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Entanglement entropy dynamics of non-Gaussian states in free boson systems:
Random sampling approach
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We develop a random sampling method for calculating the time evolution of the Rényi entanglement entropy
after a quantum quench from an insulating state in free boson systems. Because of the non-Gaussian nature of
the initial state, calculating the Rényi entanglement entropy calls for the exponential cost of computing a matrix
permanent. We numerically demonstrate that a simple random sampling method reduces the computational cost
of a permanent; for an Ns × Ns matrix corresponding to Ns sites at half filling, the sampling cost becomes O(2αNs )
with a constant α � 1, in contrast to the conventional algorithm with the O(2Ns ) number of summations requiring
the exponential time cost. Although the computational cost is still exponential, this improvement allows us to
obtain the entanglement entropy dynamics in free boson systems for more than 100 sites. We present several
examples of the entanglement entropy dynamics in low-dimensional free boson systems.
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I. INTRODUCTION

Understanding the dynamics of quantum many-body sys-
tems is a central issue in modern physics. The entanglement
entropy is a key quantity that characterizes the dynamics
of quantum many-body systems. For example, temporal en-
tanglement entropy can signal quantum phase transitions,
helping us identify and understand new phases of matter in
nonequilibrium quantum systems [1]. Additionally, it pro-
vides insights into how information flows and evolves in
quantum systems [2]. Since entanglement is a crucial resource
for quantum computing and cryptography, understanding its
dynamics may lead to the development of efficient quantum
algorithms and secure communication protocols [2,3]. These
studies motivate us to investigate the thermalization process in
quantum many-body systems and the propagation of quantum
information [4–35]. Although the von Neumann entanglement
entropy is not a directly measurable quantity, there are several
proposals to measure Rényi entanglement entropy [36–38].
Recent experiments have successfully observed the dynamics
of the Rényi entanglement entropy using ultracold atoms in
optical lattices [39,40] and trapped ions [41].

The numerical simulation of dynamics of the entangle-
ment entropy is also an important approach to understanding
quantum many-body systems and providing a benchmark for
experiments. Studying the efficiency of numerical simula-
tions provides insights into problems that are challenging in
classical systems but can be effectively addressed in quan-
tum systems [42]. In some equilibrium systems, the Rényi
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entanglement entropy can be efficiently calculated using
quantum Monte Carlo simulations [43,44]. This approach al-
lows for accurate entanglement measurements in large and
complex systems, shedding light on their universal proper-
ties. However, this efficiency in classical simulations does
not always extend to nonequilibrium and general equilibrium
quantum systems. Finding efficient simulation methods for
such systems would guide which problems are most suitable
for applying digital and analog quantum simulations.

In contrast to fermion and spin systems, boson systems
are much harder to simulate because of the large number of
local Hilbert spaces. Even in the free boson systems with
simple initial states, such as the Mott insulating state and the
charge-density-wave (CDW) state, the entanglement entropy
dynamics is difficult to calculate because of the non-Gaussian
nature of the initial states. Although the analytical formula for
the entanglement entropy is formally obtained by a matrix per-
manent, its numerical evaluation requires the exponential cost
[33]. This situation limits the system size that can be studied
to a few tens of sites or particles. Therefore, understanding dy-
namics of the entanglement entropy in boson systems remains
to be a challenging problem even in noninteracting systems.

In this paper, we develop a random sampling method for
calculating the time evolution of the Rényi entanglement en-
tropy in free boson systems. In the developed method, we
still need to evaluate the matrix permanent, which requires
the exponential computational cost in general. However, the
growth rate of the computational cost is much slower than
the exact permanent calculation. We numerically found that
the computational cost is reduced to O(2αNs ) with a small
constant α � 1 and the system size Ns. To be more specific,
we calculated the size-dependent statistical error of the en-
tanglement entropy, which scales as

√
c/Ntotal, with c being a

size-dependent constant and Ntotal being the total number of
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samples, and investigated how c grows with the system size,
which represents the number of samples required to achieve a
given statistical error. The constant α for the sampling cost is
defined by

c = 2αNs+const.. (1)

This improvement enables us to study dynamics of the entan-
glement entropy in free boson systems for more than 100 sites,
confirming that the entanglement entropy in the long-time
region exhibits the volume-law scaling as expected.

This paper is organized as follows. In Sec. II, we briefly
review the calculation of the Rényi entanglement entropy in
free boson systems and describe the conventional algorithm
for evaluating the entanglement entropy, which requires the
computation of a matrix permanent. To reduce the computa-
tional cost, we propose a random sampling method for the
matrix permanent. In Sec. III, we examine the performance
of the random sampling method by estimating the size de-
pendence of the statistical error. We then present numerical
results for dynamics of the entanglement entropy in free boson
systems for spatial one (1D) and two dimensions (2D). Fi-
nally, in Sec. IV, we summarize our results and discuss future
prospects. For simplicity, we set h̄ = 1 and take the lattice
constant to be unity throughout this paper.

II. RANDOM SAMPLING METHOD
FOR ENTANGLEMENT ENTROPY

We first briefly review how to evaluate time evolution of
the Rényi entanglement entropy in free boson systems in the
case that the initial state is an insulating state. Let us consider
dynamics subjected to a quantum quench in the Bose-Hubbard
model under the open boundary condition. The Hamiltonian is
defined as

Ĥ = −J
∑
〈 j,l〉

(b̂†
j b̂l + H.c.) +

∑
j

� j n̂ j + U

2

∑
j

n̂ j (n̂ j − 1),

(2)

where the symbols b̂ j and n̂ j are the boson annihilation and
number operators, respectively. The parameters J , U , and
� j represent the strength of the hopping, the strength of the
interaction, and the single-particle potential, respectively. The
symbol 〈 j, l〉 means that sites j and l are nearest neighbors.

We focus on a sudden quench from an insulating state to
the noninteracting (U = 0) and homogeneous (� j = 0) point.
The following discussion may also be applicable to the case
of a quench to the noninteracting and inhomogeneous point;
however, we do not consider such a case in this paper for sim-
plicity. The quench to the interacting point is also interesting,
but the system becomes nonintegrable and it is beyond the
scope of this paper.

As an initial state, we specifically choose the
010101 · · · -type CDW state at half filling. Although the
following formalism also holds for any Fock initial state with
any noninteracting Hamiltonian after the quench, we focus on
the CDW state for simplicity. It is defined as

|ψ〉 =
∏

j∈GCDW

b̂†
j |0〉, (3)

where |0〉 is the vacuum state of b̂ j . The GCDW

corresponds to the set of charge rich sites. For
example, GCDW = {2, 4, 6, . . . } in 1D, and GCDW =
{(2, 1), (4, 1), (6, 1), . . . (1, 2), (3, 2), (5, 2), . . . (2, 3), (4, 3),
(6, 3), . . . (1, 4), (3, 4), (5, 4), . . . } in 2D, respectively.
Hereafter, in 2D, we map the site index j(= jx + Lx jy)
one-to-one to the lattice site ( jx, jy) for jx = 1, 2, . . . , Lx

and jy = 1, 2, . . . , Ly on a square lattice with Lx (Ly) being
the length of the side along the x (y) direction, respectively.
The number of sites is represented as Ns, which is taken
as an even number in our study. Then, the number of
particles is Nb = Ns/2. The CDW state can be obtained as
the ground state of the Bose-Hubbard model at half filling
for �/J � 1 and U/J � 1 when � j = �(−1) j+1 in 1D and
� j = �(−1) jx+ jy in 2D, respectively. One can prepare the
CDW state in experiments using a secondary optical lattice,
which has a lattice constant twice as large as that of the
primary lattice [16]. Note that such CDW states and also the
Mott insulating state that appear in the Bose-Hubbard model
are non-Gaussian states, although the counterparts in the
Fermi-Hubbard model are Gaussian states.

To make the discussion self-contained, we summarize the
calculation of the Rényi entanglement entropy in free boson
systems [33]. We previously evaluated the second Rényi en-
tanglement entropy, which is defined by

S2(t ) = − ln TrG[ρ̂G(t )]2, (4)

for the time-evolved state, |ψ (t )〉 = exp(−iĤt )|ψ〉 [33].
Here, ρ̂G(t ) is the reduced density matrix and TrG is the
trace over the basis of subsystem G that contains l = 1, 2,
. . . , NG sites. For simplicity, we set NG to half the system
size (NG = Ns/2) throughout this paper. The reduced density
matrix ρ̂G(t ) and the product of two copies of the state |ψ (t )〉,
i.e., |ψcopy(t )〉 := |ψ (t )〉 ⊗ |ψ (t )〉, are related as

TrG[ρ̂G(t )]2 = 〈ψcopy(t )|V̂G|ψcopy(t )〉, (5)

with V̂G(t ) being the shift operator that swaps states in subsys-
tem G. Therefore, we need to evaluate the right-hand side of
the above equation by explicitly calculating the time-evolved
state |ψ (t )〉. For any noninteracting Hamiltonian Ĥ0, by di-
agonalizing it in the first-quantization representation, we can
express it as

Ĥ0 = −J
∑
〈 j,l〉

(b̂†
j b̂l + H.c.) =

Ns∑
k=1

εkβ̂
†
k β̂k, β̂k =

Ns∑
j=1

xk, j b̂ j,

(6)

where b̂ j is the annihilation operator in the original basis of
the Hamiltonian and β̂k is the annihilation operator in the
basis diagonalizing the Hamiltonian. The kth eigenenergy of
Ĥ0 is represented as εk and the corresponding eigenvector
is expressed as xk . The elements of the eigenvector xk are
real numbers when the hopping strength J is real. Straight-
forward calculations for Ĥ = Ĥ0 lead to the expression of the
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time-evolved state as

|ψ (t )〉 = exp(−iĤ0t )
∏

j∈GCDW

b̂†
j |0〉 (7)

=
∏

j∈GCDW

[exp(−iĤ0t )b̂†
j exp(iĤ0t )]|0〉 (8)

=
∏

j∈GCDW

⎧⎨
⎩

Ns∑
j′=1

[
Ns∑

k=1

xk, jxk, j′ exp(−iεkt )

]
b̂†

j′

⎫⎬
⎭|0〉. (9)

Here, we use the fact that exp(±iĤ0t )|0〉 = |0〉. For conve-
nience, we define the correlation yi, j (t ) (i, j = 1, 2, . . . , Ns)
as

yi, j (t ) =
Ns∑

k=1

xk,ixk, j exp(−iεkt ). (10)

Then, the time-evolved state is expressed as

|ψ (t )〉 =
∏

j∈GCDW

⎧⎨
⎩

Ns∑
j′=1

y j, j′ (t )b̂†
j′

⎫⎬
⎭|0〉. (11)

The state |ψcopy(t )〉 is obtained as a tensor product of two
|ψ (t )〉 states. Because both |ψcopy(t )〉 and V̂G|ψcopy(t )〉 are
many-boson states and their wave functions are symmetric
under the exchange of bosons, the expectation value of the
shift operator 〈ψcopy(t )|V̂G|ψcopy(t )〉 is given by the permanent
of a certain matrix consisting of single-particle correlation
functions, defined by

zi, j (t ) =
∑
l∈G

y∗
ri,l (t )yr j ,l (t ), (12)

with ri and r j being indices of charge rich sites (ri, r j ∈
GCDW). Consequently, using the matrix Z with elements
zi, j (t ), we can express the Rényi entanglement entropy at time
t as

S2 = − ln permA, (13)

A =
(

Z I − Z
I − Z Z

)
. (14)

Here, permA is the matrix permanent, which is defined as
the sum of all the products of the elements of the matrix A,
given as

permA =
∑

f ∈SNs

Ns∏
j=1

a j, f ( j), (15)

with SNs being the set of all permutations. Then, A is an
Ns × Ns square matrix, I is an Ns/2 × Ns/2 identity matrix,
and Z is an Ns/2 × Ns/2 matrix with elements zi, j (t ).

Note that the matrix Z takes the form in Eq. (12) for any
initial Fock state and any quadratic Hamiltonian [33]. In this
paper, we focus on the CDW initial state and the free boson
Hamiltonian with the nearest-neighbor hopping on a chain and
a square lattice. In 1D, the matrix representation of Ĥ0 in the
basis of b̂ j is given by

h0, j,l =
{−J (| j − l| = 1),

0 (otherwise),
(16)

which is an Ns × Ns tridiagonal matrix. The eigenvalues and
eigenvectors are easily obtained as

εk = −2J cos

(
kπ

Ns + 1

)
, (17)

xk,l =
√

2

Ns + 1
sin

(
kπ

Ns + 1
l

)
, (18)

where k, l = 1, 2, . . . , Ns. In 2D, the matrix representation of
Ĥ0 in the basis of b̂ j is given by

h0, j,l =
{

−J (
√

( jx − lx )2 + ( jy − ly)2 = 1),

0 (otherwise),
(19)

where j = jx + Lx jy and l = lx + Lxly. This Ns × Ns matrix is
no longer tridiagonal. We numerically diagonalize the matrix
h0 to obtain the eigenvalues εk and eigenvectors xk .

In general, the calculation of the matrix permanent in
Eq. (13) requires the exponential cost of O(Ns × 2Ns ) for
an Ns × Ns matrix. The well-known algorithms for eval-
uating matrix permanents are the Ryser formula [45–47]
and Balasubramanian-Bax-Franklin-Glynn (BBFG) formula
[47–51]. For example, in the BBFG algorithm, the permanent
for an n × n matrix (A) is evaluated as

permA = 1

2n−1

∑
δ

(
n∏

k=1

δk

)
n∏

j=1

n∑
i=1

δiai j . (20)

Here, ai j is the element of the matrix A, and the summation
is taken over δ = (δ1, δ2, . . . , δn) ∈ {±1}n with δ1 = 1. The
exponential time cost stems from the fact that the number of
terms in the summation grows exponentially in n.

To evaluate the permanent of an n × n matrix A more
efficiently, we propose a random sampling method. Instead
of taking all the terms in the summation in Eq. (20), we
randomly sample a subset of terms. We replace the sum over
the vector δ in Eq. (20) by the random vector r. Note that
the equivalent sampling procedure itself is proposed in Ref.
[52], although the context is different and the efficiency of the
random sampling that we adopt here is not discussed. As we
show below, this method allows us to approximately evaluate
the permanent with the matrix size larger than 100, which is
difficult to achieve with the conventional Ryser and BBFG
algorithms.

To simplify the notation, let us introduce the Glynn estima-
tor for an n × n complex matrix A and the complex vector x
[47,53–55], which is defined as

Glyx(A) =
n∏

k=1

x∗
k

n∏
i=1

⎛
⎝ n∑

j=1

ai jx j

⎞
⎠. (21)

When we specifically choose a random variable r, which
has elements ri ∈ C (i = 1, 2, . . . , n) that are independently
chosen uniformly on |ri| = 1, we can evaluate the permanent
of the matrix as the expectation value of the Glynn estimator
Glyr(A) [47,53–55]. The relation is given as

permA = E[Glyr(A)] = E

⎡
⎣ n∏

i=1

r∗
i

⎛
⎝ n∑

j=1

ai jr j

⎞
⎠
⎤
⎦, (22)
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where E means the expectation value. This equation can be
shown by expanding the product

E[Glyr(A)] = E

[
n∏

i=1

r∗
i (ai1r1 + ai2r2 + · · · + ainrn)

]
(23)

= E

[
(r∗

1 r∗
2 · · · r∗

n )
n∏

i=1

(ai1r1 + ai2r2 + · · · + ainrn)

]

(24)

= E

[
(r∗

1 r∗
2 · · · r∗

n )

×
∑

g(1),g(2),...,g(n)∈{1,2,...,n}
a1g(1)a2g(2) · · · ang(n)

× (rg(1)rg(2) · · · rg(n) )

]
(25)

=
∑

g(1),g(2),...,g(n)∈{1,2,...,n}
a1g(1)a2g(2) · · · ang(n)

×E[(r∗
1 r∗

2 · · · r∗
n )(rg(1)rg(2) · · · rg(n) )]. (26)

If the map i �→ g(i) is a permutation, one can always find a
unique pairing between r∗

i and rg( j) for all i[= g( j)] and j,
and the expectation value satisfies

E[(r∗
1 r∗

2 · · · r∗
n )(rg(1)rg(2) · · · rg(n) )]

= E[|r1|2|r2|2 · · · |rn|2] = E[1n] = 1; (27)

otherwise it is zero because there exists at least one unpaired
and independent r∗

i that satisfies E[r∗
i ] = 0. Then, we obtain

E[Glyr(A)] =
∑

g(1),g(2),...,g(n)∈Sn

a1g(1)a2g(2) · · · ang(n), (28)

which gives the permanent of the matrix A in Eq. (15). There-
fore, we can calculate the permanent by the following sample
mean:

permA ≈ 1

Nsmp

Nsmp∑
m=1

p(m), (29)

p(m) =
n∏

i=1

r (m)
i

∗
⎛
⎝ n∑

j=1

ai jr
(m)
j

⎞
⎠, (30)

where Nsmp is the number of samples and r(m) is a complex
random vector of a sample m. In practice, we take r (m)

i =
exp[iθ (m)

i ] with θ
(m)
i chosen uniformly in [0, 2π ) [54–56]. The

value p(m) is a complex number for each sample m.
In the present system with n = Ns, the entanglement

entropy satisfies 0 � S2 � cNs with c being a sufficiently
large constant, and therefore, the condition exp(−cNs ) �
permA� 1 holds. Since Re p(m) and Im p(m) can be expo-
nentially small in Ns and can be both positive and negative,
we need Nsmp = O[exp(αNs )] samples with a constant α to
accurately estimate permA in general. The situation is similar
to the case of systems having the notorious negative sign
problems [57]. The advantage of the present approach is that
the constant prefactor α would be sufficiently smaller than
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FIG. 1. Distribution of the value − ln[|Im p(m)|] in Eq. (30).
We show the distribution P(x) of x = − ln[+Im p(m)] (x =
− ln[−Im p(m)]) when Im p(m) > 0 (Im p(m) < 0) with a red solid line
(a blue dashed line). (a) At time tJ = 1 for Ns = 40. (b) At time
tJ = 2Ns for Ns = 40. In both cases, the positive and negative com-
ponents exhibit nearly the same distribution, suggesting that permA
does not contain an imaginary part.

unity as far as we deal with the matrix A generated in the
present system [see Eq. (14)]. Indeed, we numerically found
that α ≈ 0.2. One may also consider the importance sampling
to reduce the variance of the estimator in Eq. (21). However,
we do not use it in the present study and stick to the simple
random sampling method because we are interested in how far
we can go with the primitive procedure. Note that, although
we here focus on the CDW initial state to be specific, the
approach described above is applicable also to other insulating
initial states as long as they are expressed as a simple product
of local Fock states.

III. RESULTS

Hereafter, we present the numerical results on dynamics
of the entanglement entropy in hypercubic lattices, such as a
chain in 1D and a square lattice in 2D. The number of sites is
given by Ns on a one-dimensional chain and Ns = Lx × Ly on
a two-dimensional square lattice.

A. Estimation of the statistical error

Before estimating the expectation value and the statistical
error of permA in Eq. (29), we examine the distribution of
the value p(m). For simplicity, we will focus on the one-
dimensional case for the moment. We specifically consider
the system size Ns = 40 and investigate the distribution of 220

samples at a short time (tJ = 1) and at a long time (tJ = 2Ns).
Let us first look into the imaginary part of each sam-

ple required for calculating Im permA. In the present study,
we expect Im permA = 0 because permA = exp(−S2) (S2 ∈
R) should be real. As shown in Fig. 1, we examine the
distribution of the positive and negative Im p(m) at a short time
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FIG. 2. Distribution of the value − ln[|Re p(m)|] in Eq. (30).
We show the distribution P(x) of x = − ln[+Re p(m)] (x =
− ln[−Re p(m)]) when Re p(m) > 0 (Re p(m) < 0) with a red solid
line (a blue dashed line). (a) At time tJ = 1 for Ns = 40. Since the
positive component is dominant, we expect permA = O(1), and thus,
S2 = O(1). (b) At time tJ = 2Ns corresponding to S2 = O(Ns ) for
Ns = 40. Since the positive and negative components are comparable
while the positive one is slightly dominant, we expect permA =
O[exp(−const. × Ns )], and thus, S2 = O(Ns ).

tJ = 1 and at a long time tJ = 2Ns. In each time, the posi-
tive and negative components exhibit nearly the same shape
and cancel each other out, suggesting that Im permA = 0 as
expected when the number of samples is sufficiently large.
Indeed, we numerically confirmed that the expectation value
of Im permA is always zero within the sufficiently small sta-
tistical error.

We then investigate the real part of permA. As in the case
of imaginary part, we examine the distribution of the positive
and negative Re p(m) at a short time tJ = 1 and at a long time
tJ = 2Ns.

In the short time case (tJ = 1), we expect S2 = O(1) be-
cause the entanglement entropy does not grow significantly.
Therefore, the condition permA = O(1) likely holds. As we
expected, the distribution of the positive Re p(m) has much
greater weight than the negative one [see Fig. 2(a)]. The
positive component has a peak at Re p(m) ≈ +e−1, whereas
the negative component has a peak at Re p(m) ≈ −e−3. Since
the distribution is not a normal distribution, we need careful
analysis to estimate the statistical error, as we will show later
in this section.

However, in the long time case (tJ = 2Ns), we expect
S2 = O(Ns) since the time-evolved state converges to a highly
entangled steady state. Therefore, the condition permA =
O[exp(−const. × Ns )] likely holds, and the sampling must be
much harder than the short time case. Indeed, as shown in
Fig. 2(b), the positive and negative distributions exhibit a sim-
ilar shape, indicating that the expectation value is extremely
small. At the same time, the area of the positive distribution

is slightly larger than that of the negative one, suggesting that
Re permA > 0. As in the case of a short time, the distribution
of Re p(m) is not a normal distribution, which can be confirmed
by the presence of two peaks at Re p(m) ≈ ±e−16. Therefore,
also for the long time case, careful analysis is required to
estimate the statistical error.

To estimate the statistical error, we combine the blocking
analysis and the bootstrap method. In the blocking analysis,
we divide the Ntotal samples in to the Nblock blocks contain-
ing Nblocksize = Ntotal/Nblock samples. For each block j (= 1,
2, . . . , Nblock), we calculate the average p( j,Nblocksize ) of Nblocksize

samples. This procedure results in

1

Ntotal

Ntotal∑
m=1

p(m) = 1

Nblock

Nblock∑
j=1

p( j,Nblocksize ), (31)

p( j,Nblocksize ) = 1

Nblocksize

jNblocksize∑
k=( j−1)Nblocksize+1

p(k). (32)

We then prepare resampled data by the bootstrap method. To
this end, we randomly choose Nblock samples q( j) ( j = 1, 2,
. . . , Nblock) from the original Nblock samples p( j,Nblocksize ) ( j = 1,
2, . . . , Nblock). Here, we do not avoid picking the same sam-
ples multiple times. We repeat this process Nboot times and
generate samples q̄(k) (k = 1, 2, . . . , Nboot) by calculating

q̄(k) = 1

Nblock

Nblock∑
j=1

q( j) (33)

for each k. The number Nboot is chosen to be sufficiently
large so that the resampled data follows a normal distri-
bution. We estimate the average and the standard error of
the samples q̄(k), which gives permA and its statistical error
σpermA. Then, the statistical error of the Rényi entangle-
ment entropy is evaluated by σS2 = |− ln(permA + σpermA) −
[− ln(permA)]| ≈ |σpermA/permA| for |σpermA| � 1.

In general, we do not need the blocking analysis; how-
ever, the computational cost of the bootstrap method will be
extremely high when we directly use the exponentially large
number of Ntotal samples. By taking a small constant Nblock, we
can reduce the computational cost of the bootstrap method.
Hereafter, we typically choose Nblock = 210 and Nboot = 212

and consider exponentially large Ntotal ≈ exp(const. × Ns).
Note that the period of the pseudorandom number generator
should be sufficiently longer than the number of samples.
These parameters allow us to safely obtain a normal distri-
bution of the resampled data (for example, see Fig. 3).

B. Size dependence of the statistical error

To estimate the ideal number of samples that we need for
each system size, we examine the size dependence of the
number of samples under the fixed statistical error. Here, we
focus on the one-dimensional system again. For system sizes
Ns = 16, 20, . . . , 60, we increase the number of samples
Ntotal up to 230 and calculate the standard error of the Rényi
entanglement entropy density, σS2/Ns . The standard error for
each system size Ns decreases as

σS2/Ns =
√

c1D(Ns)

Ntotal
, (34)
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FIG. 3. Estimate of the statistical error using the blocking analy-
sis and the bootstrap method. (a) At time tJ = 1 for Ns = 40. (b) At
time tJ = 2Ns for Ns = 40. We choose Ntotal = 220, Nblock = 210,
and Nboot = 212. In both cases, the resampled data exhibit a normal
distribution, which allows us to estimate the statistical error safely.

with increasing Ntotal, where c1D(Ns) is a constant that depends
on Ns [see Fig. 4(a)]. The value c1D(Ns) increases exponen-
tially large with increasing system size Ns in general. By
fitting numerical data points, we find

c1D(Ns) = 2α1DNs−β1D , (35)

α1D = 0.219(6), (36)

β1D = 8.8(3), (37)

as shown in Fig. 4(b). This result suggests that the number of
samples should be

Ntotal = c1D(Ns)

(σS2/Ns )2
≈ 20.2×Ns−9

(σS2/Ns )2
(38)

to keep the statistical error σS2/Ns constant. When we wish to
suppress the statistical error, e.g., σS2/Ns = 2−10, the number
of samples should be larger than Ntotal = 20.2Ns+11.

The computational cost is proportional to the number
of samples and is O(2α1DNs ) with α1D ≈ 0.2 � 1 in the
one-dimensional case. Consequently, the random sampling
method is much more efficient than the conventional algo-
rithms in Eq. (20), requiring the summation of 2Ns terms.

The similar small constant prefactor α2D ≈ 0.2 is also
found in the two-dimensional case by analyzing systems up
to 120 sites. As shown in Fig. 5(a), we extract the size depen-
dence of the coefficient c2D(Ns) in the fitting function

σS2/Ns =
√

c2D(Ns)

Ntotal
. (39)
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FIG. 4. (a) Size dependence of the standard error of Rényi en-
tanglement entropy density σS2/Ns at time tJ = 2Ns as a function
of the number of total samples Ntotal in 1D. The statistical error is
estimated by the blocking analysis and the bootstrap method with
Nblock = 210 and Nboot = 212. The error bar of σS2/Ns is estimated
for 32 independent simulations. The statistical error should satisfy
σS2/Ns = √

c1D(Ns )/Ntotal with c1D(Ns ) being a size-dependent con-
stant. (b) Constant c1D(Ns ) as a function of size Ns. The value c1D(Ns )
represents the number of samples required to achieve a given statis-
tical error σS2/Ns . We find that it satisfies c1D(Ns ) ≈ 20.2Ns−9 by fitting
data for Ns � 40. It is much smaller than the number of terms (2Ns )
in the summation in Eq. (20), suggesting that the computational cost
is moderate although it is exponential in Ns.

We find that the value c2D(Ns) satisfies

c2D(Ns) = 2α2DNs−β2D , (40)

α2D = 0.20(8), (41)

β2D = 13(4), (42)

as shown in Fig. 5(b). Therefore, the computational cost is
also O(2α2DNs ) with α2D ≈ 0.2 � 1 in the two-dimensional
case. In practice, as for the system size Ns = 10 × 10 at the
time point tJ = 20, it takes less than a day to calculate the
Rényi entanglement entropy using a single core central pro-
cessing unit.

C. Entanglement entropy dynamics

By taking advantage of the random sampling method, we
calculate the dynamics of Rényi entanglement entropy density
after a sudden quench. Hereafter, we choose the number of
samples Ntotal = 20.2Ns+12 to keep the statistical error suffi-
ciently small.

Let us first compare our present result with the exact one
calculated with the largest size Ns = 40 in our previous study
[33] in the case of 1D. As shown in Fig. 6(a), the random sam-
pling method provides the exact Rényi entanglement entropy
density within the statistical error bar.
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FIG. 5. (a) Size dependence of the standard error of Rényi en-
tanglement entropy density σS2/Ns at time tJ = 2Lx as a function
of the number of total samples Ntotal in 2D. We consider the lat-
tice sites Ns = Lx × Ly up to Ns = 12 × 10. The statistical error is
estimated by the blocking analysis and the bootstrap method with
Nblock = 210 and Nboot = 212. The error bar of σS2/Ns is estimated
for 32 independent simulations. The statistical error should satisfy
σS2/Ns = √

c2D(Ns )/Ntotal with c2D(Ns ) being a size-dependent con-
stant. (b) Constant c2D(Ns ) as a function of size Ns. We find that it
satisfies c2D(Ns ) ≈ 20.2Ns−13 by fitting data for Ns > 40. As in the
case of 1D, the prefactor (≈0.2) of Ns in 2D is much smaller than
unity, suggesting that the computational cost is moderate although it
is exponential in Ns.
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FIG. 6. (a) Comparison with the exact result of the time evolu-
tion of the Rényi entanglement entropy density in 1D for Ns = 40,
which was the largest size obtained by the brute-force computation
of the matrix permanent. The results are in good agreement. (b) Time
evolution of the Rényi entanglement entropy density for much larger
systems.
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FIG. 7. Time evolution of the Rényi entanglement entropy den-
sity in 2D. We consider the lattice sites up to Ns = 10 × 10 and
calculate the Rényi entanglement entropy density when the system
is divided into identical two parts.

We then study the larger systems up to Ns = 100. As shown
in Fig. 6(b), the error bar is sufficiently small for all sizes
that we study. The Rényi entanglement entropy densities for
Ns � 40 nearly overlap, exhibiting the volume law scaling.
Thus, the system size Ns = 40, corresponding to the largest
size in our previous study, is large enough to capture the
nature of the entanglement entropy density dynamics in the
thermodynamic limit.

Next, we investigate the Rényi entanglement entropy den-
sity dynamics in a two-dimensional square lattices. As shown
in Fig. 7, the Rényi entanglement entropy density grows lin-
early in time for a short time up to tJ ≈ 0.3

√
Ns for Ns =

Lx × Ly with Lx = Ly. The behavior is consistent with the
prediction from the previous studies on the entanglement en-
tropy density dynamic in integrable systems with the Gaussian
initial states [22,23], although our initial state is not the Gaus-
sian state. The system-size dependence of the entanglement
entropy density dynamics is rather small in this time regime.
When the time is longer than tJ ≈ 0.3

√
Ns, the entanglement

entropy density shows a larger size dependence. It is difficult
to extract the physically meaningful interpretation of the en-
tanglement entropy density dynamics in the thermodynamic
limit. However, as the system size increases, the fluctuation
of the entanglement entropy density becomes smaller. The
entanglement entropy density appears to converge to a certain
value, exhibiting volume-law behavior of the entanglement
entropy consistent with the previous studies [22,23]. Within
the system sizes that we study, the entanglement entropy den-
sity approximately approaches the value close to ≈0.3 in both
1D and 2D.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we studied the dynamics of the Rényi en-
tanglement entropy of insulating initial states in free boson
systems. Owing to the non-Gaussian nature of the initial
states, the calculation of the entanglement entropy required
the evaluation of the matrix permanent, which has the expo-
nential cost. We developed a random sampling method for
evaluating the matrix permanent and found that the compu-
tational cost was reduced to O(2αNs ) with a small constant
α ≈ 0.2 � 1 in one-dimensional and two-dimensional Ns-site
systems at half filling. This reduction enabled us to study the
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entanglement entropy dynamics for more than 100 sites in free
boson systems.

Our results can be tested in experiments involving ultracold
atoms in optical lattices and trapped ions. The dependence of
entanglement entropy dynamics on system size is weak for
one-dimensional systems with more than 40 sites; however,
the dynamics have not converged even with 100 sites in 2D.
Although performing sufficiently large-scale quantum simu-
lations with current techniques remains challenging, it would
be valuable to qualitatively verify the dependence of entangle-
ment entropy dynamics on spatial dimensions. Our numerical
data will assist in comparing these experimental results.

In the present study, we applied the simple random sam-
pling method to the calculation of the Rényi entanglement
entropy. One may consider more sophisticated sampling
methods, such as the rejection sampling method [58–60] and
the importance sampling method [61–63], to reduce the vari-
ance of the estimator for the matrix permanent. The upper and
lower bounds of the entanglement entropy, i.e., the lower and
upper bounds of the matrix permanent, would be utilized dur-
ing such sophisticated sampling. As for the upper bound of the
entanglement entropy, the second Rényi entanglement entropy
is bounded above by the von Neumann entanglement en-
tropy, and the von Neumann entanglement entropy is bounded
above by the von Neumann entanglement entropy of a certain
Gaussian state having the same two-point correlation func-
tions as the original state [64,65]. The entanglement entropy
of the Gaussian state can often be calculated efficiently. As
for the lower bound of the entanglement entropy, by utilizing
the following inequalities [55] for the matrix A in Eq. (14)
that always fulfills ||A||2 = 1, with || · ||2 being the operator
2-norm [33]:

permA � E

⎡
⎣ n∏

i=1

∣∣∣∣∣∣r∗
i

⎛
⎝ n∑

j=1

ai jr j

⎞
⎠
∣∣∣∣∣∣
⎤
⎦ = E

⎡
⎣ n∏

i=1

∣∣∣∣∣∣
n∑

j=1

ai jr j

∣∣∣∣∣∣
⎤
⎦

(43)

� E

⎡
⎣
⎛
⎝1

n

n∑
i=1

∣∣∣∣∣∣
n∑

j=1

ai jr j

∣∣∣∣∣∣
⎞
⎠

n⎤
⎦ (44)

� E

⎡
⎢⎢⎣
⎛
⎜⎜⎝ 1√

n

√√√√√ n∑
i=1

∣∣∣∣∣∣
n∑

j=1

ai jr j

∣∣∣∣∣∣
2
⎞
⎟⎟⎠

n⎤
⎥⎥⎦ (45)

� E[||A||2] = 1, (46)

one may consider the entanglement-entropy-like quantities

S′
2 = − lnE

⎡
⎣ n∏

i=1

∣∣∣∣∣∣
n∑

j=1

ai jr j

∣∣∣∣∣∣
⎤
⎦, (47)

S′′
2 = − lnE

⎡
⎣
⎛
⎝1

n

n∑
i=1

∣∣∣∣∣∣
n∑

j=1

ai jr j

∣∣∣∣∣∣
⎞
⎠

n⎤
⎦, (48)

S′′′
2 = − lnE

⎡
⎢⎢⎣
⎛
⎜⎜⎝ 1√

n

√√√√√ n∑
i=1

∣∣∣∣∣∣
n∑

j=1

ai jr j

∣∣∣∣∣∣
2
⎞
⎟⎟⎠

n⎤
⎥⎥⎦, (49)

satisfying

S2 � S′
2 � S′′

2 � S′′′
2 � 0. (50)

The quantities S′
2, S′′

2 , and S′′′
2 can be calculated more effi-

ciently than S2 using the simple random sampling method
or the importance sampling method because the quantities
inside the expectation operator E are always nonnegative.
When we wish to apply the rejection sampling method, for
example, we may utilize the relation between the quan-
tities p(r) =∏n

i=1 ri
∗(
∑n

j=1 ai jr j ) in Eq. (30) and q(r) :=∏n
i=1 |∑n

j=1 ai jr j | that appears in Eq. (47). Since q(r) is al-
ways nonnegative and the relation p(r) � q(r) holds for any
r, we can sample the random vector r from the distribution
that generates q(r) using the simple random sampling method
and then sample s̃ from the uniform distribution on the interval
[0, q(r)]. The sample r is accepted if s̃ � p(r) and is rejected
otherwise. One can also combine the rejection and importance
sampling methods [66]. The negative-sign-problem-like diffi-
culty would be slightly alleviated when p(r) is close to q(r)
for r that is likely to be sampled.

Although we specifically focused on the 010101 · · · -type
CDW initial state, our approach can apply to other initial
states that can be represented by a simple product of local
Fock states. When using other initial states where the number
of particles at each site is either 0 or 1, one has to appropriately
modify the set GCDW of charge rich sites in Eq. (3). When
initial states have two or more particles at each site, the sit-
uation is more complex, although it is possible to extend the
formalism using similar calculations. The random sampling
method is also applicable to the dynamics of the entanglement
entropy in general noninteracting Hamiltonians including
long-range and random hopping terms. Such Hamiltonians
only modify their eigenenergies and eigenstates defined in
Eq. (6).

We expect that the computational cost of the random sam-
pling method does not significantly depend on the details
of the initial states for the parameter range that exhibits
the volume-law scaling of the entanglement entropy. When
the initial state contains Nb particles, we need to evaluate
the permanent of an N × N matrix with N = 2Nb to calculate
the entanglement entropy. We speculate that the factor α in the
computational cost O(2αN ) of the random sampling method
would be primarily determined by the size of the entanglement
entropy per particle. This is because when the entanglement
entropy per particle s is small and close to zero, the sample
Re p(m)[≈ exp(−sN )] in Eq. (30) should be close to unity for
most samples m, indicating that the most of the samples are
positive [see Fig. 2(a) as an example in the case of s ≈ 0].
Consequently, the sampling efficiency increases and the factor
α decreases, irrespective of the choice of the initial state as
long as the entanglement entropy per particle is s.

As for the one-dimensional and two-dimensional systems
that we study, the entanglement entropy per particle is s ≈
2 × 0.3, whereas the corresponding factor is α ≈ 0.2 � 1.
Our finding suggests that the factor α would be smaller than
unity even when the entanglement entropy per particle is O(1),
which is the case in physically relevant systems exhibiting
volume-law scaling of the entanglement entropy. This is in
contrast to the conventional algorithms that always require the

032412-8



ENTANGLEMENT ENTROPY DYNAMICS OF NON-GAUSSIAN … PHYSICAL REVIEW A 111, 032412 (2025)

summation of 2N terms, corresponding to the case of α = 1
in the random sampling method. It is intriguing to explore
how the computational cost of the random sampling method
depends on the entanglement entropy per particle in various
initial states and in other noninteracting systems.

We specifically studied the dynamics of the Rényi entan-
glement entropy in free boson systems after a sudden quench.
One may also consider the problems in the boson sampling
devices [54,67]. There are several proposals for reducing the
computational cost of the matrix permanent regarding the
boson sampling procedure [68,69]. In practice, the feasible
matrix size is up to ≈50 × 50 so far [70–72]. It is an inter-
esting problem to study whether the sampling method also
reduces the computational cost of the permanent of the matrix
representing the boson sampling task.

As for the dynamics in the presence of interactions,
namely, the dynamics in the Bose-Hubbard model, the infor-
mation propagation and the particle transport would behave
differently [73]. The former speed could be much faster
than the latter speed. Since the numerical investigation of

the entanglement entropy dynamics in strongly correlated
systems is much more challenging, studying the dynamics
in noninteracting boson systems using the random sampling
method would help understand the information propagation
in nonequilibrium quantum systems.
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