ky Fan norm not only characterises INCPs’ solu-
tions, it is also the entanglement advantage in INCPs.

D. Application to concentrating intrinsic randomness

Finally, as Result 2’s application, we show that informa-
tional non-equilibrium concentration implies the ability to
concentrate intrinsic randomness. The intrinsic randomness
of a state ρ is loosely speaking defined by choosing the mea-
surement, such that even a powerful adversary has difficulty in
guessing its outcomes. We refer to Ref. [19] for all the exact
definitions, and just use the result of their optimization: the

intrinsic randomness of ρ is given by − log P∗
guess(ρ), with the

guessing probability

P∗
guess(ρ) = (tr

√
ρ )2/d. (19)

One can see that a smaller P∗
guess means a higher purity. In

particular, given a pure state, there exist measurements whose
outcomes can be maximally unpredictable [P∗

guess(ρ) = 1/d];
while the maximally mixed state has no intrinsic randomness
since P∗

guess(ρ) = 1.
Despite being an alternative way to measure purity, we

note that P and P∗
guess do not define the same order on states.

That is, P (σ ) > P (ρ) does not necessarily imply P∗
guess(σ ) <

P∗
guess(ρ) (see Appendix E for the explicit example). Hence, an

increase in P does not automatically guarantee an increase in
intrinsic randomness. Nonetheless, we show that whenever in-
formational nonequilibrium can be concentrated (i.e., �P >

0), it is always possible to increase intrinsic randomness as
well (i.e., decreasing P∗

guess).
Result 5. When �P (ρ) > 0, there exists a pairwise per-

mutation unitary V : |i, j〉 ↔ |0, k〉 for some i, j, k achieving

P
(
σ

(V )
A

)
> P (ρA) and P∗

guess

(
σ

(V )
A

)
< P∗

guess(ρA), (20)

where σ
(V )
A := trB[VAB(ρA ⊗ ρB)V †

AB].
The proof is given in Appendix F, leading to an explicit

formula [Eq. (F9)] for the possible enhancement of P∗
guess.

E. Experimental practicality

Finally, we comment on INCPs’ practical feasibility. IN-
CPs’ formulation allows them to be studied in nitrogen
vacancy (NV) center spin systems, considering the effect of
partially nondegenerate qubit or qudit energy levels and finite
difference between NV center spin systems. In Fig. 1, ρA

and ρB can be two closely populated NV centres where UAB

can be realized by the dipole-dipole interaction between NVs
[16,17]. The system (and thus the dimension of qudit) can be
selected from the electron spins, 14N (15N) nuclear spins, and
13C nuclear spins subsystems [17,18]. Further experimental
explorations are beyond the scope of this work and are left for
future research.

V. DISCUSSIONS

Thermodynamically, solving INCPs is calculating the
highest locally extractable work given access to ρ ⊗ ρ and
joint unitary operations. By performing optimal unitaries, a
local system is maximally driven from equilibrium, hence
becoming maximally thermodynamically resourceful, and one
can extract work from it via, e.g., Szilard engine [4]. As
important follow-ups, our resource concentration framework
applies to the more general thermodynamic setting with non-
degenerate Hamiltonians via concentration of athermality [35]
as well as other resources, such as unspeakable coherence
[36] or entanglement. Finally, the Mpemba-like effect and the
notion of bound purity are both worth exploring.
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APPENDIX A: PROOF OF RESULT 1

Proof. Using Eq. (2), we analyze

max
UAB

‖E(UAB,ηB )(ρA)‖∞

= max
UAB,|φ〉A

tr[U †
AB(|φ〉〈φ|A ⊗ IB)UAB(ρA ⊗ ηB)]

� max
�

(dB )
AB

tr
[
�

(dB )
AB (ρA ⊗ ηB)

]
, (A1)

where U †
AB(|φ〉〈φ|A ⊗ IB)UAB is a rank-dB projector in AB

and results in the last inequality. Now, we note that, for an
arbitrarily given rank-dB projector �

(dB )
AB , we can write

�
(dB )
AB =

dB∑
n=1

|κn〉〈κn|AB, (A2)

where {|κn〉AB}dB
n=1 is an orthonormal set with dB many pure

states. By considering the unitary Ũ †
AB mapping as

|0〉A ⊗ |n〉B ↔ |κn〉AB ∀ n, (A3)

and keeping all other basis states untouched, we obtain

Ũ †
AB(|0〉〈0|A ⊗ IB)ŨAB = �

(dB )
AB . (A4)

Hence, the inequality in Eq. (A1) is achieved, and the desired
result follows. �

APPENDIX B: PROOF OF RESULT 3

Proof. Write ρ = p|0〉〈0| + (1 − p)|1〉〈1| with 1/2 � p �
1. Using Result 2, it suffices to check

c↓
0 (ρ) + c↓

1 (ρ) = p2 + p(1 − p) = p = ‖ρ‖∞. (B1)

Hence, we can never have the strict inequality “>.” Result 2
implies that it is impossible to increase ‖ρ‖∞. Importantly,
in a qubit, this further means that increasing the difference
between two eigenvalues is impossible. Hence, two-qubit pu-
rity cannot be concentrated, independent of the choice of
measures. �

APPENDIX C: PROOF OF EQ. (11)

Proof. A direct computation shows that

�P (ρ) = P
(
σ

(U )
A

) − P (ρA)

= Dmax[trB(UAB(ρA ⊗ ρB)U †
AB) |‖ IA/d]

− Dmax(ρ ‖ I/d )

� Dmax[ρA ⊗ ρB |‖ (IA ⊗ IB)/d2] − Dmax(ρ ‖ I/d )

= Dmax(ρ ‖ I/d ) = P (ρ), (C1)

where we use the data-processing inequality under the chan-
nel trB(UAB(·)U †

AB), and the fact that Dmax[ρA ⊗ ρB |‖ (IA ⊗
IB)/d2] = 2Dmax(ρ ‖ I/d ). �

Interestingly, by applying this bound to both A and B,
we conclude that the sum of local changes of informational
nonequilibrium in A and B is upper bounded by 2P (ρ).

APPENDIX D: PROOF OF RESULT 4

Proof. First, we have

σ
opt
A (ρ) := trB

[
σ

opt
AB (ρ)

]
= a↓

0 (a↓
0 + 2a↓

1 )|0〉〈0| + [a↓
1 a↓

1 + (1 − a↓
2 )a↓

2 ]|1〉〈1|
+ a↓

2 |2〉〈2|; (D1)

σ
opt
B (ρ) := trA

[
σ

opt
AB (ρ)

]
= a↓

0 (a↓
0 + 2a↓

2 )|0〉〈0| + a↓
1 |1〉〈1|

+ [a↓
2 a↓

2 + (1 − a↓
1 )a↓

1 ]|2〉〈2|. (D2)

Also, since S[σ opt
AB (ρ)] = S(ρ ⊗ ρ) = 2S(ρ), we have

I (A : B)σ opt
AB (ρ) = S

[
σ

opt
A (ρ)

] + S
[
σ

opt
B (ρ)

] − 2S(ρ), (D3)

which is strictly positive if �P (ρ) = log2(a↓
0 + 2a↓

1 ) > 0, as
shown in Fig. 2 (which provides further illustrations). �

APPENDIX E: P AND P∗
guess DO NOT DEFINE THE SAME

ORDER ON STATES

To see a counterexample, in a five-level system, consider
states

σ = |0〉〈0|/2 + (|1〉〈1| + |2〉〈2| + |3〉〈3| + |4〉〈4|)/8, (E1)

and

ρ = (|0〉〈0| + |1〉〈1| + |2〉〈2|)/3. (E2)

Then we have

P (σ ) = log2(5/2) > log2(5/3) = P (ρ). (E3)

At the same time, we also have

P∗
guess(σ ) = (1/

√
2 +

√
2)2/5 > 3/5 = P∗

guess(ρ). (E4)

Hence, P (σ ) > P (ρ) does not necessarily imply P∗
guess(σ ) <

P∗
guess(ρ).
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APPENDIX F: PROOF OF RESULT 5

Proof. Using Result 2, �P (ρ) > 0 implies

d−1∑
k=0

c↓
k (ρ) > ‖ρ‖∞ =

d−1∑
i=0

‖ρ‖∞a↓
i , (F1)

where we recall that ρ = ∑d−1
i=0 a↓

i |i〉〈i| and a↓
i � a↓

i+1 ∀ i. By

construction, we must have c↓
0 (ρ) = ‖ρ‖2

∞ and a↓
0 = ‖ρ‖∞.

Consequently, we have

d−1∑
k=1

(c↓
k (ρ) − ‖ρ‖∞a↓

k ) > 0. (F2)

This means there exists at least one k value, say k∗, achieving

c↓
k∗ (ρ) > ‖ρ‖∞a↓

k∗ . (F3)

Let us write c↓
k∗ (ρ) = a↓

i∗a↓
j∗ for some indices i∗, j∗. Then the

inequality c↓
k∗ (ρ) > ‖ρ‖∞a↓

k∗ can be translated into

a↓
i∗a↓

j∗ > a↓
0 a↓

k∗ . (F4)

Now consider the pairwise permutation unitary

VAB : |i∗, j∗〉 ↔ |0, k∗〉. (F5)

Define δ∗ := a↓
i∗a↓

j∗ − a↓
0 a↓

k∗ > 0. Then, one can check that

σ
(V )
A := trB[VAB(ρA ⊗ ρB)V †

AB]

= ρA + δ∗(|0〉〈0|A − |i∗〉〈i∗|A). (F6)

This means that P (σ (V )
A ) > P (ρA) since the occupation of |0〉

is increased by δ∗. The final step is to argue that this unitary is

able to decrease the guessing probability. Since P∗
guess(ρA) =

(tr
√

ρA)2/d [19], decreasing P∗
guess is equivalent to decreasing

tr
√

ρA; namely, it suffices to show that tr
√

ρA > tr
√

σ
(V )
A .

Then a direct computation shows that (remember that a↓
0 is

the largest one among all a↓
i ’s)

(
√

a↓
i∗ − δ∗ +

√
a↓

i∗ )(
√

a↓
0 + δ∗ −

√
a↓

0 )

< (
√

a↓
0 + δ∗ +

√
a↓

0 )(
√

a↓
0 + δ∗ −

√
a↓

0 ) = δ∗

= (
√

a↓
i∗ − δ∗ +

√
a↓

i∗ )(
√

a↓
i∗ −

√
a↓

i∗ − δ∗). (F7)

Note that we have the above strict inequality because δ∗ > 0

and
√

a↓
i∗ − δ∗ +

√
a↓

i∗ > 0 (it cannot be zero, otherwise we
cannot have δ∗ > 0). Hence, we conclude that

√
a↓

0 + δ∗ −
√

a↓
0 <

√
a↓

i∗ −
√

a↓
i∗ − δ∗. (F8)

Finally, we note that
√

ρA and
√

σ
(V )
A are different only in the

subspace spanned by |i∗〉 and |0〉. This can be explicitly seen
by Eq. (F6). Consequently, one can check that

tr
√

ρA − tr
√

σ
(V )
A =

√
a↓

0 +
√

a↓
i∗ −

√
a↓

0 + δ∗

−
√

a↓
i∗ − δ∗ > 0, (F9)

which concludes the proof. �
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