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Induced interactions and bipolarons in spin-orbit-coupled Bose-Einstein condensates
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Impurities immersed in a Bose-Einstein condensate (BEC) can interact indirectly through the exchange of
Bogoliubov excitations. These impurities, which form dressed quasiparticles known as Bose polarons due to
their interaction with the BEC, can pair up to form a bound state called a bipolaron, via an induced interaction.
Previous studies on induced interactions have focused primarily on cases with an isotropic excitation spectrum.
In this work, we investigate the properties of induced interactions and bipolarons mediated by anisotropic
Bogoliubov excitations using field theory. Taking a BEC with spin-orbit coupling as an example, we show that
the induced interaction becomes anisotropic. Notably, a double-minima feature appears in the induced interaction
in momentum space due to the exchange of roton excitations. Additionally, we calculate the binding energy and
wave functions of these bipolarons induced by anisotropic interactions. Unlike previously studied bipolarons
formed through the exchange of isotropic phonon excitations, we identify an alternative type of bipolaron whose
wave functions feature a double-peak structure under strong impurity-boson interactions. Our work extends the
theory of induced interactions from isotropic to anisotropic systems, and it reveals the novel features in both the

induced interactions and bipolarons arising from BEC with an unconventional excitation spectrum.
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I. INTRODUCTION

A quasiparticle is an essential concept for describing
the effective behavior of complex many-body systems, as
it simplifies analysis by providing a clear and intuitive
physical framework [1]. It is common in condensed-matter
systems, and it includes examples such as quasiparticles in
Fermi liquids, phonons in solids, excitons in semiconductors,
exciton-polaritons in semiconductor cavities, and polarons.
The concept of a polaron was first proposed by Landau as
a quasiparticle describing the electron interacting with and
dressed by lattice phonons. In ultracold atomic gases, im-
purities immersed in bosonic or fermionic gases enable the
realization of Bose or Fermi polarons. Ultracold atom plat-
forms offer significant advantages, providing a systematic
and highly controllable approach to studying polarons. In
experiments, both Bose and Fermi polarons are successfully
observed [2-10], leading to extensive theoretical investiga-
tions into Fermi polarons [11-19] and Bose polarons [20-32].

Induced interactions between quasiparticles are widely ob-
served across various fields of physics, as comprehensively
reviewed in a recent work by Paredes et al. [33]. For exam-
ple, in conventional superconductors, electron pairing occurs
due to the exchange of lattice phonons. For Bose polarons
in cold atoms, the induced interactions between impurities
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are caused by the exchange of low-energy excitations of the
Bose-Einstein condensate (BEC) medium. The induced inter-
action is overall attractive and may lead to the formation of
polaron bound states known as bipolarons. So far, the induced
interaction from isotropic Bogoliubov excitations has been
studied extensively in both theory and experiment [34—44].
It is natural to ask how the induced interaction arising from
anisotropic Bogoliubov excitations differs from the conven-
tional case. Furthermore, could new types of bipolarons form
with characteristics different from conventional ones?

In this paper, we study the properties of induced interaction
and bipolarons mediated by anisotropic Bogoliubov excita-
tions in BEC, taking BEC with spin-orbit coupling (SOC) as
an example [45-58]. It is well known that BEC with SOC
has anisotropic excitations dependent on the form of SOC.
In particular, we consider a one-dimensional (1D) SOC with
equal Rashba- and Dresselhaus-type which has been realized
in experiments and studied extensively [45,55]. The excitation
spectrum features a phonon dispersion at small momentum
and roton dispersion at finite momentum. Previously, it has
been found that a Bose polaron in this system has novel
features, such as a polaron dispersion minimum at nonzero
momentum [59]. However, the induced interaction between
these polarons has not yet been investigated. Here, we find that
the induced interaction becomes anisotropic as a result of the
anisotropic Bogoliubov excitations. Additionally, the roton
dispersion leads to a double-minima structure for the induced
interaction in momentum space. The induced interaction is
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calculated with both field theory and second-order perturba-
tion theory, where the former method is applicable even for
strong impurity-boson interaction. We further calculate the
binding energy and wave functions of bipolarons, and we find
that for strong impurity-boson interaction, the bipolaron wave
functions feature a novel double-peak structure in momentum
space.

The structure of the rest of this paper is as follows.
In Sec. II, we provide a brief review of Bogoliubov ex-
citations in spin-orbit-coupled BEC using the method of
band projection, i.e., by projecting the Hamiltonian onto the
lower band before performing a mean-field approximation.
In Sec. III, we explore the properties of the Bose polaron
in a spin-orbit-coupled BEC medium, and we calculate the
induced interactions mediated by anisotropic Bogoliubov ex-
citations using field theory, which remains valid even for
strong impurity-boson interactions. In particular, we find that
the roton-induced interaction has a double-minima feature in
momentum space. In Sec. IV, we examine the properties of
bipolarons arising from the anisotropic interaction, and we
reveal the feature of bipolarons resulting from anisotropic
interactions. Finally, Sec. V concludes this paper with a com-
prehensive summary of our key findings and results.

II. EXCITATIONS IN SPIN-ORBIT COUPLED BEC

BECs with anisotropic excitation spectra are commonly
found in systems confined within anisotropic optical lat-
tices or those with broken time-reversal symmetry. Here, we
take spin-orbit-coupled BECs as an example. These systems
exhibit an anisotropic excitation spectrum, which differs be-
tween the direction influenced by SOC and the perpendicular
direction. Furthermore, for the plane-wave phase where the
BEC condenses at nonzero momentum, the spectrum becomes
asymmetric with respect to inversion along the SOC direction.
The spin-orbit-coupled bosonic system serves as an example
to examine how anisotropic and asymmetric dispersions im-
pact induced interactions.

To be specific, consider a BEC with Raman-induced SOC
in the x direction, whose single-particle Hamiltonian of the
system reads (set i = 1) [60,61]

(k — koer0,)> Qo] /(a
Z(am,aki)[ +T](a2>’ ()

mp

where mp is the boson atomic mass, kg is the recoil mo-
mentum, €2 is the Raman coupling strength, and ay, is the
annihilation operator for a pseudospin state o = {1, |} at
momentum k. o, and o, are the x and z components of Pauli
matrices, respectively. Hereafter, we set ky as the momentum
unit and the associated recoil energy E, = kg /2mp as the
energy unit. The interaction term is

8oo’ B T
Hine = W Z AUy +90 Yy —go Hhao' Gkyo > 2
kik2q

where, for simplicity, the SU(2)-invariant interactions be-
tween bosons are considered, i.e., g, = g = 4mwap/mp, with
ap being the boson-boson scattering length.
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FIG. 1. (a) The single-particle dispersion € . along the k, direc-
tion (setting k. = 0). (b) The Bogoliubov excitation E, along the g,
direction (setting g, = 0). The dashed lines are the full spectrum, and
the solid line is the one after band projection. The parameters chosen
are Q/E, =2, ny = 1/k3, gny/E. = 0.5, and we will fix these three
parameters in the following calculation.

The energy spectrum of the single-particle Hamiltonian H,
has two branches, corresponding to two helicities,

k? N K, [(kko 2+ Q\? 0
€Gp = — + —— =,
k£ 2mp  2mp mp 2

where k=+ k2 + k2 + k2 When Q < 4E,, the lower branch

has two minima at +k,, = tkocos20e, with 20 =
arcsm(.Q/4E ). In this case, the ground state of spin-orbit-
coupled BEC is a plane-wave phase with bosons condensed
at either of the two minima, as shown in Fig. 1, and the low-
energy excitation spectra feature an asymmetric dispersion in
the x direction. The focus of this study is on the properties of
bipolarons induced by this type of anisotropic and asymmetric
Bogoliubov excitation.

The Bogoliubov excitation of this system has been studied
extensively [52,60], and the excitation has two branches, due
to the pseudospin-1/2 character of the boson, as shown in
Fig. 1. The two branches are separated by an energy gap, and
thus at very low temperature, we expect that only the lower
branch will have a major impact on the induced interaction. So
for simplicity, we first project the single-particle Hamiltonian
to the lower branch, and then we obtain the lower branch of
Bogoliubov excitation through mean-field theory. This projec-
tion method dramatically simplifies the following calculations
while preserving the essential physics.

To be specific, we first expand the operator ay, in the eigen-
states of Hy, i.e., ax, = (kolk+)ags + (ko lk—)ay_, where
(ko k<) is the transformation matrix that diagonalizes Hj.
By discarding the occupation of the upper energy branch,
axs ~ (ko |k—)ay_, we obtain the projected Hamiltonian with
interaction [62—-64]

HBEC ~ Z ek,_a,"!_ak,_
k
“4)
akz’iaksy_ak‘,,_.

fk3,k4 T
Z ki,k2 Ay,

Here, €;_ is the lower helicity band dispersion, the prime
symbol in the second line means the summation is constrained
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is the interaction projected to the lower helicity branch.

The low-energy excitation spectrum of the projected
Hamiltonian can be obtained by the standard Bogoliubov the-
ory. Assuming the BEC is condensed at the momentum +k,,,
the Bogoliubov—de Gennes (BdG) equation reads

1
— i
Hpgc = 3 qééo v K(q)¥y, 6)

where \IJT , dk, —q,— ), and the Bogoliubov matrix is

(ak g —
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Here, Ko(q) = €k,+q— — 1, and p =e€, -+ Z11(0) —
%12(0) is the chemical potential. %;; is the ij component of
the self-energy,
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and other terms of the self-energy can be obtained via
211(q) = Zn(—q) and Xi1(g) = Xo1(g)*. np is the average
condensate density. The BdG Hamiltonian can be diago-
nalized by defining the quasiparticle operators o, and aiq,
related with W, by

Akyy+q,— _ Mq qu g
)= m)) e
k q q —q

m—q—

Wy

where the quasiparticle amplitudes u,, v, and the Bogoliubov
excitation spectrum £, can be obtained by diagonalizing the
matrix 0,K(q) [62,65—67]. In terms of the quasiparticle oper-
ators o, the BdG Hamiltonian now takes the form

Hpag =~ ZEqa;aq. (10)
q

The excitation spectrum E, obtained in this way agrees well
with the lower branch of the excitation spectrum without
projection [60], as shown in Fig. 1.

For comparison, we also plot the two branches of
Bogoliubov excitations by solving the full BAG equation of
spin-orbit-coupled BEC without projection. As shown in
Fig. 1, the excitation spectrum by the projection method
agrees well with the lower branch of excitation without pro-
jection, validating the reliability of the projection method.

III. INDUCED ANISOTROPIC INTERACTIONS

It is pointed out that for an impurity immersed in the spin-
orbit-coupled BEC, the asymmetric Bogoliubov excitation
gives rise to a polaron with asymmetric dispersion [59]. To

analyze the induced interaction between polarons and bipo-
larons, it is necessary to first calculate the single polaron
dispersion.

The property of a single polaron can be obtained from its
Green’s function,

1
G(iw, k) = , 11
(o, ) = e S0 k) (in
where X(iw, k) is the self-energy due to interaction with BEC,
and g; = k*/2m; is the dispersion of free impurity. The poles
of the Green’s function give the energy of the quasiparticles
Wi i.e.,

wr — & — ReX(wy +in, k) =0, (12)

where 1 is a positive infinitesimal number, and the corre-
sponding quasiparticle residue is
1

V/ 13
K T 8,Rex(w +in. k) (13)

W=Wg

We use the ladder approximation to calculate the impu-
rity self-energy X(iw, k), which turns out to be a good
approximation in agreement with quantum Monte Carlo re-
sults [40,41,68,69]. In this approximation, the self-energy is
[59,70]

Y(iw, k) = noT (iw, k), (14)
with the impurity-boson scattering matrix 7 (iw, k) given by

g + H(iw, k)

Here, gig = 2mag/m,, is the interaction between impurities
and bosons, and ayp is the scattering length between the impu-
rities and bosons, which is assumed to be independent of the
pseudospin of bosons. m,, = mgm; /(mp + my) is the reduced
mass, and I[1(iw, k) is the renormalized pair propagator. After
performing the summation of Matsubara frequencies, the pair
propagator expression reads [68]

3 2

d>q < ug n ZmM)’ (16)
QY \ivw—E; —ek—q q*

where E, is the anisotropic Bogoliubov excitation spectrum
of spin-orbit-coupled BEC. We have chosen mp = m; = m
throughout this paper for simplicity. The pair propagator can
only be calculated numerically for the anisotropic case. In
practice, we have performed the numerical integration in
cylindrical coordinate, since the system has rotational sym-
metry along the x direction.

With the pair propagator, the single polaron dispersion can
be obtained by numerically solving Eq. (12), and the result is
shown in Fig. 2. Note that there are two branches of polaron
dispersion, and we only focus on the attractive branch, whose
energy is negative and represents a well-defined quasiparticle.
As shown in Fig. 2, the single polaron dispersion is asymmet-
ric, i.e., wx # w—_g. In addition, the minimum of the dispersion
is located at nonzero momentum due to interaction with the
asymmetric Bogoliubov excitations, which is in agreement
with previous findings [59]. Note that the momentum at the
dispersion minimum is close to zero rather than near the
roton minimum, indicating that the polaron in the parameter

Miw, k) = —
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FIG. 2. (a) The single polaron dispersion w; with the parameter
1/ajp = —1. (b) The single polaron dispersion along the k, direc-
tion [along the red dashed line in (a), i.e., kK, = 0]. The healing
length of the BEC is £ = /A% /2mgny = /2 for the parameters used
here.

regime considered here remains phonon-induced rather than
roton-induced [59].

To derive the effective interaction between polarons, we
start from the scattering matrix I'(ki, k»; ¢), which describes
the scattering of two impurities from energy momenta (ki , k»)
to (k1 + g, ko — q), with k = (z, k) being the four-momentum
vector. The scattering matrix obeys the Bethe-Salpeter equa-
tion, which in the ladder approximation reads [see Fig. 3(a)]
[71,72]

D(ki. ko q) =V (ki kaiq) + YV (ki ki q)
-

x G(ky — ¢)G(ky + q')
xTky—q ko +q59—4q), A7)

where V(ki, ky;q) is the induced interaction between the
impurities. A direct solution of the Bethe-Salpeter equation is
very challenging, and in order to simplify the problem,
we therefore makes some approximations outlined in
Refs. [40,70]. First, we make a pole expansion for the
impurity’s Green’s function, ie., G(k) >~ Z;/(iv — wg).

To transform from the picture of bare impurity to the
we multiply

quasiparticle polaron, the equation by

(@)

(b)

FIG. 3. (a) Diagrammatic representation of the Bethe-Salpeter
equation. The black lines are the impurity Green’s function, and the
wavy line is the induced interaction. (b) The diagram for the in-
duced interaction. The solid blue lines are the normal and anomalous
Green’s functions of spin-orbit-coupled BEC, and the dashed blue
lines represent condensate bosons.

Zy,Zy,. This gives an effective polaron-polaron interaction
Vetre(kt, ko5 q) = Zi, Zt,V (k1, ka3 g), and  the  scattering
matrix between two polarons is Ipotaron (K1, k23 q) =
Zi,Zk,U'(k1, ka3 ). Second, we neglect the frequency
dependence of the induced interaction and take the static
limit, which is reasonable when the binding energy of the
bipolaron state is small compared to the typical energy of
the Bogoliubov excitations. These approximations are good
enough as long as the quasiparticles are well defined and
the binding energy of the bipolaron is small. In this case,
the frequency summation in Eq. (17) can be performed
analytically, and then the Bethe-Salpeter equation is just
reduced to the Lippmann-Schwinger equation, which is
equivalent to an effective Schrodinger equation for two
polarons interacting via an induced interaction [see Eq. (23)].

With the above approximations, the effective interaction
between two polarons scattered from momenta (k, —k) to
(k', —k’), as illustrated by the diagrams in Fig. 3(b), is sim-
plified to (in the center-of-mass frame) [40,70]

Vete(ky k') = ZiZ_gno[ T (@, k)G11(0, k — kKT (w0, —k')
+ T(w,k"HG11(0, k' — k)T (w0, —k)
+ T (w0, k')G12(0, k' — k)T (w, —k')
+ T(w, k)G (0, k' — k)T (w, —k)], (18)

where G;;(0, k) is the Green’s function for spin-orbit-coupled
BEC after band projection,

) |uage|* lv_x|?
G k) = - , 19
e k) = e T it Eg (19)

. Uk U U_kVU_k
G k)= - , 20
e = ot B 20

and other terms are related via
Gin(iw, k) = Gyn(—iw, —k),

Gu(iw, k) = Gy (—iw, —k). 210

Here w is taken to be the energy of the interacting
quasiparticles.

For weak impurity-boson interaction, the scattering matrix
can be reduced to 7 (w, k) >~ gig = 2mwag/m,, and the effec-
tive interaction is now

Vesr(k — k') = Vege (k)
=nogiz[G11(0, k) + G12(0, k)
+ G110, —k) + G12(0, —k)].  (22)

This result agrees with the second-order perturbation theory,
which is applicable only when the impurity-boson interac-
tion is weak [40,41]. In Fig. 4, we plot the profile of Veff(ic)
in Eq. (22) in the momentum and real space, respectively.
In momentum space, it has two symmetric double minima
in the k, direction, and after careful inspection, the min-
ima turn out to be related with the roton minimum in the
Bogoliubov excitation spectrum of spin-orbit-coupled BEC.
The momenta at the minima of Veff(fc) coincide with the
momentum at the minimum of roton excitation. This indi-
cates that the interaction is roton-induced, in contrast to the
conventional phonon-induced interaction with a minimum at

043306-4



INDUCED INTERACTIONS AND BIPOLARONS IN ...

PHYSICAL REVIEW A 111, 043306 (2025)

(a) Vi () () Vig(z,y,2=0)
3 4 0
-10
2 2 2
<~ 30 > 08 __ i 4
1 -2
o 20 | u 50 -4 6
4 2 0 2 4
K,
C
©
(e}
Il
1.51'30 >
e N
& 8
N &
-60 ‘ ~ gl —
4 2 0 2 4 4 2 0 2 4
k. T

FIG. 4. (a) The induced interaction Vyg(k — k') = Voz(k) as a
function of k, and k, with aig = —0.1. (b) Vege(x, y, z = 0) in the real
space. (c) Veir(ky, k, = 0) and (d) Vege(x, y =z = 0) are line cuts of
the 2D plots in (a) and (b), respectively, along the red dashed lines.
The healing length of the BEC is & = +/2 for the parameters used
here.

zero momentum [34,40,41,73]. In addition, the effective in-
teraction is also notably anisotropic, a characteristic generally
expected for any BEC with anisotropic Bogoliubov excita-
tions. By the Fourier transform, we also show the effective
interaction in real space, which has an oscillation feature
along the x direction due to the double minima feature in
momentum space, in clear contrast to the Yukawa-type inter-
action for the case of isotropic phonons.

IV. BIPOLARONS

With the single polaron dispersion wy in Eq. (12) and effec-
tive interaction between polarons V.g(k, k') in Eq. (18), we are
now ready to solve the bipolaron energies and wave functions.
Taking the center-of-mass momentum of the two interacting
polarons to be zero, the effective Schrodinger equation in the
momentum space is expressed as follows:

(w0 + 0¥ (k) + Z Veir(k, k') (k') = Epyr (k). (23)
-

where (k) is the wave function for the relative momentum of
the bipolaron, and Ejp is the binding energy. Veg(k, k') is the
interaction matrix for two polarons scattered from momenta
(k, —k) to (K', —k’). Note that even for asymmetric Bogoli-
ubov excitation Ey # E_j and single polaron dispersion wy #
w_y, the effective interaction always satisfies Vy(k, k') =
Vegr(k', k). This symmetry has guaranteed that the Hamilto-
nian for Eq. (23) is always Hermitian, and thus the binding
energy Ejp is always real.

We solve Eq. (23) numerically in cylindrical coordi-
nate, and we plot the binding energy Ep as a func-
tion of impurity-boson scattering length g in Fig. 5.
As can be seen from the figure, the solutions with
Verr(k, k') in Egs. (18) and (22) match only when the
impurity-boson interaction is weak enough. This illustrates
the limitations of second-order perturbation theory and the

4@ oo
oL (c)
s\
O-2> \@\ 1
3 KR
| -4 e ]
q S
€3] L
_6- AN ]
> (b)
8 ' ' ' s -
-5 -4 -3 -2 -1 -0.5
1/aIB

FIG. 5. Binding energy Ep with respect to 2wy (2wy—o) as a func-
tion of 1/ajg. The blue line and purple line are the binding energies
obtained by solving Eq. (23) with the induced interaction given
by Eq. (18), and the green line gives the binding energy with the
induced interaction given by Eq. (22), i.e., the weak impurity-boson
interaction limit. The healing length and chemical potential of the
BEC for the parameters used here are £ = +/2 and u = 0.25, respec-
tively. The bipolaron wave functions corresponding to the parameters
labeled by the three red stars—(a), (b), and (c)—are displayed in
subplots (a), (b), and (c) of Fig. 6.

necessity of using the effective interaction Veg(k,k’) from
Eq. (18) in the calculation of bipolaron problem, especially for
the case of strong impurity-boson interaction [40]. In addition,
when the impurity-boson interaction exceeds a critical value,
there exist two bipolarons.

In Fig. 6, we plot the corresponding bipolaron wave
functions, for both the weak and strong impurity-boson inter-
actions. It is found that when the impurity-boson interaction
is weak, the bipolaron wave function has a similar feature
to the conventional isotropic case. The maximum of the
wave function in momentum space resides at zero momen-
tum and decays with an increase of k. In contrast, when the
impurity-boson interaction is strong, the bipolaron wave func-
tion exhibits much different features, i.e., its maxima are now
located at nonzero momenta instead, which is more clear from
the line cut along the x direction. The wave function at higher
energy also has this “double-peak™ structure, and deviation
from the isotropic case is much more pronounced. This feature
can be understood from the fact that when the impurity-boson
interaction is strong, the single polaron dispersion wy becomes
more asymmetric in the k, direction, and the minimum of
the polaron energy is located at nonzero momentum [59].
The diagonal term wy + w—_; in Eq. (23) has a double-well
dispersion, consequently causing the low-energy bound states
to primarily involve momenta concentrated near the minima
of this double-well structure. The rough agreement between
the momentum at the dispersion minimum in Fig. 2(b) and
the momenta at the double peak in Fig. 6 confirms the validity
of this interpretation. We have also developed an effective
model that reproduces the double-peak structure by replacing
the induced interaction with a constant while maintaining the
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FIG. 6. Bipolaron wave functions in the momentum space for
different impurity-boson interactions. We have chosen a gauge that
renders all wave functions real and non-negative. (a) For 1/ap =
—5, and (b),(c) for 1/ap = —0.5. These three wave functions cor-
respond to the parameters indicated by red stars with same label in
Fig. 5. Parts (d), (e), and (f) are line cuts of the 2D plots in (a), (b),
and (c), respectively.

same diagonal term. This result indicates that the specific
form of the interaction is less important, whereas the shape of
the single polaron dispersion is critical for this phenomenon.
Note that all these wave functions are inversion symmetric
with respect to k <> —k in the parameter regime considered
here, which means these wave functions are only relevant for
bosonic impurities.

V. SUMMARY

In summary, we have studied the properties of the induced
interaction between polarons, mediated by the exchange of
anisotropic Bogoliubov excitations of a BEC, as well as
the characteristics of bipolarons arising from this interac-
tion. Using spin-orbit-coupled BEC as an example, where the
Bogoliubov excitations are both anisotropic and asymmet-
ric, we find that the induced interaction is also anisotropic.
Furthermore, the roton excitation spectrum introduces a dis-
tinctive double-minima feature in the induced interaction
in momentum space, in stark contrast to the conventional
interaction arising from isotropic excitations. The resulting
bipolaron wave functions are also anisotropic, and for strong
impurity-boson interaction they display a double-peak feature.
The main findings of this study, including the distinctive fea-
tures of the induced interaction and bipolaron wave function,
are generally applicable to the case of generic 2D SOC. Given
the experimental realization of 1D SOC in BEC, the unique
properties of roton-induced interactions and new features in
bipolarons predicted in this work can be detected through
existing experimental techniques, including radiofrequency
injection and ejection spectroscopy [9,74].
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