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Cheaper and more noise-resilient quantum state preparation using eigenvector continuation
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Subspace methods are powerful, noise-resilient methods that can effectively prepare ground states on quantum
computers. The challenge is to get a subspace with a small condition number that spans the states of interest using
minimal quantum resources. In this work, we will use eigenvector continuation to build a subspace from the
low-lying states of a set of Hamiltonians. The basis vectors are prepared using truncated versions of standard state
preparation methods such as imaginary-time evolution (ITE), adiabatic state preparation (ASP), and variational
quantum eigensolver. By using these truncated methods combined with eigenvector continuation, we can directly
improve upon them, obtaining more accurate ground-state energies at a reduced cost. We use several spin systems
to demonstrate convergence even when methods like ITE and ASP fail, such as ASP in the presence of level
crossings and ITE with vanishing energy gaps. We also showcase the noise resilience of this approach beyond
the gains already made by having shallower quantum circuits. Our findings suggest that eigenvector continuation
can be used to improve existing state preparation methods in the near term.
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I. INTRODUCTION

Finding the ground state of nonintegrable systems is one of
the primary targets of studies in quantum mechanics. One can
achieve these goals via classical numerical methods, such as
exact diagonalization or tensor network algorithms. However,
these methods have limitations, mainly for two- and three-
dimensional systems and/or for highly entangled states [1,2].
As a result, there has been significant interest in quantum
computing alternatives to address this issue. Within the setting
of quantum computing, the problem is recast as finding an
efficient way to prepare a desired quantum state. This problem
is generally QMA hard [3-5], i.e., difficult even for quantum
computers; nevertheless, a significant research effort is being
directed towards making inroads into this important problem,
as quantum devices are believed to be able to approach this
problem and perform much better than their classical coun-
terparts [6,7]. This promise is not yet realized, and problems
such as barren optimization plateaus [8—10] plague the current
methods. While fault-tolerant algorithms that have provable
convergence rates do exist, these are not yet realizable on
near-term hardware, which is noisy and limited in its capa-
bilities. Because of this reason, researchers are focusing on
developing NISQ-friendly algorithms that can still perform
well with hardware imperfections [11-13].

Several quantum state preparation algorithms can be
categorized into these broad categories, including varia-
tional quantum algorithms (e.g, VQE, QAOA) [14-23],
time-evolution methods [e.g, ASP, Quantum imaginary time
evolution (QITE)] [24-29], and subspace methods (e.g,
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Krylov subspace) [30-35]. While they all have advantages
and disadvantages, none are ideal for implementation on
current hardware. Variational quantum algorithms use clas-
sical optimization-based and learning-based approaches with
parametrized quantum circuits but face optimization land-
scape issues along with trainability, accuracy, and efficiency
limitations [8]. Time-evolution methods, and in particular adi-
abatic state preparation (ASP), provide an efficient mapping
to a quantum circuit; however, ASP often requires a long evo-
lution [26,36,37], an easily prepared starting state, and cannot
be used in the presence of symmetry-protected level crossings.
Imaginary-time evolution [38] (ITE) guarantees convergence,
but implementing nonunitary evolution in a quantum circuit is
complicated. Both evolution-based algorithms tend to involve
deep quantum circuit implementations; and as the system size
and the corresponding Hilbert space grow, these algorithms
require a concomitantly longer circuit to converge [39-42],
thus increasing the quantum resources required.

An alternate approach can be found within quantum sub-
space methods, where the Hamiltonian is projected onto a
smaller subspace, and after obtaining the relevant matrix el-
ements the problem is recast as a generalized eigenvalue
problem [30-33,35,43]. Subspace methods do not require
optimizing parametrized circuits, avoiding issues of optimiza-
tion landscapes like barren plateaus [8]. The price to pay is
to find a subspace that spans the desired region of Hilbert
space; moreover, the techniques developed for this purpose
often face the issue of getting a desired subspace, i.e., one
that has enough overlap with the ground state of the system of
interest and avoids an ill-conditioned subspace overlap matrix.
For example, in methods that use a Krylov subspace, the basis
states are generated by applying operators obtained from the
same Hamiltonian, and this can result in quite similar basis
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FIG. 1. Layout of the method: EC with truncated state prepara-
tion. Truncated state preparation generated approximate ground state
in vector space ¢, (6) for training point Hamiltonian set, chosen k,
points from the target set Hrger. This basis is then used for subspace
diagonalization for the full set of H arge(.

states that have high overlap with each other [34,44—46], and
thus form an ill-conditioned problem.

One method that can avoid this issue is eigenvector con-
tinuation [47-49], where the subspace basis vectors are
generated from different but related Hamiltonians. When a
parameter of a system Hamiltonian is varied smoothly, the set
of the ground states is typically spanned by a few low-energy
vectors. This statement implies that we can get a subspace
by obtaining the ground state, using a method of choice, at a
few “training points” in the parameter range of interest and
cheaply finding ground states at all the remaining parameter
points by solving a small generalized eigenvalue problem
(GEP) at each point (see Fig. 1). This method has been used in
multiple fields such as quantum chemistry and nuclear physics
[47,49-52].

In this work, we will improve on this idea by realizing
that an exact ground state is not needed for EC to work;
rather, obtaining a number of states with a decent overlap with
the low-energy manifold suffices. Here we will use real- and
imaginary-time ground-state preparation techniques, although
other methods could be used similarly to get the low-energy

states. In all cases, an otherwise insufficiently deep (or trun-
cated) circuit can be used. Getting low-energy states is much
easier and more cost effective than obtaining exact ground
states; we will explore these ideas for time-evolution methods
in the next section. We will show how this method can be used
to handle issues with time-evolution methods like vanishing
energy gaps and/or level crossings, and saving resources
in doing so. A similar idea of using the approximate state
preparation for getting a basis for subspace diagonalization
was explored in a recent work [53], where they use approx-
imate variational quantum eigensolver (VQE) for preparing
a subspace to solve quantum chemistry instances, but remain
focused on a single Hamiltonian.

The outline of the paper is as follows: In Sec. II, we will
outline the method of eigenvector continuation. In Sec. III,
we will apply it using time-evolution and variational state
preparation methods to get a low-energy subspace for the XY
spin model. In Sec. IV, we will extend the application of the
method to address the issue of vanishing energy gaps using the
time-evolution methods with an example of a model with level
crossings, XY model, and model with changing degeneracies
in the ground-state, kagome X X Z model. Section V discusses
the noise resilience of the method by performing noisy simu-
lations. Lastly, we conclude with a discussion in Sec. VI.

II. EIGENVECTOR CONTINUATION

Eigenvector continuation (EC) has been used previously
in many areas showing promising results with better conver-
gences and optimized use of resources [47,48,50-52]. This
work is based on the same formalism of eigenvector contin-
uation (see Appendix A for further details), which can be
summarized as follows: for a set of Hamiltonians indexed
by a parameter Hge(9), the ground states are spanned by
a few low-energy vectors of the Hamiltonians taken at only
a few parameter points. In other words, if we consider two
Hamiltonians that are close, their low-energy state profile is
related and those states will have high overlap with each other.
We can exploit this feature to obtain a low-energy subspace
from a few (k,) training points and get a ground-state energy
spectrum for the full set of target Hamiltonians Harge(0).

For EC to work, we require enough basis states that are
well spread in the varying parameter space to span the whole
low-energy subspace. The precise details of how many basis
states and how to choose the training points highly depend
on the properties of the Hamiltonian such as the presence of
underlying symmetries, level crossings in the energy spec-
trum, and degeneracy of the ground state among others. This
is discussed in more detail in the next sections for specific
systems.

In this work, we still use a set of basis states that spans the
low-energy subspace, but we propose using state preparation
methods that are truncated before they reach the ground state.
This gives us a low-energy state that is not necessarily an
eigenstate or the ground state, rather, this is a superposition
of a few low-energy states of the system. As we will show,
getting these states from the small number of training points
gets us enough overlap with all the ground states to be able to
obtain reasonable ground states from the generalized eigen-
value problem.
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The method is sketched out in Fig. 1. Given a Hamiltonian
‘H that varies with a (possibly multidimensional) parameter
(0), the task is to find the low-energy spectrum of a set
of Hamiltonians {H(6,), H(;),...,H(6,)}. From the set,
Hamiltonians at k, different points in the 6 space are cho-
sen as training points; the choice can incorporate any prior
knowledge about the system such as the presence of conserved
quantities. In any case, the points should be chosen in such
a way that the full space of interest is covered, especially in
cases where the ground state changes due to the presence of
protected crossings [54]. Having training points very close to
each other can produce a desirable subspace in certain cases,
however, this can also cause ill conditioning of the overlap
matrix from overspanning the space as very close parameter-
spaced basis states might produce the states whose overlap is
near unity [43].

For the training Hamiltonians, we find approximate ground
states, using any state preparation method, to obtain a set of
low-energy vectors that will form the basis vectors for a sub-
space [¢/(0) = {I¢1), |$2) , - - - |¢,)}]. In this paper we have
focused on time-evolution methods for state preparation (ASP
and ITE); but we also provide one example using a variational
method to showcase the versatility of our approach.

Now that we have a subspace that spans low-energy states,
we project the target Hamiltonians [H (6;)] onto this subspace
and solve the generalized eigenvalue problem:

H;;(0) = (il HO)|p;), Sij = (¢ild;),
H@) |¥) =ES|¥). 9]

One can solve Eq. (1) via standard eigendecomposition
routines. Ill-conditioned cases occur whenever S is nonpos-
itive definite, thus requiring a separate diagonalization of S,
followed by applying some truncation scheme for the corre-
sponding eigenpairs and a basis rotation of H [43,46]. These
extra steps were unnecessary in this work, as we have a
positive-definite overlap matrix for all the cases studied here.
The lowest eigenvalue thus obtained gives the ground-state
energy of the target Hamiltonian. The overlap matrix (S) of
the basis vectors remains the same for all the target points,
but the projected Hamiltonian (H) needs to be calculated
separately for each target point. We can use the fact that the
target Hamiltonians differ only by the values of the coeffi-
cients of the Hamiltonian operators and simplify the process
of measuring the projected Hamiltonians (H), measuring all
the Hamiltonian operators separately and adding them with
corresponding coefficients for each target point.

III. IMPROVING QUANTUM STATE PREPARATION
METHODS USING EC

In this work, we will use time-evolution-based methods,
i.e., adiabatic state preparation (ASP) and imaginary-time
evolution (ITE), for generating our low-energy subspace. For
completeness, we also show one example using the variational
quantum eigensolver (VQE) to obtain the training points.
However, contrary to time-evolution methods, there is no
straightforward way to truncate VQE; therefore, we dedicate
most of our presentation to results obtained via ASP and ITE.

To improve the quality of the state prepared via time-
evolution methods, one can consider either a longer evolution
time, or a smaller time step; we will focus on the former. To il-
lustrate the use of EC to improve a truncated state preparation,
we truncate at <10% of the time-evolution steps required to
get reasonable ground-state energies.

In what follows, we briefly describe the state preparation
methods considered here.

A. Imaginary-time evolution

One of the methods that we will use to get a low-energy
subspace is truncated imaginary-time evolution. Imaginary-
time evolution [55] guarantees convergence to the ground
state of a Hamiltonian 7 as long as we start with a state |y)
with nonzero overlap with the ground state of the system. We
evolve such a state in imaginary time via

[y (1)) = e "M |y (z = 0)) 2)

to some maximum imaginary time Tp,x, normalizing at every
time step. As we evolve, the overlap with the higher-energy
states vanishes rapidly, whereas states close to the ground
state take longer evolution times (see Appendix B). Since the
goal is to obtain a subspace with low-energy vectors, we need
not eliminate all of these low-energy states. In fact, they will
be useful for spanning the space with ground states across
the parameter range since the first few excited states for one
Hamiltonian at one parameter point are potential ground states
at others. This lets us stop the evolution early, saving compu-
tational costs. We will discuss the overall resource comparison
later in the context of the example model.

B. Adiabatic state preparation

The other method we use is truncated real-time evolution or
adiabatic state preparation. In adiabatic state preparation, we
start with a ground state of the system at a parameter value that
is easier to prepare |Yg(t = 0)) and adiabatically evolve in
real time to get the ground state at the target parameter valued
Hamiltonian |/o5(Hy)). The time evolution is performed by
a unitary operator Uy (¢) that evolves the ground state at time
(t = 0) to final time (¢ = Tyax) in N time steps:

[Yos[Hn)]) = Un (@) [Yes[H(E = 0)]),
UN(t) ~ e_id[HN . e—idtng—idtH] + 0(dt2), (3)

where df = L and H; is the Hamiltonian at the jth time
step. The error in approximating this unitary operator with
first-order Trotter discretization is O(dt?), which demands a
large N.

Since our Hamiltonian terms need not commute, we will
use the Trotter-Suzuki decomposition [36,56,57] to approx-
imate each evolution operator of the form e~“* given in
Eq. (3). For all the calculations in this paper, we will use
Trotterized gates for both ASP and ITE.

This method works well if the evolution is slow, i.e., if
dH/dt is smaller than the squared minimum gap A? [28],
and there are no protected level crossings between the ground
state and excited states. When implementing ASP, one has a
choice of protocol in how the Hamiltonian is varied; here we
use a linear ramp, and thus dH /dt is set directly by Tiax. If

032607-3



AGRAWAL, GETELINA, FRANCIS, AND KEMPER

PHYSICAL REVIEW A 111, 032607 (2025)

Tinax 1s too small, i.e., if the Hamiltonian changes too quickly,
the state undergoes diabatic excitation into the excited states,
thus reducing the overlap with the ground state and increasing
the overlap with the excited states (see Appendix C). Again,
we can use this to our advantage and form a subspace out
of nonadiabatic evolution using a small Tj,,x, which can be
performed more cheaply than adiabatic evolution.

C. Variational quantum eigensolver

The variational quantum eigensolver (VQE) is one of the
most promising methods for ground-state preparation in the
NISQ era. It stems from the variational principle of quantum
mechanics, which states that the expectation value of a Hamil-
tonian H with respect to a generic parametrized state |1/ ()) is
bounded from below by the Hamiltonian ground-state energy
E(), i.e.,

Eo < (Y (0)[H[y(8)). “4)

Therefore, by defining a parametrized Ansarz that builds
|1 (0)), one can construct the corresponding quantum circuit
and measure the energy, which is fed into a classical mini-
mizer routine as the cost function. The minimizer then returns
a new set of optimized parameters 6. One repeats this proce-
dure until the classical minimizer is converged, thus yielding
an approximated ground state of the underlying system de-
scribed by H.

In general VQE applications, one builds the state | (0)) by
applying many layers of a predefined unitary operator U (@) to
a classical product state |v), i.e.,

@) =[]U®Ivo). (&)
4

However, selecting the optimal Ansarz U (@) is a problem-
dependent question that has led to many different proposals
of VQE Ansdtze [17]. In this work we choose the one known
as Hamiltonian variational Ansatz (HVA), which, as the name
suggests, takes the operators that appear in the system Hamil-
tonian to build the variational state [58,59]. We explicitly
show the Ansatz considered here in the next section, after the
system Hamiltonian is introduced.

In addition, differently from ASP and ITE, VQE does not
have a single variable to be chosen as truncation parameter;
for instance, one could choose to truncate the number of
variational parameters @, or the number of Ansatz layers, or
the number of iterations within the classical optimizer. In this
work we choose the latter as our truncation parameter. We
also use the maximum number of variational parameters (i.e.,
one per gate) and keep the number of HVA layers as low as
possible.

1. Application to five-site XY spin chain

We demonstrate these approaches for a test model: a five-
site XY open spin chain with mixed magnetic fields,

N-1 N
H =17 [XXiy1 + Y]+ Y _[BzZ + (—1)BxX], (6)

i=1 i=1

where we fix N =5, J =1, and a staggered By = 0.2, and
vary Bz € [0, 3]. A finite staggered transverse field in the X

o - |
———i—X-Z-X Y |
e i
——————XHZHXHXHYRY H—
= e
———— XA ZHXHXAYHY T
[ ——— ——
—  HXHZHXHXHYHYH—
:::_:_I:
—H X[z X Y
- ___ J

FIG. 2. Schematic of a single layer of the Hamiltonian varia-
tional Ansatz (HVA) for a five-site XY model with transverse and
longitudinal external fields.

direction (Bx) opens up an energy gap at level crossings: this
is necessary to lift the degeneracy at level crossings, allowing
adiabatic time evolution to follow the lowest-energy state (see
Fig. 13). In the next section, we will address these issues in
detail.

Hence, given the Hamiltonian in Eq. (6), one layer of the
HVA Ansatz corresponds to

U(0) = Uyy (§)Uxx (»)Uz(B)Ux (), (7

where

Uyy(8) = exp _izsi,jyiyj ,
(i, J)

Uxx(y) = exp| =i ) yi,;XiX; |,
(i.J)

Uz(B) = GXP<—i Zﬁ,-Zi>,
Ux () = exp(—i ZaiXi).

Figure 2 depicts the quantum circuit representation of Eq. (7).
For the simulations of the five-site XY model, we have con-
sidered an Ansatz with two HVA layers, with each layer
following the same operator ordering as shown in Fig. 2.

For our analysis, we will consider 20 equally distributed
points in varying Bz range as target Hamiltonians. For those
points, we calculate the ground-state energy eigenvalues solv-
ing the GEP [Eq. (1)] with the subspace formed by truncated
states. To compare errors with different levels of truncation,
we will consider the root-mean-square (rms) error for all the
target points, given by

1 &, :
At‘)rms = ; Z (|Ecla] - Eéxact|)2' (8)

i=1

In Fig. 3 we demonstrate how using eigenvector continua-
tion improves the ground-state preparation algorithms. For the
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FIG. 3. Implementing EC with truncated ASP, ITE, and VQE for a 1D chain XY model five sites. (a), (d), (g) Show the system complete
energy spectrum (full lines) as a function of the longitudinal field B,, with the ground-state energy curve highlighted in black. The green
diamonds represent the reference points we used for building the subspace and computing the corresponding EC curve (red stars). The arrows
indicate the direction taken by each state preparation method. (b), (e), (h) Compare the fidelities of EC and truncated state preparation data with
respect to the exact ground state. (d), (f), (i) Show the energy error [Eq. (8)] as a function of truncation parameters, which are evolution time
for ITE and ASP and number of iterations in the minimizer routine for VQE. Here we have considered three different subspace dimensions &,
for obtaining the EC data, which we also compare to the truncated state preparation results without EC (blue dashed curve). The vertical lines
represent the truncation parameter value used for the data shown in the other panels.

time-evolution methods, we considered a modest number of
time steps (40 and 75 for ITE and ASP, respectively) to get the
subspace basis vectors. For comparison, obtaining a reason-
able ground state would require 600 and 750 steps for ITE and
ASP, respectively, for all of the target points. For the truncated
VQE, we considered 12 iterations of the classical optimizer
for all the training points. For comparison, the unbounded
minimizer would require from 73 to 869 iterations to converge
for these exact points. To get the basis vectors, we choose
equally spaced k, = 5 training points for the energy spectrum
and fidelity analysis and k, = {3, 4, 5} training points for the
point of truncation analysis.

First, let us discuss the ITE results. We use dt = 0.2
and Ty = 1.6, i.e., 8 evolution steps for each training point
Hamiltonian. Figure 3(a) shows the spectrum of the model,
together with the final energies from the truncated ITE, and

the improved results obtained when EC is used on top of the
truncated ITE results. As expected, truncated ITE (blue dots)
does not achieve the ground-state energy for all parameter
values; in the few cases where it does, the ground state is
well separated from the excited states. We take k, = 5 equally
spaced truncated ITE results (green diamonds), use these as a
subspace basis for EC, and compute the spectrum. The EC
spectrum (red stars) matches the exact solution considerably
better than the truncated ITE by itself. This is corroborated
by the fidelity, shown in Fig. 3(b). The fidelity of truncated
ITE is near zero in the worst cases and varies significantly
throughout the spectrum. Using EC significantly improves the
situation.

Moving to truncated ASP, we again show the spectrum
together with the obtained energies from truncated ASP in
Fig. 3(d). Here, we have used T,.x = 3.75, and dt = 0.05,
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ie., 75 time steps, and we use a linear ramp in B, with
dB./dt = 0.8. The process starts at B, = 3, where the ground
state is close to the fully polarized state, and thus is easy to
prepare. The protected level crossings are turned into avoided
crossings by the By = 0.2 which induces gaps far smaller
than would be appropriate for this particular ramp. Not sur-
prisingly, the truncated ASP does not manage to follow the
ground state due to early truncation of the evolution, as the
Hamiltonian is changing too rapidly for the adiabatic theorem
to hold. Nevertheless, we can use the truncated ASP states to
produce a subspace, in which the ground state is accurately
captured. The resulting EC spectrum and fidelity are shown in
Figs. 3(d) and 3(e), respectively, where we can observe that
EC produces a marked improvement in both quantities.

Finally, Figs. 3(g) and 3(h) show the energies and fidelities
calculated from the truncated VQE subspace. In this case, the
selected training points (i.e., green diamonds) are closer to the
exact ground-state curve than the other two methods. Never-
theless, similarly to ITE and ASP, we observe a considerable
improvement in the fidelities after we perform the subspace
expansion, with the minimum fidelity for the considered B,
range jumping from 21% (blue dashed curve) to 98% (red
stars); a significant gain with little computational cost.

To make a quantitative comparison, we consider the rms
error (Agpms) between the exact spectrum and the EC spectrum
for the 20 equally spaced target points under consideration
[Eq. (8)] using both methods. We consider the rms error as a
function of 1., for ITE, which accounts for the total evolution
time, T for ASP, which accounts for the rate of change of
the Hamiltonian, and the number of iterations of the classical
optimizer for VQE. For all these methods, one can notice that
the use of EC significantly improves the approximate results.
At five training points, which corresponds to the spectra and
fidelities shown in Fig. 3, we find a 78% and 97% reduction in
error for ITE and ASP, respectively. The rms error generally
continues to reduce as a function of Tpax/Tmax. One notable
exception occurs when k, = 3, where the error increases for
some values of Tmax/Tmax. This illustrates the use of choosing
training points that do not lie in parameter regions that are
difficult to calculate; with three training points, one of the
critical parameters is right at an avoided level crossing, which
leads to the increase in the rms error. This issue can readily be
solved by adding more training states.

For a comparison of resources required, let us first consider
ASP. To obtain an accurate ground energy spectrum for a set
of target Hamiltonians, using ASP we require very slow (adi-
abatic) evolution. In our example, we would require 750 time
steps to get the fidelity close to 1 (see Fig. 12). Using truncated
ASP together with EC, using only 75 time steps to get the
basis vectors is sufficient [cf. Fig. 3(f)]. Similarly, using ITE,
the total time of evolution required for the desired error is
Tmax = 0, 1.€., 30 imaginary time steps at each target point,
yielding 30 x 20 = 600 total steps. With truncation, we used
Tmax = 1.6 which is 8 time steps for k, = 5 points, requiring
40 total steps to get the basis vectors. After getting the pro-
jected Hamiltonian and overlap matrix, all the energy values
are calculated by solving GEP, which is classically easy given
matrix sizes in GEP depending on the number of basis vectors.
Overall, using EC on top of these standard state preparation
techniques saves >90% of the time-evolution steps.

2. Scaling with system size

Although it is highly dependent on the nature of the system,
the number of basis vectors required tends to increase polyno-
mially with system size. In cases like the XY model, which
exhibits different symmetry sectors in its ground states, the
number of protected crossings is proportional to the number
of lattice sites (see Fig. 14) and, consequently, the subspace
requires a similarly scaling number of basis states. For other
systems like the XXZ model (see Appendix D 2), where
the ground state is doubly degenerate and has no protected
crossings in the ground state, the growth is still polynomial
but slower. We demonstrate this numerically using truncated
ASP and EC by calculating the rms error as we increase the
number of subspace basis vectors k,, for different system sizes
of the XY and XXZ models. We use the same parameters for
the XY model as those in Fig. 3; for the XXZ model, we set
J =41, B; = 0.2, and vary J; € [0, 3] using truncated ASP
with parameters df = 0.1 and Tj,,x = 1.2. Note that for the
XXZ model ASP is easier to implement due to the absence
of protected crossings; the By field is introduced to break the
(twofold) degeneracy in the ground state.

Because the ground-state energies vary as we change the
number of sites, we cannot use Aeg, directly. Instead, we will
use the relative rms error, defined as

1 o Ei - Eeixac ?
(Agrel)rms = - Z (|calEl—t|> , (9)

p i=1 exact

where the sum is over the p = 20 target points, Eexac; are exact
ground-state energies calculated using exact diagonalization,
and E., are the energies obtained using truncated ASP fol-
lowed by EC.

The low-energy subspace typically only contains a finite
number of unique states. As we increase the number of train-
ing points, it is possible that we overspan the low-energy
space, making the S matrix noninvertible. Thus, we only
calculate errors for k, < (Nyy + 2) for the XY model, and
k, < Nxxz for the XXZ model, which was empirically de-
termined based on when the subspace basis vectors become
degenerate.

The results are shown in Fig. 4. There is a general trend
towards a decrease in the relative error as the number of
subspace vectors increases. Because the low-energy subspace
of the XY model has more unique states than that of the XXZ
model, the errors are larger, in particular when &, is small
compared to the number of sites Nyy. The X X Z model, on the
other hand, has a relatively simple low-energy subspace and
thus is spanned even with a small k,. There is an odd-even
pattern visible in the errors for the XX Z model that becomes
more visible at larger Nyxz that arises from details in the
spectrum for this model; we discuss this in Appendix D 2.

For both of these models, we observe that the number
of basis vectors required for (Aegre)ms < 5% scales linearly
with the system size N, in stark contrast to the exponential
scaling of the Hilbert space dimension. For the XY model,
this is because the number of phase transitions (or level cross-
ings) in the ground energy spectrum is proportional to N (see
Appendix D 1). For the XXZ model, since the ground state
changes smoothly without any level crossings (Fig. 15), we

032607-6



CHEAPER AND MORE NOISE-RESILIENT QUANTUM ...

PHYSICAL REVIEW A 111, 032607 (2025)

fany
(o)}
1

[ S = T R =
N WA !
1 1 1 1

=
=
1

¥Q

fary
[e¢] ©o o
1 1 I

o ~
1

w B w
I

N

I ] 1 1 I I 1
9 10 11 12 13 14 15 16

w
IN
3]
o -
\,
[oe]

o

o

=

o

o

N
2
>
<

0.03 0.04 0.05
(Agrel)rms

0.06 0.07 0.08

N

1 1 1 1 1 1 1 1 1 1
9 10 11 12 13 14 15 16 17 18
Nxxz

w_
~
v
o -
-
o
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of training states (k,) on the y axis. White squares are not computed
to address the overspanning issue.

required an even smaller number of training states, that again
appear to scale linearly with system size (V).

IV. AVOIDING PROTECTED LEVEL CROSSINGS
AND VANISHING ENERGY GAPS

—— Exact ground state
* ECusing ¢

—12

—14

-16

0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 5. Ground energy spectrum for XY model five-site with
parameters {J = 1, By = 0.0} calculated using EC with subspace
obtained from ASP in parameter space with {/ = 1, By = 0.1}.

perform poorly. For instance, ASP fails when the spectrum
exhibits protected level crossings. In the previous section,
these were broken by a small By field; however, it may be that
the By = 0 problem is of interest. ITE can also have problems
and, in particular, has issues with small energy gaps between
the ground and excited states. In this section, we will illustrate
how to ameliorate this issue using EC.

A. Getting around protected level crossings in ASP

As discussed in Sec. III B, using ASP to generate a ground
state requires finding a gapped adiabatic path, that is without
any protected crossings [24], which precludes its use for sys-
tems that exhibit level crossings. The one-dimensional (1D)
transverse field XY model is such a system: in the absence of
an in-plane magnetic field (the spectrum shows several level
crossings equal to the number of sites) and thus ASP is not an
appropriate tool for finding the ground state. However, we can
get around this issue by performing ASP for the XY model
that does have a small in-plane field, and build a subspace
using training states from this model.

In the Fig. 5, we perform ASP for a system with stag-
gered By = 0.1, dt = 0.05, and T,,x = 3.75, and choose four
equally spaced states to form a basis. Next, we use this basis
to find the eigenstates of the target system with By = 0.0. As
is clear from the figure, this procedure readily produces the
correct ground-state energies for the system of interest.

B. Avoiding vanishing energy gaps in ITE

The idea of using a different Hamiltonian to generate a
basis for a problem of interest can be extended to address the
issues in using ITE for systems with small and/or vanishing
energy gaps. To illustrate this, we will consider a more com-
plex system: the two-dimensional (2D) kagome XXZ lattice
(see Fig. 6). Getting the ground energy spectrum for these sys-
tems of Hamiltonians is a difficult task due to the presence of
phase transitions, changing degeneracies in the ground state,
and small energy gaps between the ground and excited states
[60]. Consider a 2D kagome X XZ model system Hamiltonian
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FIG. 6. A 2D kagome lattice with interaction strength J > 0. A
positive valued J has an antiferromagnetic nature with frustration in
unit cells shown in the green box. Ny and Ny are the number of unit
cells in x and y axis, respectively, contained in the green lines.

with a transverse field

3xNx xNy
H=JY XX;+YY)+J2 ) (ZZ)+B, Y. Z
(i, j) (i, ) i=1

(10)

where the sum is over all the nearest-neighbors (i, j) pairs
(see Fig. 7). The total number of sites for Ny unit cells in the
X direction and Ny in the Y direction is {3 x Nx x Ny}. The
interaction strength J sets our energy scale, and J is positive,
which implies the antiferromagnetic nature of the system. We
set B; = 0.2, and will study the energy spectrum as a function
of J, Z-

The triangular lattice structure can lead to geometric frus-
tration in the antiferromagnetic regime, leading to degeneracy
and level crossings, both of which can be seen in Fig. 7. When
Bz = 0 there is phase transition near Jz/J = —0.5 where the
ground state is highly degenerate and is double degenerate for
Jz/J > —0.5 [61]. In the presence of a finite external field
By, the degeneracy at the phase transition point spreads out,
where energy levels are close but differ by some finite-energy
values (see Appendix D 3). These energy gaps between the
ground state and the first excited state change with the values
of the parameter J, as shown in the Fig. 18. For smaller
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values of J, we observe higher-energy gaps before the phase
transition and vanishing values after. This trend becomes the
opposite as we increase the interaction strength J. As dis-
cussed before, nonvanishing energy gaps are crucial for the
convergence using methods like ITE. Getting a basis for these
J values using ITE is challenging due to vanishing gaps for
some J; values, before and after the phase transition point.
We will address this issue by making use of the middle point
at J = 1 where energy gaps are mostly nonzero throughout
the J; range (red squares in Fig. 18), and make a basis by
truncated ITE at Hamiltonians with J = 1 and J; marked with
green diamonds in Fig. 7(a) inset. We will use this basis for
a total of 225 Hamiltonians with other parameter values at
J>TlandJ < 1.

In Fig. 7(a), we show the spectrum for J = 0.5 and Bz =
0.2 using a basis made from J =1.0 and By = 0.2. Ba-
sis vectors are obtained from implementing ITE at (k, = 6)
equally sampled parameter points (green diamonds) in Jz
with d7 = 0.2 and 7,,,x = 2 starting with a Haar random
state. Values with the green diamonds in the color plot are
errors in the basis states used in the subspace. Now we will
use the same basis for more parameter values changing J €
{0.1,0.2, ..., 1.4, 1.5}. To compare with the imaginary-time
evolution for each target point, Fig. 7(b) plots the fidelity of
the ground states corresponding to the target points in Fig. 7(a)
for J = 0.5, and the fidelity if we implement just 10 ITE steps
at those target point Hamiltonians without using the subspace
formalism. Figure 7(c) plots the relative error in energies
solved using the same basis for different parameter points.
Figure 7(d) is plotted using only ITE at each parameter point
to get the ground-state energy with dt = 0.2 and t,x = 2.0.
That is 10 imaginary-time steps for each parameter point.
The horizontal dashed lines at J/ = 0.5 in Figs. 7(c) and 7(d)
correspond to the states shown in Figs. 7(a) and 7(b). In
comparison, in Fig. 7(c) we use (10 x 6 = 60) iterations of
ITE for getting energy at (15 x 15 = 225) parameter points,
and in 7(d) we use (15 x 15 x 10 = 2250) iterations of ITE.
The resource requirements for the implementation of nonuni-
tary imaginary-time evolution operator (¢~**) scales with the
total time of evolution, or the number of imaginary-time steps
[38,62]. Using the EC framework, we can significantly reduce
the number of time steps required, hence saving computa-
tional resources.

ITE+EC ITE

004
10- ¢ * + + + ‘ \

0.9- .\ 0.08 >
—oe [ |
07- ] \ 0.06

0.6- \ \
R .
o ! [ I
Zz \ - 0.02
w @ @ —
. | y 0.00
1o 00 11 20 1o 0.0 11 20
Jz Jz

FIG. 7. (a) Ground energy spectrum for kagome 12-site X XZ model with parameters J = 0.5 and B; = 0.2 solved using subspace obtained
from truncated ITE for J/ = 1.0 and Bz = 0.2 (inset). (b) Fidelity of ITE and ITE + EC for J = 0.5. (c) A¢, for each target parameter point
calculated using the same basis marked with green diamonds. The values marked on the diamonds are the relative errors in the basis vectors.
(d) Agye using just ITE at all the parameter points. In (c) and (d) the brown line indicates the phase transition line along (Jz/J = —0.5).
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Hamiltonians with vanishing energy gaps and degeneracies
are in particular more difficult to get to the ground state. The
phase transition point Jz/J = —0.5 (brown dashed line in
the color plot in Fig. 7) is one such difficult point, whereas,
at J =Jz it is easy to converge using ITE. The squares
with the highest error in the middle plot [Fig. 7(c)] are at
phase transition points where J; /J = —0.5. Where the ground
state is highly degenerate which can be seen in the energy
spectrum plot.

V. NOISE RESILIENCE

In practice, since the currently available quantum hardware
is noisy, we require algorithms to be noise resilient in order
to yield useful results on a quantum device [11-13]. We
already have some ‘“noise” in the subspace in the form of
excited states, arising from truncated state preparation meth-
ods; however, quantum devices introduce hardware noise as
well, requiring us to analyze how additional noise will af-
fect the algorithm. In this section, we will demonstrate that
the improvements obtained using EC survive the addition of
hardware noise. We implement a noise model and simulate the
effect of introducing noise in the ASP for a five-site XY model
Hamiltonian discussed previously in Eq. (6).

Implementation of an algorithm on quantum hardware re-
quires mapping of the time-evolution operators on a quantum
circuit. The presence of noise turns the otherwise unitary
evolution gates into quantum channels; however, defining the
noise channel precisely is difficult as it depends on several
factors. For this reason, a variety of noise models have been
suggested for the simulation of different hardware environ-
ments [63,64]. Our goal is to investigate the effect of noise on
EC, here we limit our consideration to a general noise model
with a single noise variable [65,66].

In this noise model, each gate R is followed by a noise
gate [67], whose amplitude is taken from the absolute value
of a normal distribution with a standard deviation o that
can be varied to control the noise. These noise gates will
implement the noise error channels for both single- and two-
qubit gates. We will explore the effective action of gates
followed by noise gates parametrized by a single noise pa-
rameter o. Let R; denote the gate R at qubit i and I; is
the identity operator on i qubits. For simple Pauli gates R €
{X,Y,Z}, we have R;R; = I;. The effect of a noise gate for
a single-qubit gate R; with probability p followed by gate R;
is equivalent to applying /(1 — p)R; + ,/pl;. This accounts
for gate imperfection and noise channels; it represents a
bit-flip noise channel when (R = X), and a phase-flip noise
channel when (R = Z). Similarly, a two-qubit gate R R, will
have noise gates R; with probability pl and R, with p2.
The effective operation will thus become (after normaliza-
tion) (v/(T — pl — p2 — pIp2) RiRy + /Pl Ri + /p2 Ry +
/plp2 I). For the five-qubit system considered here, for
every single- and two-qubit gate, we will have effective
gates as

Ry =/ (I =p)R + /I,
RiRy; —+/(1 = pl — p2 — plp2) RiR,

+VPLR + /P2 Ry +/plp2 5. (11)
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One adiabatic time evolution step

FIG. 8. One step of adiabatic time evolution for a five-site XY
model Hamiltonian with noise.

We implement this noise model in the ASP procedure
to generate the subspace basis states. Each time step of the
adiabatic evolution for this system involves a Trotter decom-
position as per Eq. (6). For all the terms in the Hamiltonian,
each is followed by a noise term (see Fig. 8) that changes the
Hamiltonian at that time step to (H = H + Hpoisc)» 1.€., We
replace the Hamiltonian in the time-evolution operator e~/
by H. The probabilities in each noise gate are sampled from
a distribution, and we perform an average over an ensem-
ble of 500 trajectories. For each trajectory, we calculate the
projected Hamiltonian (H) and overlap matrix (S) elements;
we then bootstrap the sampled data to get the average matrix
element values. (The bootstrapper error bars for the matrix
values are smaller than € < 1073.) The Hamiltonian and
overlap matrices, which now contain the averaged elements,
are then solved by the GEP to obtain ground-state energy
values.

In Fig. 9, we plot the error in the ground-state energy
Aems [Eq. (8)] as a function of the noise parameter o for 20
target points of the XY model. We compare the use of ASP
(Tmax = 75) and truncated ASP (T,,.x = 7.5), both with dt =
0.05, and the effect of correcting the truncated ASP using
EC with k, € {5, 6,7} basis vectors. In all cases, increasing
the gate noise corresponds to an increase in Ag;ys. The ASP
circuit has the largest depth (1500 time steps) and thus the
error increases most rapidly. The truncated ASP results have
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FIG. 9. Noise analysis for five-site XY 1D model with just ASP
and with EC for the different number of basis vectors k, while
varying noise o on the x axis. The y axis denotes the rms error
(Aéems) for all the target points.
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a more modest depth (150 time steps) and thus show a more
gentle increase, but at the cost of a large error at o = 0; this
is of course expected because the Tp,x is insufficient for an
adiabatic evolution. Using EC on top of the truncated ASP
fixes the issue at o = 0, but also improves the situation for
finite 0. For comparison, we repeat the calculations with an
increased number of basis vectors in the subspace from 5 to
6 and 7. As expected, increasing the number of basis vectors
does help to reduce the error (Aeyys) somewhat. As discussed
above, we select equally spaced values in Bz, which for k, =
6 results in some of the training points being very close to the
level crossings similar to the plot Fig. 3(f), which causes the
error to increase. These results indicate that even in the pres-
ence of noise, making use of this subspace method improves
the results.

While increasing the number of training vectors (or sub-
space basis states) can help to reduce the error, this eventually
reaches a barrier. Adding more basis vectors increases the
chances of overspanning the subspace, making the condition
number (C,) of the overlap matrix very large, and yielding
it noninvertible [see Eq. (1)]. This is one of the major prob-
lems with subspace methods ([33,35,68]). To address this
issue, there are several classical postprocessing techniques
used to manipulate the overlap matrix, such as thresholding
[43]. This procedure involves finding the singular value de-
composition of the overlap matrix, followed by eliminating
the singular values that are smaller than a chosen thresh-
old («). The vectors corresponding to the singular values
less than o are discarded from the overlap matrix and the
projected Hamiltonian matrix. This technique can help in
reducing the condition number but sometimes we can lose
some relevant information in the process. Let us analyze the
effect of noise on condition number and thresholding for our
test case.

We plot the condition number (C,) and error (Agys)
before and after thresholding with different noise for the
above-mentioned data in Fig. 10. Thresholds («) are chosen
empirically as the noise (o) is varied, for 0 < 0.04, o =
0.015; 0 < 0.08,«a =0.05 and o > 0.08, « = 0.09. From
the plot, we observe that the condition number increases as
kp, is increased from 5 to 7 and the rms error decreases. How-
ever, as o increases, the condition number decreases; noise
helps keep the overlap matrix invertible. Using the thresh-
olding technique does help in reducing the condition number
as shown in the first plot in Fig. 10, but for larger o, it is
unnecessary as the condition number is already under control,
and using it anyway somewhat increases the rms error as seen
in the second plot.

To understand why noise in EC basis helps keep the condi-
tion number in check while introducing more errors, we need
to look at the change in the EC basis with noise. The EC basis
is generated using the low-energy states, where adding noise
introduces other higher-energy states. These randomly added
states decrease the overlap of the basis with other states, re-
ducing the condition number. Contrariwise, in other truncated
methods such as Krylov, the subspace basis is already some-
what spread out, having contributions from all the states. Here,
adding noise can increase the contributions of some of the
states, thus increasing the condition number. (See Appendix E
for an example.)

1400 A # ky=5
X k=16

O kp=7

1200 A

1000 -

800 A

Cn

600 A

400 A

200 A

No Thresholding
0.5 1 With Thresholding

0.02 0.04 0.06 0.08 0.10
o

FIG. 10. Condition number (C,) and rms error (Aég,y) analysis
with and without thresholding for changing noise (o).

VI. DISCUSSION

In this work, we have used previously proposed eigenvec-
tor continuation as a subspace method [48], where continuity
of the ground state of the system Hamiltonians varied by
some order parameter is explored. In contrast to previous
work, where exact eigenstates were needed to generate the
subspace, we apply it to the subspace generated by truncated
time-evolution techniques (ASP and ITE) and the variational
quantum eigensolver (VQE) to generate a subspace. These
truncated algorithms incorporate a number of low-energy
states, which can be disentangled using EC, thus gaining
better convergence while using fewer resources.

We used various spin Hamiltonians with different ground-
state energy spectrum features to showcase the method,
including the XY model with and without transverse field
whose ground-state manifold spans orthogonal symmetry sec-
tors, the XXZ 1D model with a transverse field which has
small energy gaps between ground state and the first excited
state, and the X X Z kagome 2D model which has phase transi-
tions and ground-state degeneracies. However, this method is
not limited to spin systems; the eigenvector continuation for-
malism has been previously used for other systems in nuclear
physics, and quantum chemistry among others [49,50,52], and
the truncated state preparation method proposed in this work
can also be used for these systems.

All the findings shown in this work were performed on
a classical simulator. Even here, compared to the classical
full-time-evolution methods to get the ground states, using
EC with truncated time evolution can be much faster. For
quantum simulations, however, it can be challenging to ob-
tain the matrix elements of the projected Hamiltonian H and
overlap matrix S [Eq. (1)]. One can evaluate these elements by

032607-10



CHEAPER AND MORE NOISE-RESILIENT QUANTUM ...

PHYSICAL REVIEW A 111, 032607 (2025)

performing multiqubit controlled operations to an ancilla, e.g.,
the Hadamard test method [69]. These operations are known
to be troublesome for current QPUs, as they introduce sig-
nificant error. Other approaches for measuring overlap terms
have been recently proposed to avoid the need to use the tra-
ditional Hadamard test, including a cheaper implementation
when using ASP for producing the basis states [70], a SWAP
test that could be cheaper than the Hadamard test [71], and
an approach that relies on a reference state [33]. Moreover,
algorithms for calculating the overlap of two quantum states
efficiently on a quantum device remain an open research area.

While the calculation of the projected Hamiltonian and
subspace matrices can involve otherwise expensive calcula-
tions, the number of these is limited. Because we use the
same basis for all the target Hamiltonians, the overlap matrix
elements need to be calculated once. Similarly, for the pro-
jected Hamiltonian matrix, usually, we do not need to repeat
the measurements for each target Hamiltonian since all the
Pauli operators of the Hamiltonian are measured only once per
basis set and only the coefficients are changed to calculate the
target Hamiltonian [48]. Due to the structure of the matrices,
the total number of circuits required scales quadratically in the
number of basis states k,: k,(k, — 1) for the overlap matrix
and kj(k, + 1) for each of the Pauli operators in the projected
Hamiltonian.

Overall, we believe that this method will be of high value
for quantum computing in the near term, and into the early
fault-tolerant era. In both cases, circuit depth will come at a
premium, and any algorithm that can reduce the depth and
provide some noise resilience while maintaining or reducing
the error can have an impact.
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APPENDIX A: EIGENVECTOR CONTINUATION

For a model Hamiltonian that depends on certain parame-
ters, what is the change in the ground state and eigenenergy
resulting from a small change in the parameter; Analysis
of this question says the change should be continuous and
tractable. Eigenvector continuation is based on the same in-
tuition. Across a parameter range, the ground states for each
Hamiltonian varied by that parameter are spanned by a few
low-energy vectors. We will use this idea to form a subspace
containing the ground states across the parameter range. This
will let us use the subspace diagonalization for each such
Hamiltonian using the subspace thus formed. The execu-
tion of this method is shown below. The aim is to find the
ground states for a set of Hamiltonians H,ge varied by a

parameter a.
Htargel = {H(a1),H(a2)...H(a,)}.

From the set, choose k, < n points in parameter space and
corresponding Hamiltonians: we call this a training set 7.
Ground states at these points will be used as basis vectors in
the subspace. The number and position of these Hamiltonians
can be chosen based on prior knowledge about the system, the
presence of symmetries and the size of the Hamiltonians:

T = {H(k)), H(ky) ... H(kp)}.

We will use the quantum state preparation techniques includ-
ing time evolution methods such as adiabatic state prep, and
imaginary-time evolution for getting the ground states. Here
since the requirement is for low-energy subspace, running a
quasi-ground-state preparation is enough. The states obtained
from these methods would have a finite overlap with other
excited states. These vectors form a basis B for subspace
diagonalization

B={¢1, ...} (AL)

APPENDIX B: QITE

Imaginary-time evolution involves an evolution of the ini-
tial state with imaginary time, which is e~ 7. ITE requires the
initial state to have some finite overlap with the ground state.
In practice starting with a Haar random state, the probability
of that state being completely orthogonal to the ground state is
very low. Let the starting state be |1). The state can be written
as a superposition of all the eigenstates (|e;)). The application
of evolution term e " where H, is the target Hamiltonian,
on the initial state followed by normalization, increases the
overlap with eigenstate corresponding to the low(est) eigen-
value (highest eigenvalue for ¢/ ¥) and overlap with eigenstate
corresponding to the high(est) eigenvalue decreases. Iterating
this many times (large n) gives maximum overlap with the
ground state or lowest eigenvalue state (say, |eg)) and all the
other coefficients get close to zero:

N—-1
Wo) = D _cilei),
i=0

e M |y _y)
(Wim| e 2Hd ;)
[¥n) ~ leg); n> 1.

Vi) =

Figure 11 plots how a state evolves under imaginary time.
Starting with an initial state that is an equal superposition

of all the eigenstates |v/,) = Ziil 1/v/2V ), overlap with
low(est)-energy (red) eigenstates increases then slowly starts
to decrease. In contrast, overlap with higher-energy eigen-
states (gray) vanishes rapidly. Getting rid of those low-energy
states takes the longest total time (7). However, preparing
this state is not practical. Instead, we use the state |i,) =
1/ V2N [1,1,..., 1), which is an equal superposition of the
computational basis states in the second plot. Similar behavior
of low-energy states can be observed where the ground state
takes longer to converge.
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FIG. 11. Change in the imaginary-time evolving state overlaps
with the eigenstates of the XY 1D five-site system for every step of
evolution. The initial state |v,) is an equal superposition of all the
eigenstates of the system and |v,,) is an equal superposition of all the
five-qubit computational basis states.

Since the evolution term (e~"7) is nonunitary it makes
implementation of ITE on quantum devices nonideal. There
exist various methods for this purpose [38,62], however, they
are very costly. Therefore, limiting the number of evolution
steps is preferable. Using EC number of steps needed can be
reduced.

APPENDIX C: ASP

Adiabatic state preparation (ASP) is used when the ground
state at some parameter value is known or is easy to find and
the ground state at some other parameter value is needed.
To find the ground state at a target value, we start with the
known ground state at some parameter value, say [i;) =
|¢s(pi)) , and slowly (adiabatically) evolve the state changing
the Hamiltonian to the target parameter value (py). If the
evolution is N step process, and the change in parameters is

dp = (ps — pPi)/N,
then each adiabatic time step will be
|wj) — o iH(pitjxdp)dt |wj71>
and the total evolution will be

|Wf) = e Pt p=ill(pr=dp)dt =il (pitdp)t |y, (C1)

Here if N is not large enough, the evolution can accumulate
diabatic excitation. Furthermore, if the value of dt is not small

~o —— Exact ground state
\\\\ === Tmax=3.75
-44 _ \\\ == Tmax=17.5
e N —— Tpax=375
‘\'\, \\\
-6 \A\\\

|(Wgs|ware) |

-121 0.54
,/
f/,
Bl B et ,
0 1 2 3
0.0 0.5 1.0 1.5 2.0 2.5 3.0

B,

FIG. 12. Adiabatic time evolution for a five-site XY model
with parameters J = 1, By = 0.2, dt = 0.05 with different 7,,x =
[3.75,7.5,37.5] and changing Bz and (inset) corresponding ground-
state fidelity.

enough, it can increase the Trotter error. We thus require small
dt and large N for the evolution to be exact, which however
requires large computational resources. The total time of evo-
lution required to follow the lowest eigenstate depends on the
energy gap between the ground and the first excited states. If
energy gaps are small, there is a higher probability of state
mixing while evolution and even smaller time steps would be
required. For situations where there are points of no energy
gap, degenerate points, or level crossings, ASP fails to detect
the change in the ground state. And the resultant state is not
the ground state.

In such systems, a symmetry-breaking term is introduced
in the Hamiltonian which breaks the level crossings in the
energy spectrum and introduces an energy gap. For small field
strengths, a very long evolution is required. For a toy model,
TFXY model with X-field to break symmetry (6), we will
analyze this situation in detail.

Consider implementation of adiabatic state preparation for
a five-site model, starting with B; = 3.0 in Fig. 12. For the
same dt = 0.05 and changing the number of adiabatic time
steps by changing T, the initial ground state at B; = 3.0
evolves to different states at By = 0.0. The fidelity of the
ground state with the evolving state remains 1 only for large
enough Ti.x = 37.5. This would require (n = 750) number
of adiabatic time-evolution steps. If we evolve for lesser Ty,
say 3.75, this would take 10% of the evolution steps but will
not capture the changes in the ground state, as shown in
the figure. This quasiadiabatic evolution is used in the text
with EC.

APPENDIX D: MODELS
1. XY model

In the paper, a transverse field XY model with a uniform
longitudinal field is used as a toy model. The model involves
in-plane interactions in X and Y directions, here nearest-
neighbor interactions are considered and a universal field in
the Z direction of strength B;. In-plane interaction strength J
is kept constant and By is varied to plot an energy spectrum.
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FIG. 13. XY 1D chain system energy spectrum for J = 1, vary-
ing Bz and staggered By € {0.0,0.2}. Level crossing split can be
observed in the plot on the right.
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FIG. 14. Scaling of number of symmetry sectors in 1D transverse
field XY chain is O(N). Here, for instance, we plot the energy
spectrum for N = 8 with varying transverse field B;. Blue dashed
lines show points of level crossing.
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FIG. 15. Energy  spectrum for XXZ model sites

N €1{9,10, 16,17} with energy gap between the ground state
and the first excited state shown in the inset.

-2
(a) (b)
s 1.0 O it e
[ ]
ITE el . ‘?'\TE+EC A
08 v AN i
-6 o A s
> = R ¢
® o /[ Vil e o i
o S 06 A R A ! !
I - vl ViV eTE 1 |
c 2 ! Vil S i |
w s \ voloy ) |
= 1
-10 = 04 ‘\1 e & O\ | '
H Lo \
\ ]
=12
— Exact ground state 02 i |
+/® Imaginary time evol (ITE) \‘.‘ H
— E il
14{| * ECusinge 00 ¢ L3
-2
© (d)
1.0 5
+
s L ASP+EC
e
-
0.8 -e
-6 ~ b WY
> = ASP
2 S o6
N =
i EY
-10 o
-12 02
—— Exact ground state L 4
+/® Adiabatic state prep (ASP)
_1a]| * Ecusinge ASP ——> 00
00 05 10 15 20 25 30 00 05 10 15 20 25 30
Jz Jz

FIG. 16. Implementing EC with truncated ASP and ITE for a 1D
chain XXZ model 5 site. (a), (c) Plot the ground energy spectrum,
(b), (d) plot corresponding ground-state fidelity change.

The Hamiltonian (restated) is given by

N—-1 N

N
H=J) (XXi1 + YY)+ Bz ) Z+Bx ) X. (DD
i=1 i=1 i=1

Without a staggered X field, the ground state is protected
for a range of varying Bz due to the presence of magnetization
symmetry sectors. For particular values of Bz, the ground
state changes to some excited state resulting in a point of
degeneracy where both states cross is called level crossing
Fig. 13. The ground state before and after these points is com-
pletely orthogonal. For a N site 1D chain system, for each spin
flip, we will have a magnetization phase transition making
the number of symmetry sectors in 1D transverse field XY
model with varying transverse field from Bz € (—o0, +00) as
(N 4 1). For example, we plot N = 8 energy spectrum with
J =1, staggered Bx = 0.0 and Bz € (-3, 3) in Fig. 14. For
the plots in this paper, we consider Bz € [0, Bzmax))- Still, the
scaling of the number of symmetry sectors would be linear in

—— Exact ground state

-26

-1.0 -0.5 0.0 0.5 1.0 15 2.0

Jz

FIG. 17. Energy spectrum of a 12-site kagome lattice system
with Ny = Ny = 2,J = 1.0, B; = 0.2 and varying J; showing low-
est 100 energy levels.
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|€o — €1}
N

FIG. 18. Energy gaps between the ground state and the first
excited state for kagome XXZ Hamiltonians for various parameter
values J € {0.1, 0.5,0.6, 1.0, 1.5} and J; € (—1.0, 2.0).

N. Adding a uniform field in the X direction of strength By
has two significant consequences. One is the breaking of level
crossings, and the other is the mixing of the lowest eigenstates.
Breaking of level crossing introduces an energy gap between
the lowest-energy states, which makes the application of ASP
possible. After adding a staggered By field, the ground states
are not completely orthogonal unlike one without the field.
This makes the training states mixed as well.

2. XXZ model 1D chain
The Hamiltonian for a XX Z model 1D chain is given by

N-1 N N
H=J) XXiv1 + YY) +Jz ) ZiZia +Bz ) 7

i=1 i=1 i=1

(D2)

The energy spectrum for this model shows an odd-even pat-
tern which affects the implementation of ASP in Fig. 4. The
reason can be seen in the Fig. 15 where energy gaps between
the ground state and the first excited state remain the same
for an odd number of sites (N = 9, 17) at a constant value of

0.8

0.6

Fi(BK)

0.4

. b e |||.|,.| J | | | ||I|||| || ||
5 10 15 20 2

|||||‘ll|lll
30

5

(|Ey — E — 1| = 0.4). The slight variation is due to the pres-
ence of a finite By field. For an even number of sites, however,
the gap values change. For an even number of sites, the gap
decreases as the number of sites increases. Since the ASP
depends on this gap, systems with larger gaps produce more
accurate states with ASP. For smaller even number of sites
(N = 10), most of this gap is larger than odd ones (N =9),
and for larger (N = 16) the gap gets smaller than odd ones
for most of the J values. ASP takes longer to converge in case
of smaller energy gaps and requires a smaller time-evolution
step. Here since the evolution is kept the same, smaller energy
gaps show more error. This explains the odd-even effects
observed in the Fig. 4.

In the Fig. 16, truncated ITE and ASP are used to get a
basis using and for XXZ 1D chain Hamiltonians (D2), with
J =1,Bz; =0.2,and Jz € (0, 3) is the varying parameter. For
truncated ITE in (a) and (b), dt = 0.2 and tp,,x = 1.2 starting
from a Haar random state. And for ASP in (c) and (d), starting
from a ground state at J; = 0, 4 time steps with df = 0.1 and
Tmax = 0.4 are used to obtain the basis.

3. Kagome XXZ

The Hamiltonian for a kagome X X Z 2D system with lattice
structure shown in Fig. 6 is given by (restated)

3xNx xNy
H=JY XX, +YY)+Jz ) (ZZ)+B, Y Z
(i) (i) i=1

where, J is the interaction strength and Jz € (—1, 2) is the
varying parameter. The total number of sites would be unit
cells (Nx x Ny) with three sites per unit cell.

Figure 17 plots the energy spectrum for a 12-site model
with parameter value J = 1.0. The phase transition point
Jz/J = —0.5 is spread out due to the presence of finite field
B; = 0.2. This field affects the energy gaps between the
ground state and the first excited state which is crucial for the
convergence of time-evolution methods like ITE. In Fig. 18
we plot the energy differences for different values of the
parameter J. The double degeneracy after the phase transition
is broken with increasing energy differences as the value of

L0 = = o = e

0.8

0.6 q

Fi(B)

0.4

B
20 25 30

0.2
ma 0=0.1
0.0 I I 144 'ETF P ’
5 10 15
i

FIG. 19. Overlap of the basis with eigenstates with noise o € {0.01, 0.05, 0.1} for k, = 7 basis vectors obtained from Krylov method and

truncated ASP method, respectively.
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o
L

FIG. 20. Noise analysis with measurement error. The shaded re-
gion shows the change in error including the measurement error.

J increases. Whereas, before the phase transition region the
energy gaps decrease.

APPENDIX E: NOISE ANALYSIS

We analyze the effect of noise on the subspace basis
obtained using truncated ASP and Krylov with seven basis
vectors for target XY Hamiltonian in Eq. (6) withJ = 1; By =
0.2 and B; = 1.5. For getting a basis using Krylov B¥, we use
operators {H, H 200 acting on an initial state |yy) prepared
using equal superposition of computational basis states:

R

To check the overlap of basis vectors with the eigenstates,
we will calculate the fidelity of each basis vector ¢; with each
eigenstate |e;). The overlap of the basis with eigenstates is
given by

kp
FiB)=) el i=1,2,...N.
j=1

In Fig. 19, we plot the overlap of basis with all the eigen-
states of the Hamiltonian system described above. The basis

formed using truncated ASP is able to span the low-energy
subspace, showing high overlap with the low-energy states
whereas the Krylov basis formed using powers of the operator
H randomly spans states. As the amount of noise is increased,
overlap with other excited states increases for EC basis, and
thus condition number of the basis decreases with noise. For
the Krylov basis, however, noise introduces other states at
random and the condition number remains comparable or
increases.

Using the Krylov basis, we aim for the basis to span the
ground state at the desired target Hamiltonian and, while
using EC with truncated state prep methods, we aim to span
the ground states across the parameter spectrum. As a re-
sult, EC basis has high overlap with multiple lowest-energy
states at different parameter points and other low-energy
states, whereas the Krylov basis has contributions from all
the states.

Measurement error

To account for the measurement errors in the noise anal-
ysis, we introduce an error to all the matrix element values.
Measurement errors could include two main types of errors
including a readout error caused by an error in reading the
output and another due to 7'1 decoherence error causing bit
flip from 0 — 1. As mentioned later in the discussion, there
could be multiple ways of calculating the matrix elements on
a quantum device. For our measurement error analysis, we
considered the Hadamard test protocol. To do so, we consider
all the samples generated by implementing the noise model
and change the expected matrix element values according to
the following equation. We consider the values of readout
errors from Ref. [72] as pg_.; = 0.01 and p;_o = 0.03. To
account for 7 error decoherence, we add a max pr; = 0.03
that cause a biased bit flip from |1) — |0).

For comparison with ASP, we included measurement er-
rors in measuring Hamiltonian expectation values for a state
produced by an ASP circuit by introducing a confusion ma-
trix as explored by Rigetti in [73]. In Fig. 20, the shaded
region shows values with measurement error for ASP and
with EC.
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