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Acoustic black holes, white holes, and wormholes in Bose-Einstein condensates in two dimensions
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In a previous article, we studied stationary solutions to the dynamics of a Bose-Einstein condensate corre-
sponding to acoustic (or Unruh) black or white holes, namely, configurations where the flow becomes supersonic,
creating a horizon for phonons. In this paper, we consider again the Gross-Pitaevskii equation, but looking
for stationary numerical solutions in the case where the couplings are position dependent in a prescribed
manner. Initially, we consider a two-dimensional quantum gas in a funnel-like spatial metric. We then reinterpret
this solution as a solution in a flat metric but with spatially dependent coupling and external potential. In
these solutions, the local speed of sound and the magnitude of flow velocity cross, indicating the existence
of a supersonic region and therefore of sonic analogs of black and white holes and wormholes. We discuss
the numerical techniques used. We also study phase (and density) fluctuations in these solutions and derive
approximate acoustic metric tensors. For certain external potentials, we find uniform-density acoustic-black-hole
configurations and obtain their Hawking temperature.
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I. INTRODUCTION

In Ref. [1], Unruh proposed the idea of studying acoustic
black holes, which can help us to better understand quantum
phenomena such as Hawking radiation [2] from the acoustic
analog. Such analog gravity models have been theoretically
studied extensively [3–8] in the past. Such models have also
been studied in a cosmological context (see Refs. [9,10]).
In a previous paper [11], we studied stationary singular
acoustic-black-hole configurations [in two dimensions (2D)]
numerically and through series expansions by finding sta-
tionary solutions of the Gross-Pitaevskii equation in 2D with
circular symmetry. Asymptotically at infinity the fluid is at
rest, but as we approach the origin there is a radially in-
ward flow that becomes supersonic at a certain radius. At
that radius, we therefore have an acoustic horizon. Sound
cannot escape the supersonic region. Since the fluid accu-
mulates near the origin, we have a singularity in the density
that in experiments will be resolved, for example, by three-
body recombination (see Refs. [12,13]) or other effects that
remove atoms from the condensate. Those solutions were
for uniform coupling and no external potential. However,
experimental techniques allow for more general cases with
external potentials and position-dependent coupling. We can
also conceive that future developments allow us to confine the
gas to surfaces with nontrivial curvature, allowing for an ex-
ternal nontrivial spatial metric. These techniques can also be
used to achieve larger supersonic regions in two-dimensional
cases with radial flow (as we shall see), which seems more
difficult in general as compared to one-dimensional config-
urations (see one-dimensional studies [14,15], for example).

*Contact author: vaidya2@purdue.edu
†Contact author: markru@purdue.edu

This is crucial because we need to fit multiple wavelengths
of phonons1 within this region to ensure that it is indeed
a black hole, and for further black hole lasing and Hawk-
ing radiation studies. In the general case with the spatial
metric γi j (�r), the coupling g0(�r), and the external potential
V (�r), the Gross-Pitaevskii equation (GPE) [16] for ψ (�r, t ) =√

n(�r, t ) exp [iθ (�r, t )]e−iμt reads

ih̄
∂ψ

∂t
= − h̄2

2m

1√
γ

∂i(
√

γ γ i j∂ jψ ) + g0(�r) |ψ |2 ψ + V (�r)ψ.

(1)
If the parameters of the equation and its solution are slowly
varying, we can define a local speed of sound [17] as

c(�r, t ) =
√

n(�r, t )g0(�r)

m
, (2)

where n = |ψ |2 is the density. We can also define a radial flow
velocity given by [18]

�v(�r, t ) = �j(�r, t )

n(�r, t )
= h̄

m
∂rθ (�r, t )r̂. (3)

II. STATIONARY STATES: ACOUSTIC BLACK HOLES,
WHITE HOLES, AND WORMHOLES

To get the stationary solutions, we first substitute

ψ (�r, t ) = e−iμtφ(�r, t ) (4)

1Fluctuations in slowly varying background have a nonlinear dis-
persion relation, linearizing only for long wavelengths, i.e., phonons.
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into the GPE (1), and for the purposes of calculation, we scale
all equations with

T = μt, �R =
√

2mμ

h̄
�r, � = φ√

h̄μ
,

V = V

h̄μ
, (5)

which turns the Gross-Pitaevskii equation into

� + i
∂�

∂T
= − 1√

γ
∂i(

√
γ γ i j∂ j�) + g0(�r) |�|2� + V (�r) �.

(6)

In this work, we consider quantum gases in 2D and use a
conformally flat background metric:2

ds2 = f (R)[dR2 + R2dϕ2], (7)

which can also be written as

γi j = f (R)

[
1 0

0 R2

]
. (8)

The GPE (6) in this nontrivial background becomes

� + i
∂�

∂T
= − 1

f (R)
∇R

2� + g0( �R)|�|2� + V ( �R)�, (9)

where ∇R
2 is the usual Laplacian and � = �(T, R, ϕ) is the

scaled wave function. Further, assuming only radial depen-
dence and replacing

�(R) = ρ(R) exp[iθ (R)], (10)

the imaginary part of the equation gives

∂θ

∂R
= B

Rρ2
, (11)

where B is a constant of integration. Finally, after the substi-
tution (10), the real part of Eq. (9) using Eq. (11) reads

d2ρ

dR2
+ 1

R

dρ

dR
− B2

ρ3R2
+ f (R){[1 − V (R)]ρ − g0(R)ρ3} = 0.

(12)
This is the most general form of the static equation that we
consider.

Correspondence principle of solutions. Since the form of
Eq. (12) depends only on three functions, if we consider
two sets of external metrics f1,2(R), potentials V1,2(R), and
couplings g01,02(R) such that

f1(R)[1 − V1(R)] = f2(R)[1 − V2(R)], (13)

f1(R) g01(R) = f2(R) g02(R), (14)

then these two sets of functions have the exact same set of
solutions for ρ(R). As we see later, unfortunately, this cor-
respondence does not extend to time-dependent fluctuations
around these stationary background solutions.

2In 2D, any metric can be put in a conformally flat form with an
appropriate change of coordinates (see [19] for reference. Also see
[20] for application in string theory).

Going back to Eq. (12), since this equation cannot be
solved analytically, we solve it using the same boundary-
value-problem techniques (Newton iteration with Chebyshev
collocation and physics-informed neural networks) we used
in Ref. [11] for singular stationary solutions. We also study
simpler versions of these solutions in the form of uniform
density solutions by introducing a different external potential.
Then we study the dynamics of fluctuations in the density and
the phase of these solutions under some approximations.

III. ACOUSTIC WORMHOLE SOLUTION

In this section, we consider a case with no external poten-
tial and uniform coupling that can be taken as g0(R) = 1 by a
rescaling. In this case, we can introduce a scaled local speed
of sound of the form

C =
√

2ρ(R)√
f (R)

(15)

and a scaled flow velocity [from Eq. (11)],

�V(R) = V R(R)R̂ = 2∂Rθ (R)

f (R)
R̂ = 2B

f (R)R[ρ(R)]2
R̂. (16)

From Eq. (16), it is clear that B < 0 corresponds to inward
flow and B > 0 corresponds to outward flow, and both have
the same flow speed for a given |B|.

Now we consider

f (R) = 1 +
(

R0

R

)4

(17)

along with V (R) = 0 and g0(R) = 1 in Eq. (12), giving

d2ρ

dR2
+ 1

R

dρ

dR
+ (

ρ − ρ3
)[

1 +
(

R0

R

)4
]

− B2

ρ3R2
= 0. (18)

The spatial metric ds2 = [1 + ( R0
R )4](dR2 + R2dϕ2) trans-

forms to ds2 = [1 + ( R0
u )4](du2 + u2dϕ2) under u = R0

2

R ,
which indicates a symmetry about R0. Equation (18) also
clearly exhibits this symmetry and therefore has a similar
behavior at R = 0 as R → ∞. We look for solutions of the
form ρ(R) → 1 as R → ∞, and by symmetry ρ(R) → 1 as
R → 0. This metric then describes two separate asymptotic
flat regions (see the Appendix) where the fluid flows from
one to the other. For that reason, we call this configuration
an acoustic wormhole as illustrated in Fig. 1.

A. Numerical solutions

Equation (18) cannot be solved analytically. Therefore,
solutions are obtained by using Newton iteration with Cheby-
shev collocation (with iteration over R0) as well as using
deep learning, as discussed in the case of singular stationary
solutions in Ref. [11].

1. Newton iteration with Chebyshev collocation

Here we have a symmetry about R0, and therefore we need
to solve only for R0 � R < ∞ numerically by mapping it to
[−1, 1] as follows:

R = R0 + A
1 + U

1 − U
, (19)

where we choose A = 10 to better resolve the structure of the
solution. For Chebyshev collocation, we use the collocation

043309-2



ACOUSTIC BLACK HOLES, WHITE HOLES, AND … PHYSICAL REVIEW A 111, 043309 (2025)

FIG. 1. Theoretical wormhole configuration. The fluid moves
along a nontrivial surface connecting two asymptotic regions. The
motion is supersonic in the vertical part. In principle, the outer
regions can be reconnected to recirculate the subsonic fluid without
requiring sources or sinks from the experimental perspective.

grid points given by Uk = cos( πk
N ), where k = 0, 1, 2, . . . , N .

The derivatives are discretized on these grid points using
Chebyshev collocation differential matrices (see Ref. [21]).

To construct a Newton method [22] for a boundary value
problem, we first write the differential equation (18) in vari-
able U as

ODE = G[ρ(U ), ρ ′(U ), ρ ′′(U )] = 0,

where ρ ′(U ) = dρ(U )

dU
, ρ ′′(U ) = d2ρ(U )

dU 2
, (20)

and we expand G in Eq. (20) about ρold(U ) at first order [23]:

Gold + (ρnew − ρold)

(
dG

dρ

∣∣∣∣
ρ=ρold

)

+ (ρ ′
new − ρ ′

old)

(
dG

dρ ′

∣∣∣∣
ρ ′=ρ ′

old

)

+ (ρ ′′
new − ρ ′′

old)

(
dG

dρ ′′

∣∣∣∣
ρ ′′=ρ ′′

old

)
= 0. (21)

We use Eq. (21) along with Chebyshev collocation differen-
tial matrices to implement the Newton iteration (in C + +)
with mixed boundary conditions ρ ′(U = −1) = 0 and ρ(U =
1) = 1. This can be easily achieved by adding a row for the
derivative at the left boundary (at R0) in the rectangular matrix
of the system of N − 1 discretized equations in N unknowns.
Then these Newton iterations are performed with some initial
guess of the function as well as R0 until the iteration error be-
comes small enough and falls within the acceptable numerical
error. It is interesting to note that the solutions obtained using
this approach turn out to have a lower bound on the value of
R0 for a given value of the parameter3 |B|. A sample solution
is shown in Fig. 2 and plotted against a corresponding singular
stationary solution from Ref. [11] to show how this model
provides a regularization of the singular solutions discussed
in Ref. [11].

3B < 0 and B > 0 have the same solutions for a given |B|.

FIG. 2. Sample solution with background metric compared with logarithmic singular solution for |B| = 1 in 2D. The neural network result
for the same solution is shown in circles.
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FIG. 3. Speed of sound (dashed line) and magnitude of flow velocity (solid line) for |B| = 1 and R0 = 1.4827 with background metric (in
red) and variable coupling (in black) in 2D with supersonic region in blue shade.

2. Physics-informed neural network.

This problem can also be solved using neural networks.
We employ the same neural network4 we used in Ref. [11]
except that now we map R ∈ [0,∞] → U ∈ [−1, 1], with
R = R0

1+U
1−U . We scale the unknown function as 1 − 0.1(1 −

U 2)2N (U, P) so that the only unknown is the neural network
N (U, P) and the function and its slope are always 1 and 0,
respectively, at both boundaries. The result of this for the same
solution obtained earlier with the Newton method is shown in
circles in Fig. 2.

Figure 3 shows the speed of sound and the magnitude of the
flow velocity for this solution with a background funnel metric
clearly indicating a crossover between the speed of sound and
the magnitude of flow velocity and thus the existence of a
supersonic region and, therefore, a sonic black or white hole.
Since Eq. (18) and by extension its solution exhibit symmetry
about R0, regions R → ∞ and R → 0 represent two identical
asymptotically uniform density regions. Therefore, this black
or white hole can be thought of as an acoustic (one-way)
wormhole (see Fig. 1), as we shall see.

B. Fluctuations and acoustic wormhole metric

Fluctuations of these solutions satisfy Eq. (9) with V (R) =
0 and g0(R) = 1. Introducing density and phase perturbations

41, 15, 20, 15, and 1 neuron in each layer from input to output
layers, with Adam optimizer, and tanh activation function, as well
as PYTHON library PYTORCH along with the automatic differentiation
engine called autograd.

of the form

�(R, ϕ, T )

=
√

n(R, ϕ, T ) exp[iθ (R, ϕ, T )]

=
√

n0(R) + n1(R, ϕ, T ) exp {i[θ0(R) + θ1(R, ϕ, T )]}

≈
√

n0(R) exp[iθ0(R)]

(
1 + n1(R, ϕ, T )

2n0(R)
+ iθ1(R, ϕ, T )

)

=
√

n0(R) exp[iθ0(R)][1 + N1(R, ϕ, T ) + iθ1(R, ϕ, T )],
(22)

where n0(R) = [ρ0(R)]2 and θ0(R) are the background den-
sity and phase, we get the following linearized coupled
equations that govern the dynamics of density and phase per-
turbations:(

∂T − 2|B|
f (R)R[ρ0(R)]2

∂R

)
N1(R, ϕ, T )

= − 1

f (R)ρ0(R)2 ∇R · [ρ0(R)2∇Rθ1(R, ϕ, T )], (23)(
∂T − 2|B|

f (R)R[ρ0(R)]2
∂R

)
θ1(R, ϕ, T )

= 1

f (R)ρ0(R)2 ∇R · [ρ0(R)2∇RN1(R, ϕ, T )]

− 2ρ0(R)2N1(R, ϕ, T ), (24)

where N1(R, ϕ, T ) = n1(R,ϕ,T )
2n0(R) = n1(R,ϕ,T )

2[ρ0(R)]2 .
Under the hydrodynamic approximation ∇R ·

[ρ0(R)2∇RN1(R, ϕ, T )] ≈ 0 (see Refs. [4,5]), Eqs. (23)
and (24) can be combined, and the result looks like a
massless scalar field θ1(R, ϕ, T ) in an acoustic (space-time)
metric background (see Ref. [24]). The acoustic metric here
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looks like the Schwarzschild metric in Painlevé-Gullstrand
coordinates (see Ref. [25]).

gμν ∼ρ0(R)4

⎡
⎢⎢⎢⎣

−(
1 − 2B2R2

ρ0(R)6(R4+R4
0 )

) |B|
Rρ0(R)4 0

|B|
Rρ0(R)4

R4+R4
0

2R4ρ0(R)2 0

0 0 R4+R4
0

2R2ρ0(R)2

⎤
⎥⎥⎥⎦.

(25)

Here, condensate flows with a subsonic flow from an
asymptotically flat region at R → ∞ to an identical asymp-
totically flat region at R → 0 (see the Appendix), with the
flow becoming supersonic in some neighborhood of R0. This
looks like a (one-way) wormhole (see Fig. 1) connecting two
patches of this analog space-time.5

IV. UNIFORM-DENSITY WORMHOLES

It is interesting to note that allowing for an external poten-
tial together with a spatial metric allows for a special class of
solutions with uniform density. Indeed, setting g0(R) = 1 and
ρ(R) = 1 in Eq. (12), we get

−B2

R2
− f (R)V (R) = 0. (26)

Therefore, such solutions exist if the potential satisfies this
condition, giving

V (R) = − B2

R2
[
1 + (R0

R

)4] (27)

for the case we are considering here where f (R) is given
by Eq. (17). With ρ = 1, from Eqs. (15) and (16), the flow
velocity becomes �V(R) = 2B

f (R)R R̂ and the local speed of sound

becomes C =
√

2√
f (R)

. For some sample solutions the flow
speed and the sound speed are shown in Fig. 4. The advantage
of this solution is that the exact location Rh of the acoustic

horizons is known in a closed form, Rh =
√

B2 ±
√

B4 − R0
4.

A. Fluctuations and acoustic wormhole metric

It can be shown in a way similar to that in the previous
section that the perturbations of this background solution also
look like a massless scalar field in an acoustic (space-time)
metric background [from Eq. (25)] in the hydrodynamic limit,
and the acoustic metric looks as follows:

gμν ∼

⎡
⎢⎢⎣

−(
1 − 2B2R2

(R4+R4
0 )

) |B|
R 0

|B|
R

R4+R4
0

2R4 0

0 0 R4+R4
0

2R2

⎤
⎥⎥⎦, (28)

which also looks like a wormhole (see Fig. 1) similar to
nonuniform-density configurations discussed in the previous
section.

5We consider solutions with B < 0. It is a one-way wormhole
because phonons can cross the horizons only in one direction.

B. Hawking temperature from fluctuations
in the hydrodynamic limit with R0 ≈ 0

In the limit of R0 ≈ 0, this system looks like the one dis-
cussed in Ref. [26] for a photon gas. This system has only
one horizon given by Rh = √

2|B|. Furthermore, R0 ≈ 0 gives
the flow velocity �V(R) ≈ 2B

R R̂ and the local speed of sound
C ≈ √

2 from Eqs. (16) and (15), respectively.

1. Bogoliubov transform

Thinking of phase perturbations (under the hydrodynamic
approximation) as a massless scalar field in the acoustic metric
background given by Eq. (28) with R0 ≈ 0, we can reproduce
the system discussed in Ref. [26]. Thus, from Ref. [26] we get
the temperature TH of this analog black hole to be TH = 1

2π |B| .

2. Analytic continuation

One more check is to analytically continue the outgoing
solution in the vicinity of the horizon from outside to inside.6

It can be shown that the radial dependence of the outgo-
ing solution near the horizon has the form (R − √

2|B|)iω|B|.
Therefore, we get a real exponential correction inside the
horizon e|B|ωπ . This gives the ratio e−2|B|ωπ (where ω > 0) of
the squared amplitude of the outgoing solution outside and
inside the horizon, similar to the relation between Bogoliubov
coefficients [26]. This can also be thought of as a tunnel-
ing probability (< 1) or tunneling coefficient for the analog
Hawking radiation (similar to Ref. [27] except in Painlevé-
Gullstrand coordinates). This is consistent with the previous
approach.

3. Periodicity of Wick-rotated Euclidean time

Furthermore, if we diagonalize the acoustic metric (28)
(with R0 = 0) by combining coordinates T and R into a new
time coordinate Tsch, the metric becomes

ds2 = −
(
R2 − R2

h

)
dTsch

2

R2
+ R2dR2

2
(
R2 − R2

h

) + R2

2
dϕ2, (29)

where Rh = √
2|B| in Eq. (29). Under the coordinate transfor-

mation R = Rh + 1√
2|B|ε

2, the temporal and radial parts of the
metric become

−ε2dTsch
2

B2
+ dε2, (30)

where through Wick rotation, if we redefine β = i Tsch
|B| , to avoid

a conical singularity, β should have periodicity 2π and there-
fore the temperature is TH = 1

2π |B| , which gives the tunneling

coefficient e−2|B|ωπ . This is consistent with the previous ap-
proaches that we discussed.

6The coordinates need to be smooth across the horizon, which is
the case with the Painlevé-Gullstrand-like coordinates used.
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(a) |B| = 1.0 and R0 = 0.1

(b) |B| = 50.0 and R0 = 10.0

FIG. 4. Speed of sound (dashed line) and magnitude of flow velocity (solid line) for sample solutions with background metric (in red) and
variable coupling (in black) as well as external potential in 2D with the supersonic region in blue shade.

C. Hawking temperature from fluctuations in the
hydrodynamic limit with R0 �= 0

Now if we go back to Eq. (28) and consider R0 �= 0, there

are two horizons given by Rp,m =
√

B2 ±
√

B4 − R0
4 (in the

extremal case |B| = R0). Since there is no exact solution for
the massless scalar filed θ1(R, ϕ, T ) even in the hydrodynamic
approximation, we just study the equation in the vicinity of the
outer horizon.

1. Analytic continuation

One method is to analytically continue the solution in
the vicinity of the outer horizon from the outside to the
inside.6 The radial dependence of the solution near the outer

horizon Rp is of the form (R − Rp)
iω|B|3√
B4−R0

4 . Therefore, we

get real exponential corrections of the form e
− π (R2

m+R2
p )

3
2 ω√

2(R2
p−R2

m ) =

043309-6
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e
− π |B|3ω√

B4−R4
0 while going from inside to outside Rp. The ratio

of amplitude squared outside to amplitude squared inside can
be interpreted as the semiclassical probability of tunneling
(< 1) or the tunneling coefficient (similar to Ref. [27] except
in Painlevé-Gullstrand coordinates), giving the temperature

TH =
√

2(R2
p−R2

m )

2π (R2
m+R2

p)
3
2

=
√

B4−R4
0

2π |B|3 .

2. Periodicity of Wick-rotated Euclidean time

If we diagonalize the acoustic metric (28) by combining
coordinates T and R into a new time coordinate Tsch, the
metric becomes

ds2 = −
(
R2 − R2

p

)(
R2 − R2

m

)
dTsch

2

R4 + R2
pR2

m

+
(
R4 + R2

pR2
m

)2
dR2

2R4
(
R2 − R2

p

)(
R2 − R2

m

) +
(
R4 + R2

pR2
m

)
dϕ2

2R2
,

(31)

where Rp =
√

B2 +
√

B4 − R0
4 and Rm =√

B2 −
√

B4 − R0
4. Under the coordinate transfor-

mations near Rp given by R = Rp + (R2
p−R2

m )Rp

(R2
p+R2

m )2 ε2 =
Rp +

√
B4−R4

0 (B2+
√

B4−R4
0 )

2|B|4 ε2, the temporal and radial parts
of the metric become

At Rp ⇒ −2
( − R2

m + R2
p

)2

(
R2

m + R2
p

)3 ε2dTsch
2 + dε2

= −B4 − R4
0

B6
ε2dTsch

2 + dε2, (32)

where through Wick-rotated Euclidean time and its period-
icity of 2π , we get the temperature at the outer black-hole
horizon,

TH =
√

2
(
R2

p − R2
m

)
2π

(
R2

m + R2
p

) 3
2

=
√

B4 − R4
0

2π |B|3 . (33)

This gives the tunneling coefficient across the outer horizon
as

e
− 2πω(R2

m+R2
p )

3
2

√
2 (R2

p−R2
m ) = e

− 2πω|B|3√
B4−R4

0 . (34)

This is consistent with the analytic continuation across the
horizon.

V. RADIALLY VARYING COUPLING
AND EXTERNAL POTENTIAL

In a laboratory setting, a nontrivial background metric can
be accomplished by restricting the fluid to move on a curved
surface rather than a flat one. Although this might be possible,
we point out in this section that the solution corresponding

to the spatial funnel metric in Sec. III can be reinterpreted as
a solution in a spatial flat metric by using the correspondence
principle discussed in Sec. II. Instead of f (R), V (R), and g0 =
1, we can use a flat metric with the potential U (R) and the
coupling g0(R) such that

U (R) − 1 = [V (R) − 1] f (R), (35)

g0(R) = f (R), (36)

where f (R) = 1 + ( R0
R )4. Both of these configurations (on the

left and the right above) have identical stationary solutions.
Notice that, with the funnel metric, the region near R = 0 was
interpreted as another asymptotic region, as is evident from
the symmetry between large and small R. The incoming flux
from one region goes out through the other region. On the
other hand, in the corresponding flat metric with the variable
coupling case, R = 0 represents the origin of the plane and
the fluid appears to have nowhere to go. By carefully looking
at the GPE, one can see that the solution corresponds to a
GPE with a sink at the center that removes the atoms, which
can be simulated by an imaginary Dirac δ-function potential
at R = 0. This is also reflected in the fact that the scaled
local speed of sound is now C = √

2 f (R)ρ(R) and the flow
velocity is �V(R) = 2B

R[ρ(R)]2 R̂. They are singular when R → 0
(see Fig. 3) despite the fact that the amplitude or density of
the stationary solution itself is well behaved (see Fig. 2). This
breaks the symmetry about R0, which is also evident from
the equations that govern fluctuations, as we see in the next
subsection.

Fluctuations

Introducing perturbation in the stationary solution as was
done earlier (22), we find(

∂T − 2|B|
R[ρ0(R)]2

∂R

)
N1(R, ϕ, T )

= − 1

ρ0(R)2 ∇R · [ρ0(R)2∇Rθ1(R, ϕ, T )], (37)(
∂T − 2|B|

R[ρ0(R)]2
∂R

)
θ1(R, ϕ, T )

= 1

ρ0(R)2 ∇R · [ρ0(R)2∇RN1(R, ϕ, T )]

− 2 f (R)ρ0(R)2N1(R, ϕ, T ), (38)

where N1(R, ϕ, T ) = n1(R,ϕ,T )
2n0(R) = n1(R,ϕ,T )

2[ρ0(R)]2 . We notice that
Eqs. (37) and (38) clearly differ from Eqs. (23) and (24).
In addition, Eqs. (37) and (38) lack the symmetry about R0

that Eqs. (23) and (24) enjoy. Now we proceed to analyze the
solutions.

Under the hydrodynamic approximation ∇R ·
[ρ0(R)2∇RN1(R, ϕ, T )] ≈ 0, Eqs. (37) and (38) can be
combined, and the result looks like a massless scalar field
θ1(R, ϕ, T ) in an acoustic (space-time) metric background
(see Ref. [24]). The acoustic metric here looks like the
Schwarzschild metric in Painlevé-Gullstrand coordinates (see
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Ref. [25]):

gμν ∼ ρ0(R)4

⎡
⎢⎢⎢⎣

−(
1 − 2B2R2

ρ0(R)6(R4+R4
0 )

) |B|R3

(R4+R4
0 )ρ0(R)4 0

|B|R3

(R4+R4
0 )ρ0(R)4

R4

2(R4+R4
0 )ρ0(R)2 0

0 0 R6

2(R4+R4
0 )ρ0(R)2

⎤
⎥⎥⎥⎦. (39)

This acoustic metric tensor clearly lacks the symmetry about
R0 and it no longer corresponds to a (one-way) wormholelike
configuration because it lacks a second asymptotic region at
R = 0.

VI. UNIFORM DENSITY SOLUTION WITH RADIALLY
VARYING COUPLING AND EXTERNAL POTENTIALS

From Eq. (12) we find that there are uniform density solu-
tions ρ = 1 with no external metric if the condition

−B2

R2
+ [1 − V (R) − g0(R)] = 0 (40)

is satisfied. Using the correspondence principle of Sec. II, we
find this case can be related to the nontrivial metric f (R), the
potential Ṽ (R), and constant coupling if

[1 − V (R)] = f (R)[1 − Ṽ (R)], (41)

g0(R) = f (R). (42)

Therefore, setting

g0(R) = 1 +
(

R0

R

)4

(43)

and the potential according to Eq. (40), we find uniform
density solutions with a nontrivial acoustic metric for the
fluctuations as discussed in the next subsection. Furthermore,
the local speed of sound and the flow velocity become C =√

2 f (R) and �V(R) = 2B
R R̂, respectively, which as shown in

Fig. 4 are clearly singular7 despite the ρ(R) of the stationary
background solution being 1 everywhere. These are perhaps
the solutions that are easier to reproduce in an experimental
setting.

A. Fluctuations

It can be shown in a way similar to that in the previous
section that the perturbations in this background solution also
look like a massless scalar field in an acoustic (space-time)
metric background [from Eq. (39)] in the hydrodynamic limit,
and the acoustic metric looks as follows:

gμν ∼

⎡
⎢⎢⎢⎣

−(
1 − 2B2R2

(R4+R4
0 )

) |B|R3

(R4+R4
0 )

0
|B|R3

(R4+R4
0 )

R4

2(R4+R4
0 )

0

0 0 R6

2(R4+R4
0 )

⎤
⎥⎥⎥⎦. (44)

7The inner horizon is excluded from the plot because it is way
outside the bounds of the plot. This is because sound and flow speeds
are singular as discussed.

This metric tensor also clearly lacks the symmetry about R0

and it no longer corresponds to a wormhole, because it lacks
a second asymptotic region.

B. Hawking temperature from fluctuations
in the hydrodynamic limit with R0 ≈ 0

In the limit of R0 ≈ 0, metric tensors (44) and (28) look
exactly the same, and therefore with R0 ≈ 0 this system also
looks like the one discussed in Ref. [26] for the photon gas
and therefore the solutions of the perturbation equations ex-
hibit the same behavior as discussed for the uniform-density
solution with spatial background funnel metric and external
potential. Therefore, the temperature is TH = 1

2π |B| , which

gives the tunneling coefficient e−2|B|ωπ .

C. Hawking temperature from fluctuations in the
hydrodynamic limit with R0 �= 0

Now, if we go back to Eq. (44) and consider R0 �= 0, there

are two horizons given by Rp,m =
√

B2 ±
√

B4 − R0
4 (in the

extremal case |B| = R0), but again there is no exact solution
for the massless scalar θ1(R, ϕ, T ) even in the hydrodynamic
approximation. However, we can still analyze the behavior
near the outer horizon as follows.

1. Analytic continuation

One can analytically continue the solution in the vicinity
of the outer horizon from the outside to the inside.6 In this
case, the solution near the outer horizon Rp has the radial

dependence of the form (R − Rp)
iω|B|(B2+

√
B4−R0

4 )

2
√

B4−R0
4 . Therefore, we

get real exponential corrections while going from outside to
inside Rp. The ratio of the modulus square of the solution out-
side and inside the horizon can be interpreted as a tunneling
coefficient (similar to Ref. [27] except in Painlevé-Gullstrand
coordinates) or the probability of tunneling (< 1). This indi-

cates the temperature TH =
√

2(R2
p−R2

m )

2π
√

R2
m+R2

pR2
p

= 2
√

B4−R4
0

2π |B|(B2+
√

B4−R4
0 )

.

2. Periodicity of Wick-rotated Euclidean time

If we diagonalize the acoustic metric (44) by combining
coordinates T and R into a new time coordinate Tsch, the
metric becomes

ds2 = −
(
R2 − R2

p

)(
R2 − R2

m

)
dTsch

2

R4 + R2
pR2

m

+ R4dR2

2
(
R2 − R2

p

)(
R2 − R2

m

) + R6

2R4 + 2R2
pR2

m

dϕ2,

(45)
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where Rp =
√

B2 +
√

B4 − R0
4 and Rm =√

B2 −
√

B4 − R0
4. Under the coordinate transforma-

tions near Rp given by R = Rp + Rp2−R2
m

R3
p

ε2 = Rp +
2
√

B4−R4
0

(B2+
√

B4−R4
0 )

3
2
ε2, the temporal and radial parts of the metric

become

at Rp ⇒ − 2
( − R2

m + R2
p

)2

R4
p

(
R2

m + R2
p

) ε2dTsch
2 + dε2

= −(
4B4 − 4R4

0

)
(
B2 +

√
B4 − R4

0

)2
B2

ε2dTsch
2 + dε2, (46)

where through Wick-rotated Euclidean time (see the process
explained in Ref. [28]) and its periodicity of 2π we get the
temperature at the outer black-hole horizon

TH =
√

2
(
R2

p − R2
m

)
2πR2

p

√
R2

m + R2
p

=
2
√

B4 − R4
0

2π
(
B2 +

√
B4 − R4

0

)|B|
. (47)

This gives a tunneling coefficient,

e
− 2πωR2

p

√
R2

m+R2
p√

2 (R2
p−R2

m ) = e
− 2πω(B2+

√
B4−R4

0 )|B|

2
√

B4−R4
0 , (48)

consistent with the analytic continuation across the horizon.

VII. CONCLUSIONS

We obtained nonsingular stationary solutions of the Gross-
Pitaevskii equation by putting a spatial funnel-like metric
describing a space with two asymptotic regions. The fluid
moves radially inwards in one region and comes out in the
other one. Therefore the fluid does not accumulate and no
singularity is produced. The spatial funnel-metric is particu-
larly interesting because it resembles a (one-way) wormhole
for phonons in the hydrodynamic limit. We also obtained
nonsingular stationary solutions of the Gross-Pitaevskii equa-
tion using position-dependent coupling and potential. We
expect this latter approach to be more feasible in actual ex-
periments. In this approach, we do not see a wormholelike
behavior, but we still do get acoustic black-hole or white-hole
configurations. Perhaps the most interesting configurations
from a practical point of view are ones with uniform density
that appear when the funnel metric or the position-dependent
coupling and potential are related to each other in a particular
way. Additionally, since these uniform-density configurations
can be made to have an arbitrarily large supersonic region,
multiple phonon wavelengths can be fit into the region, mak-
ing it more feasible to study black-hole lasing and Hawking
radiation.

In all the configurations discussed, the approximate local
speed of sound and the magnitude of flow velocity cross.

That means we do indeed find acoustic black-hole, white-
hole, and wormhole configurations. We also see that, in the
hydrodynamic limit, the phase fluctuations around the station-
ary solutions behave as a massless scalar (phonon) field in
an acoustic metric background. In particular, the fluctuations
around the uniform density solutions are easy to analyze,
leading to specific values for the black-hole temperature.
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APPENDIX: ACOUSTIC WORMHOLE DOUBLE-FUNNEL

In Sec. III, we consider a 2D quantum fluid in a confor-
mally flat metric given by

ds2 = f (R) (dR2 + R2dθ2), f (R) = 1 + R4
0

R4
. (A1)

To potentially recreate such a metric in a laboratory setting,
we should force the fluid to move on a curved surface with
the shape of a double funnel as in Fig. 1. To find the exact
required shape, we consider, in cylindrical coordinates, a sur-
face parametrized by (R, θ ) of the form

r = r(R), θ = θ, z = z(R), (A2)

such that the induced metric on the surface

ds2 = dr2 + r2dθ2 + dz2

=
(

∂r(R)

∂R

)2

dR2 + r(R)2dθ2 +
(

∂z(R)

∂R

)2

dR2 (A3)

agrees with Eq. (A1). From this, we get the following equa-
tions:

dz(R)

dR
= 2 R2

0√
R4 + R4

0

, (A4)

r(R) =
√

f (R)R. (A5)

The function r(R) is determined and the equation for z(R)
can be integrated in terms of elliptic functions. Making a
parametric plot of r(R) and z(R), we get the double-funnel
geometry shown (with scaled out R0) in Fig. 1. This shows
that the metric is flat at R → ∞ ⇒ r(R) → ∞, z(R) > 0, and
R → 0 ⇒ r(R) → ∞, z(R) < 0. The span of the coordinate z

is �z = z(R = +∞) − z(R = 0) = R0
2

[�( 1
4 )]2

�( 1
2 )

.

Another useful radial coordinate that respects the symme-
try is ξ = R

R0
− R0

R , with −∞ < ξ < ∞.
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