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Robust phase estimation of the ground-state energy without controlled time evolution
on a quantum device
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Estimating the ground-state energy of Hamiltonians in quantum systems is an important task. In this work,
we demonstrate that the ground-state energy can be accurately estimated without controlled time evolution by
using adiabatic state preparation (ASP) and Ramsey-type measurement. By considering the symmetry of the
Hamiltonian governing the time evolution during ASP, we can prepare a superposition of the ground state and
reference state whose eigenvalue is known. This enables the estimation of the ground-state energy via a Ramsey-
type measurement. Furthermore, our method is robust against nonadiabatic transitions, making it suitable for use
with early fault-tolerant quantum computers and quantum annealing.
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I. INTRODUCTION

In quantum many-body systems and quantum chemistry,
determining the ground-state energy is often important. How-
ever, since the Hilbert-space dimension of the Hamiltonian
grows exponentially with the number of constituent elements
(e.g., the number of electrons), it becomes challenging to
compute these eigenvalues by numerically diagonalizing
the Hamiltonian using classical computers. To address this
issue, several algorithms have been proposed to estimate
energy eigenvalues of quantum many-body Hamiltonians
using quantum computers, including those designed for noisy
intermediate-scale quantum devices [1–9], early fault-tolerant
quantum computers (FTQCs) [10–14], and fully FTQCs
[15–18]. One approach to estimate the eigenvalues of the
Hamiltonian Ĥ is the phase estimation algorithm. In this
method, an initial state is prepared by using adiabatic state
preparation (ASP). The eigenvalues of the Hamiltonian are
encoded in the phases of quantum states by applying a
controlled version of the time evolution operator Û = e−iĤt ,
which causes the quantum state to accumulate a relative
phase that corresponds to the energy eigenvalue of the
Hamiltonian. By measuring the phases of the quantum states
after evolution using the phase estimation algorithm, one can
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extract the eigenvalues of the Hamiltonian [19–25]. However,
combining ASP with phase estimation involves controlled
time-evolution operations, which can lead to prohibitively
high implementation costs. To overcome this challenge,
subsequent research proposed methods for estimating energy
gaps without controlled time evolution [26–30]. In particular,
methods proposed in Refs. [29,30] use ASP and Ramsey-type
measurements to estimate the energy differences. Although
such methods can estimate the energy differences of the
eigenvalues, directly estimating the eigenvalues remains
challenging.

In this paper, we propose a method to estimate the
ground-state energy directly, without requiring controlled
time evolutions. Our approach leverages the symmetry of the
Hamiltonian and utilizes trivial eigenstates, referred to as ref-
erence states, of the driving and problem Hamiltonians,which
can be identified by a classical computer. The initial state
is prepared as a superposition of the ground state and the
reference state of the driving Hamiltonian ĤD. Starting from
the above initial state and performing the ASP, we obtain the
superposition of the ground state and the reference state of the
problem Hamiltonian ĤP. After evolving the system under the
problem Hamiltonian for a period τ , we apply the reverse ASP
(RASP) [31–34] and project the state onto the initial state. By
applying a Fourier transform of the measurement results as a
function of τ , we extract the ground-state and the reference
state of ĤP. Since the energy of the reference state is known,
this energy difference allows us to determine the ground-state
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FIG. 1. (a) A conceptual diagram of our method. The initial state is a superposition of the ground state of the driving Hamiltonian and a
reference state of ĤD. The system’s Hamiltonian Ĥ (t ) is expressed as a time-dependent combination of the driving and problem Hamiltonians,
as shown in Eq. (1), with the function F (t ) expressed in Eq. (2). For 0 � t � T , the Hamiltonian corresponds to the standard ASP Hamiltonian,
denoted ĤASP. Subsequently, for T � t � T + τ , the Hamiltonian is represented as ĤTE, during which time evolution encodes the relative
phase corresponding to the energy difference between the ground and the reference states of ĤP into the superposition state. Finally, for
T + τ � t � 2T + τ , the Hamiltonian is denoted ĤRASP, which implements the RASP process. (b) The amplitude | f (ω/J )| obtained from
the numerical simulation as a function of the frequency ω/J . The peaks were observed at ω/J � 10.8, 8.1, 5.4, 3.8, and 2.5. These peaks
correspond to the energy differences between the reference state of ĤP and the ground state, as well as the second, fifth, seventh, and tenth
excited states, respectively. (c) Comparison of ground-state energy estimates obtained using conventional ASP and our proposed method. The
horizontal axis represents the total runtime 2T + τ ; for the conventional ASP, we set Tconv = 2T + τ to allow fair comparison. The vertical
axis indicates the estimated ground-state energy. The blue markers represent the ground-state energy estimates obtained using the conventional
method, while the red markers show the estimates calculated with our proposed method. The black dashed line represents exact diagonalization
result.

energy. Furthermore, our detailed analysis demonstrates this
method is robust against nonadiabatic transitions.

II. METHOD

Here, we introduce our method for estimating the ground-
state energy without controlled time evolution. The imple-
mentation of this method involves the following Hamiltonian:

Ĥ (t ) = F (t )ĤD + [1 − F (t )]ĤP, (1)

F (t ) =

⎧⎪⎨
⎪⎩

1 − t
T (0 � t � T )

0 (T � t � T + τ )
t−(T +τ )

T (T + τ � t � 2T + τ ),

(2)

where F (t ) is an external control parameter as shown in
Fig. 1(a), and ĤD and ĤP are the driving Hamiltonian and the
problem Hamiltonian, respectively. We begin by describing
a simplified scenario where the dynamics are adiabatic, al-
though we later address the effect of nonadiabatic transitions.
The time-dependent Hamiltonian in Eq. (1) takes the follow-
ing three forms depending on the time region:

ĤASP =
(

1 − t

T

)
ĤD + t

T
ĤP (0 � t � T ), (3)

ĤTE = ĤP (T � t � T + τ ), (4)

ĤRASP = t − (T + τ )

T
ĤD +

[
1 − t − (T + τ )

T

]
ĤP

(T + τ � t � 2T + τ ). (5)

For 0 � t � T , the Hamiltonian is the standard ASP Hamilto-
nian ĤASP. During the next interval T � t � T + τ the state

evolves under the problem Hamiltonian ĤP, and the superpo-
sition of the ground state and the reference state of ĤP acquires
a relative phase corresponding to the energy gap between the
two states, which is similar to the Ramsey-type measurement.
Finally, during T + τ � t � 2T + τ , the system undergoes
RASP under the Hamiltonian ĤRASP [31–34].

In our method, we make the following assumptions:
(1) The driving Hamiltonian and the problem Hamilto-

nian each have a common conserved quantity Q̂, satisfying
[ĤD, Q̂] = [ĤP, Q̂] = 0.

(2) The operator Q̂ is diagonalizable by a classical com-
puter, and the number of distinct eigenvalues is O(poly(N )),
where N is the number of qubits in the system under
consideration.

(3) There exist degenerate eigenstates of Q̂ with an eigen-
value of q such that the number degeneracies is O(poly(N )).

For example, quantities such as the total magnetization
M̂ = ∑N

i=1 σ̂ z
i can be used as Q̂, where N is the number of

qubits and σ̂ z
i denotes the z component of the Pauli opera-

tor for the ith qubit. When these assumptions are satisfied,
ĤD and ĤP are block-diagonalized for each value of q. It is
important to note that one of the subspaces defined by the
eigenstates of Q̂ contains the global ground state of the prob-
lem Hamiltonian. For a given eigenvalue q as stated above,
the corresponding subspace is of size O(poly(N )), making it
diagonalizable using a classical computer. The eigenstates ob-
tained in that subspace are denoted |ψq,D〉n and |ψq,P〉n, where
n represents the energy level within the subspace associated
with the eigenvalue q. We refer to these eigenstates as “refer-
ence states” in our proposed method. Note that our approach
does not require all subspaces to be of size O(poly(N )); we
only require this property for those subspaces from which
we choose our reference states. We assume that the energy
of the reference state |ψq,P〉n has the largest energy in the
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problem Hamiltonian. If the given problem Hamiltonian does
not naturally satisfy this assumption, we can add an additional
term such as Hadd = −λ(Q̂ − q)2, where λ is a positive hy-
perparameter. It is worth noting that the eigenvalues of these
reference states can be determined using a classical computer.

The use of a trivial eigenstate and its superposition with
the ground state for estimating the ground-state energy of
the quantum chemistry Hamiltonian via ASP was briefly
mentioned in Ref. [35] but no detailed explanation was pro-
vided. On the other hand, our proposed method provides a
much more general way to create and use the reference state
for the ground-state energy estimation without control time
evolution.

Using a superposition of the reference state of ĤD in the
subspace of a given eigenvalue q and the ground state of ĤD

in the subspace of a given eigenvalue q′ as the initial state, we
have

|ψini〉 = 1√
2

(∣∣ψg
q′,D

〉 + |ψq,D〉n
)
, (6)

where |ψg
q′,D〉 is the ground state of the driving Hamiltonian in

the subspace of a given eigenvalue q′. After ASP under Ĥ (t ),
the system evolves into

|ψ〉 = 1√
2

(∣∣ψg
q′,P

〉 + eiθ |ψq,P〉n
)
, (7)

where |ψg
q′,P〉 is the ground state of the problem Hamiltonian

in the subspace of a given eigenvalue q′, and θ is the relative
phase arising from the ASP process. Here, |ψg

q′,P〉 is the state
obtained by performing ASP, which is associated with |ψg

q′,D〉.
Then, the state evolves under ĤP for a time τ , leading to

e−iĤPτ |ψ〉 = 1√
2

(
e−iEg

q′ ,Pτ
∣∣ψg

q′,P

〉 + e−iEn
q,Pτ+iθ |ψq,P〉n

)
, (8)

where En
q,P represents the eigenvalue of |ψq,P〉n, which we

can obtain using a classical calculator. Subsequently, RASP
is executed under ĤRASP, resulting in the final state

|ψf〉 = 1√
2

(
e−iEg

q′ ,Pτ
∣∣ψg

q′,D

〉 + e−iEn
q,Pτ+iθ ′ |ψq,P〉n

)
, (9)

where θ ′ is a relative phase, and Eg
q′,P is the ground-state

energy of ĤP. Note that any relative phase acquired during
the ASP process does not affect the final result of the eigen-
value estimation (see Appendix A for details). The above
sequence is summarized in Fig. 1(a). A measurement is per-
formed using the projection operator M̂ = |ψini〉〈ψini|, and
the probability of projecting onto this state is given by

P (τ ) ≡ |〈ψf |ψini〉|2 = cos2

[(
Eg

q′,P − En
q,P

)
τ

2
+ θ ′

2

]
.

(10)

This signal oscillates with the frequency corresponding to the
energy difference. By repeating the above steps and sweep-
ing τ , multiple measurement results are obtained. Finally, a

discrete Fourier transform of P (τ ) is performed as

f (ω) =
L∑

n=1

P (τn)e−iωτn , (11)

where the discretized time step τn is defined as τn = τmin +
n−1
L−1 (τmax − τmin), with τmin and τmax denoting the minimum
and maximum times, and L is the number of steps. Let us de-
note the uncertainty of the estimated energy as δω. According
to the time-energy uncertainty relation, 1/	τ � δω, where
	τ = (τmax − τmin)/(L − 1) is the time interval, which can
be chosen to match the desired estimation precision.

The peak of f (ω) appears at ω corresponding to the energy
difference Eg

q′,P − En
q,P. Since En

q,P is known, the ground-
state energy in the subspace corresponding to eigenvalue
q′ can be determined. From this procedure, we success-
fully estimate the ground-state energy in the subspace with
q′. To estimate the ground-state energy in another subspace
with q′′, we could perform the above procedure, say q′′.
Thanks to the second assumption of our protocol, we can
perform this search across all subspaces within polynomial
time. Similarly, the first-excited-state energy in the sub-
space of q′ can be estimated by preparing a superposition
of the first-excited state and the reference state of ĤD in
the subspace of eigenvalues q′ and q, respectively, as the
initial state.

Furthermore, if nonadiabatic transitions occur during the
ASP, peaks appear in f (ω) at frequencies corresponding to the
energy difference between the excited state and the reference
state of ĤP, such as E e1

q′,P − En
q,P, E e2

q′,P − En
q,P, . . . , where E ei

q′,P
denotes the ith excited-state energy in the subspace associated
with eigenvalue q′. These excitation energies can also be es-
timated since the trivial eigenvalue is known in advance. This
implies that our method does not require careful tuning of the
ASP execution time T in advance. This is in stark contrast to
the conventional scheme, where the ground state is prepared
adiabatically and the ground-state energy is estimated by
measuring the expectation value of the Hamiltonian. In such
conventional methods, even a small nonadiabatic transition
can significantly reduce the fidelity of the prepared state with
respect to the true ground state of the problem Hamiltonian,
resulting in inaccurate energy estimation.

Specifically, the problem Hamiltonian can be decomposed
as ĤP = ∑

j c j P̂j , where c j is a real number and P̂j is a
tensor product of the Pauli operators. In conventional meth-
ods, the ground-state energy is estimated by preparing the
ground state via ASP and then measuring the expectation
value 〈ĤP〉 = ∑

j c j〈P̂j〉. To ensure high fidelity with the true
ground state, the total execution time Tconv must satisfy the
adiabatic condition [36–39]. The time-dependent Hamiltonian
in the conventional ASP method is typically given as Ĥconv =
(1 − s)ĤD + sĤP, where s = t/Tconv the normalized time, t is
the physical time, and Tconv is the total execution time of ASP.
The adiabatic condition is then explained as

max
s∈[0,1]

|〈ψen (s)| ˙̂H (s)|ψg(s)〉|
|E en (s) − Eg(s)|2 	 Tconv, (12)

where |ψen (s)〉 and |ψg(s)〉 denote the nth excited state
and ground state of the instantaneous Hamiltonian Ĥ (s),
respectively, and E en (s) and Eg(s) are their corresponding
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eigenenergies. ˙̂H (s) is the derivative of Ĥ (s) with respect
to the normalized time s. In practice, neither the transition
matrix elements nor the energy gaps of the Hamiltonian
are known in advance, making it difficult to determine a
suitable value of Tconv that ensures a high fidelity beforehand.
In contrast, our method allows for accurate energy estimation
even in the presence of nonadiabatic transitions, by utilizing
interference between the ground state and a reference state.
Therefore, our approach eliminates the need for fine-tuning
of the ASP runtime and provides a practical advantage over
the conventional expectation-value-based method. It should
be noted, however, if nonadiabatic transitions significantly
reduce the ground-state population, both our method and the
conventional quantum phase estimation fail to determine the
ground-state energy.

Regarding the reference state, since it is chosen from a
subspace of size O(poly(N )), nonadiabatic transitions can be
suppressed by setting T appropriately within polynomial time.
Therefore, nonadiabatic transitions involving the reference
state are considered negligible in our analysis.

Finally, our scheme is particularly effective for both early
FTQC [40] and quantum annealing [41–44] since it does
not require controlled time-evolution, which leads to shorter
quantum circuits.

III. RESULT

We estimate the ground-state energy of the spin-1/2
Heisenberg model using our proposed method through numer-
ical simulations. In this study, we consider a 4-qubit system.
The problem Hamiltonian is defined as the Heisenberg model
with an additional inhomogeneous longitudinal magnetic field
to lift the degeneracy:

ĤP = J
N∑

i=1

(
σ̂ x

i σ̂ x
i+1 + σ̂

y
i σ̂

y
i+1 + σ̂ z

i σ̂ z
i+1

) +
N∑

i=1

B′
iσ̂

z
i ,

(13)

where J is the exchange interaction strength, and B′
i represents

the magnetic field acting on the ith qubit. The exchange inter-
action strength is set to J = 1, and the magnetic field strengths
are set to B′

1/J = −0.24, B′
2/J = −0.34, B′

3/J = −0.62, and
B′

4/J = −0.09. Periodic boundary conditions are applied. To
facilitate the preparation of the ground state, we introduce the
following driving Hamiltonian:

ĤD =
N/2∑
i=1

J2i−1,2i
(
σ̂ x

2i−1σ̂
x
2i + σ̂

y
2i−1σ̂

y
2i

) +
N∑

i=1

Biσ̂
z
i , (14)

where J2i−1,2i is the interaction strength between qubits, Bi de-
notes the strength of the magnetic field acting on the ith qubit.
The parameters are set as J1,2/J = 0.5, J3,4/J = 0.3, B1/J =
B2/J = −1, and B3/J = B4/J = 1. Under these settings, the
ground state of the driving Hamiltonian is |1100〉. Here, we
consider the case where Q̂ = M̂, which clearly commutes with
both ĤD and ĤP. Since the states |11 · · · 1〉 and |00 · · · 0〉 are
the unique eigenstates of M̂ corresponding to the eigenvalues
±N , they are trivial simultaneous eigenstates of both ĤD and
ĤP, with their corresponding trivial eigenvalues denoted as
E±N,D and E±N,P, respectively. The initial state is prepared
as follows: |
0〉 = 1√

2
(|1100〉 + |1111〉) (see Appendix B for

details). Our proposed method is implemented starting from
this state.

Figure 1(b) shows the Fourier transform | f (ω/J )| plotted
against ω/J . We set the execution time for ASP as JT = 5 and
varied τ from Jτmin = 0 to Jτmax = 70 in L = 1000 steps. The
peaks observed at ω/J � 10.8, 8.1, 5.4, 3.8, 2.5 correspond
to the energy differences between the estimated energy
eigenvalues and the trivial energy eigenvalue. In the case of
the Heisenberg model, for the above parameters, the reference
state |1111〉 corresponds to the maximum energy eigenvalue.
Due to this, we can identify the ground-state energy from the
largest energy difference. Specifically, the peak at ω/J = 10.8
corresponds to the energy difference between the trivial eigen-
value EN,P and the ground-state energy Eg

0,P of the problem
Hamiltonian. Given that EN,P/J = 4.3, the ground-state en-
ergy is estimated as Eg

0,P/J � −6.524590. In comparison, the
ground-state energy obtained using numerical diagonalization
is Eg

0,P/J � −6.524593, corresponding to a relative error of
3.7 × 10−5%. Furthermore, the energy levels of the excited
states obtained via numerical diagonalization, all expressed in
units of J , are approximately −3.80585, −1.09182, 0.53380,
and 1.84517 for the second, fifth, seventh, and tenth excited
states, respectively. The corresponding values estimated from
the peaks of f (ω) are around −3.80588, −1.08495, 0.53388,
and 1.84942, respectively. The relative errors between the
exact and estimated values are 6.0 × 10−4%, 6.0 × 10−1%,
1.4 × 10−2%, and 2.3 × 10−1%, respectively.

There is a tendency for the relative error of the estimation
to increase as the eigenenergy of the excited state increases.
A possible explanation is as follows. The trivial energy eigen-
value is the largest among the eigenenergies of the problem
Hamiltonian. Consequently, the energy gap between the ref-
erence state and higher excited states becomes smaller. To
estimate this small energy gap, a longer time τ is required
for the Ramsey-type measurement due to the time-energy
uncertainty relation. To achieve high accuracy in estimating
the excitation energies, the initial state should be prepared as
a superposition of the reference state and the excited state
of the driving Hamiltonian, and then the proposed method
can be applied. Alternatively, changing the reference state or
choosing a sufficiently long τ can also overcome the challenge
of accurately estimating the eigenenergy of the excited state.

Furthermore, we use the conventional ASP method to cal-
culate the ground-state energy, which is obtained from the
expectation value after the ASP process, and compare it with
the ground-state energy values estimated by our proposed
method. The results shown in Fig. 1(c) clearly demonstrate
that our proposed method can estimate the ground-state en-
ergy with high accuracy in a shorter execution time compared
with the conventional ASP method. Additionally, while the
conventional method fails to accurately estimate the ground-
state energy at shorter execution times due to the effects of
nonadiabatic transitions, our proposed method exhibits ro-
bustness against these effects, consistently providing accurate
estimations.

In quantum chemistry calculations, a situation where
electrons occupy all orbitals, the reference state is known to
be |1 . . . 1〉 under Jordan–Wigner transformation, which in
general corresponds to the maximum energy eigenstate. In

042618-4



ROBUST PHASE ESTIMATION OF THE GROUND-STATE … PHYSICAL REVIEW A 111, 042618 (2025)

this way, the ground-state energy can be calculated using our
method.

IV. CONCLUSION

In this study, we propose a method to accurately estimate
the ground-state energy of a Hamiltonian using ASP in early
FTQC or quantum annealing, without requiring controlled
time evolution. Our approach leverages the symmetry of the
Hamiltonian, enabling the direct estimation of the ground-
state energy by preparing an initial state that is a superposition
of the ground state and a reference state. Unlike the conven-
tional method [29,30] for estimating the energy gap without
controlled time evolution, our method directly estimates the
ground-state energy eigenvalue in the subspace of interest. To
identify the true ground-state energy of the problem Hamil-
tonian from the full spectrum, a search across all subspaces
can be performed in polynomial time, owing to the second
assumption of our protocol (see Appendix C for details).
Furthermore, a comparison with the result obtained by the
conventional ASP reveals that our method offers a clear prac-
tical advantage. It is robust against nonadiabatic transitions,
eliminating the need for fine-tuning the execution time T and
enabling accurate ground-state energy estimation even with
short execution times. This is in stark contrast to the conven-
tional ASP, which relies on strict adiabaticity. Moreover, it can
estimate the energies of excited states induced by nonadiabatic
transitions. Future work includes further experimental verifi-
cation of this method, exploration of its applicability to other
quantum systems, and generalization of the symmetry utilized
in the initial-state preparation.
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APPENDIX A: EFFECT OF RELATIVE PHASES
ON PHASE ESTIMATION

In this Appendix, we provide a mathematical proof that the
relative phase factor eiθ of the superposition state |ψ〉 between
different subspaces used in our method does not affect the
final eigenvalue estimation, regardless of its specific value.

Let us rewrite P (τ ) given by Eq. (10) as

P (τ ) = cos2

(
	Eτ

2
+ θ ′

2

)
= 1

2
+ 1

2
cos

(
	Eτ

2
+ θ ′

2

)
,

(A1)

where we define 	E ≡ Eg
q′,P − En

q,P. Substituting this into
Eq. (11), we obtain

f (ω) = 1

2

L∑
n=1

e−iωτn + 1

2

L∑
n=1

cos

(
	Eτn

2
+ θ ′

2

)
e−iωτn .

(A2)

Focusing on the second term on the right-hand side of
Eq. (A2), where the relative phase θ ′ appears, we use the
identity cos(φ) = Re(eiφ ) to express it as

1

2

L∑
n=1

cos

(
	Eτn

2
+ θ ′

2

)
e−iωτn

= 1

2
Re

(
L∑

n=1

exp

[
i

(
	Eτn

2
+ θ ′

2

)]
e−iωτn

)

= 1

2
Re

(
exp

(
iθ ′

2

) L∑
n=1

exp

[
i
(	E − 2ω)τn

2

])
. (A3)

The key observation here is that the relative phase θ ′ factors
out as a global phase term. The Fourier transform deter-
mines the peak positions and magnitudes based on the term
exp[i (	E−2ω)τn

2 ], while the phase factor exp(i θ ′
2 ) has an abso-

lute value of 1 and thus does not affect the final eigenvalue
estimation.

APPENDIX B: INITIAL STATE PREPARATION
VIA ADIABATIC STATE PREPARATION

An implicit assumption of our proposal, as described in
the main text, is that the initial state can be prepared as a
superposition of the ground state (belonging to a subspace
characterized by a specific eigenvalue q) of the driving Hamil-
tonian and the reference state. In this Appendix, we discuss
how such a state in the case of Q̂ = M̂ can be prepared. The
driving Hamiltonian used in this study is given by Eq. (14).
The initial state is defined as

|ψini〉 = 1√
2

(∣∣ψg
m,D

〉 + |11 · · · 1〉), (B1)

where |ψg
m,D〉 represents the ground state of the driving Hamil-

tonian within the subspace corresponding to each eigenvalue
m of the conserved quantity M̂, and |11 · · · 1〉 represents the
reference state.

To begin with, the driving Hamiltonian in Eq. (14) should
be diagonalized to identify the energy levels of |ψg

m,D〉 and
the reference state |11 · · · 1〉 within the full energy spectrum.
Specifically, if diagonalization reveals that these states corre-
spond to the nth and lth excited states, respectively, we can
use this information to generate the desired initial state by
using ASP.

The basic strategy is as follows: The desired state is
1√
2
(|Ẽn,D〉 + |Ẽl,D〉) where |Ẽn,D〉 (|Ẽl,D〉) is the nth (lth)
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FIG. 2. The amplitude | f (ω/J )| obtained from the numerical simulation as a function of the frequency ω/J . (a) Results for a m = 2
subspace. (b) A magnified view of a specific region in panel (a). (c) Results for a m = −2 subspace. (d) A magnified view of a specific region
in panel (c). (a), (b) The peaks were observed at ω/J � 8.6, 6.0, 3.3, and 1.9. These peaks correspond to the energy differences between the
reference state of ĤP and the first, fourth, eighth, and eleventh excited states, respectively. (c), (d) The peaks were observed at ω/J � 7.7 and
4.7. These peaks correspond to the energy differences between the reference state of ĤP and the third and sixth excited states, respectively.
Note that the peaks not discussed here correspond to the energy differences between the excited states.

eigenstate of the driving Hamiltonian in Eq. (14). Once
we create 1√

2
(|Ẽn〉 + |Ẽl〉) where |Ẽn〉 (|Ẽl〉) is the nth (lth)

eigenstate of the Hamiltonian of the transverse magnetic
field Ĥtransverse, we can adiabatically prepare the desired state
by changing the Hamiltonian from Ĥtransverse to ĤD. Al-
though it is known that we can prepare the so-called GHZ
state, 1√

2
(|Ẽn〉 + |Ẽl〉) is slightly different from the GHZ

state. Fortunately, after creating a small GHZ state, we can
prepare just by adding separable qubits, 1√

2
(|Ẽn〉 + |Ẽl〉).

By combining these strategy, our proposed prescription is
as follows:

For simplicity, let us assume that the number of qubits is
even. The procedure consists of the following steps:

(1) The process starts from the all-plus state | + + · · · +〉.
We use ASP to transform this state into a GHZ state |ψGHZ〉 =
(|00 · · · 0〉 + |11 · · · 1〉)

√
2 by gradually switching the Hamil-

tonian from Ĥ1 = B1
∑

i σ̂
x
i to Ĥ2 = −B2(

∑
i σ̂

z
i )2, where B1

(B2) represents the strength of the magnetic field (interaction
between qubits) [45–51].

(2) The Hamiltonian is then switched from Ĥ2 to Ĥ3 =
−B3(

∑
i σ̂

x
i )2 by using ASP, where B3 represent the strength

of the interaction between qubits, so that the state becomes
|ψ ′

GHZ〉 = (| + + · · · +〉 + | − − · · · −〉)
√

2. Before and af-
ter this ASP step, the system remains a superposition of
degenerate ground states. Both states |ψGHZ〉 and |ψ ′

GHZ〉
are eigenstates of a parity operator defined as P̂ = σ̂ x

1 ⊗ σ̂ x
2⊗ · · · ⊗ σ̂ x

N .
(3) The Hamiltonian is switched from Ĥ3 to Ĥ4 =∑
i Biσ̂

x
i . Note that, because Ĥ3 and Ĥ4 commute, the state

remains unchanged.
(4) By adding qubits to match the desired superposition,

we can create a state such as | ± ± · · · ±〉(| + + · · · +〉 +
| − − · · · −〉)/

√
2. After relabeling the qubits, this corre-

sponds to 1√
2
(|Ẽn〉 + |Ẽl〉) where |Ẽn〉 (|Ẽl〉) is the nth (lth)

eigenstate of Ĥtransverse = ∑
i Biσ̂

x
i , where | ± ± · · · ±〉 repre-

sents a product state in which each qubit is in either |+〉 or
|−〉.

(5) Finally, the Hamiltonian is switched from Ĥtransverse

to ĤD [Eq. (14)] by using ASP. Then, we obtain the desired
superposition state [Eq. (B1)].

At the final step, Ĥtransverse is the Hamiltonian without in-
teraction while ĤD is the Hamiltonian with interaction only

between the (2i − 1)th qubit and the 2ith qubit. This means
that the evolution at the final step can be reduced to two-qubit
dynamics. It is worth mentioning that we can reduce the
number of qubits by measuring one of the qubits of the GHZ
states with an even number of qubits if we need a GHZ state
with an odd number of qubits.

APPENDIX C: PHASE ESTIMATION
IN DIFFERENT SUBSPACES

In this study, we propose a method for estimating the en-
ergy eigenvalues within a subspace characterized by a specific
eigenvalue q of a conserved quantity Q̂, which commutes with
both the driving Hamiltonian and the problem Hamiltonian.
A key aspect of our method is that it does not require prior
knowledge of which subspace contains the true ground state
of the problem Hamiltonian. By applying our method to each
subspace separately and comparing the obtained eigenval-
ues, we can identify the true ground state of the problem
Hamiltonian. Of course, if the subspace containing the target
eigenvalue of the problem Hamiltonian is known in advance
through some other method, our approach can be directly
applied to that subspace to obtain the desired eigenvalue.
Alternatively, if the ground state of a particular subspace is
of interest, our method can also be used to identify it.

In Sec. III, we considered the case of Q̂ = M̂ and applied
our proposed method to the subspace with eigenvalue m = 0
to estimate the ground energy. In the main text, we made
this choice for simplicity assuming that prior knowledge from
exact diagonalization indicated that the true ground state of
Eq. (13) lies in the m = 0 subspace. In this Appendix, we re-
move the assumption. More specifically, we apply our method
to the subspaces with m = ±2 and verify that the true ground
energy can be estimated from the obtained eigenvalues. How-
ever, we omit the cases of m = ±4 because these subspaces
are both one-dimensional and therefore trivial.

Figures 2(a) and 2(b) show the Fourier transform | f (ω/J )|
plotted against ω/J for m = 2. The numerical parameters used
are the same as those in Sec. III, except for the initial states.
For the m = 2 subspace, we set the initial state as a super-
position of |ψg

2,D〉 = 1√
2
(|0010〉 − |0001〉) and the reference

state, which was chosen as |1111〉. The results show peaks at
ω/J � 8.6, 6.0, 3.3, and 1.9. These peaks correspond to the
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energy differences between the estimated energy eigenvalues
and the trivial energy eigenvalue. Given that E4,P/J = 4.3, the
estimated energy eigenvalues from the peaks of | f (ω/J )| are
approximately −4.28497, −1.68560, 0.97414, and 2.38026,
all expressed in units of J . The energy levels of the excited
states obtained via numerical diagonalization, all expressed in
units of J , are approximately −4.28498, −1.68559, 0.97265,
and 2.37795 for the first, fourth, eighth, and eleventh excited
states, respectively. Similarly, we plot the results for m = −2
in Figs. 2(c) and 2(d). Here, the initial state is a superpo-
sition of |ψg

−2,D〉 = 1√
2
(|1011〉 − |0111〉) and the reference

state |1111〉.
The results in Figs. 2(c) and 2(d) show peaks at ω/J � 7.7

and 4.7. The estimated energy eigenvalues from the peaks of
| f (ω/J )| are approximately −3.41947 and −0.36850. The

energy levels of the excited states obtained via numerical
diagonalization, all expressed in units of J , are approximately
−3.41949 and −0.36855 for the third and sixth excited states,
respectively. Note that the peaks not discussed here corre-
spond to the energy differences between the excited states.
By comparing these results for m = ±2 with those for m = 0,
we can conclude that the energy −6.524590 mentioned in
Sec. III is indeed the true ground-state energy of the problem
Hamiltonian.

As these results indicate, our proposed method does not
require prior knowledge of which subspace contains the true
ground energy of the problem Hamiltonian. By applying our
method to different subspaces and comparing the obtained
results, we can successfully estimate the true ground energy
of the problem Hamiltonian.
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