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Borromean states refer to a class of bound states with special topological structures, generally thought to exist
only in microscopic systems. In this paper, we investigate vortex bound states in three-component Bose-Einstein
condensates using coupled Gross-Pitaevskii equations. Specifically, through the competition between two-body
and three-body interactions, we identify the emergence of vortex Borromean states, where only three vortices
form a stable bound state while any two-vortex subsystems remain unbound. Our theoretical analysis and
numerical simulations provide a comprehensive phase diagram of the vortex Borromean states. Additionally,
we uncover an unconventional topological phase—a vortex anti-Borromean state—in which two vortices bind
together but separate upon the addition of a third vortex. This study highlights the complex role of three-body
interactions in macroscopic systems and offers different insights into the topology and phase transitions of

multicomponent vortex systems.
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I. INTRODUCTION

In quantum physics, many-body interactions often lead to
unexpected and intriguing behaviors, revealing subtle corre-
lation mechanisms among particles in complex systems. An
interesting phenomenon is that bound states with three or
more components may be easier to implement than two-body
bound states. These special bound states are known as the
Borromean state, named after the Borromean rings where
three rings are intertwined in a delicate topological manner
[see Fig. 1(a)]; if any one ring is removed, the remaining two
become unlinked [1].

In few-body physics, this concept is widely accepted and
has been validated in phenomena such as halo nuclei in nu-
clear physics [2—4] and the Efimov effect in ultracold atomic
systems [5,6]. The Efimov effect demonstrates that even when
two-body interactions are too weak to form a two-body bound
state, three particles can still bind together through effec-
tive long-range three-body interactions. By utilizing Feshbach
resonance tuning, these bound states have been success-
fully identified in cold atom experiments via three-body
loss measurements [7—15]. Therefore, the Borromean binding
represents a significant discovery and universal behavior in
few-body physics.

In recent years, numerous studies have attempted to
explore Borromean binding in many-body physics. One
particularly notable discovery is that quantum fluctuations
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[Lee-Huang-Yang (LHY) corrections] can stabilize three-
component droplets forming self-bound states while any
binary subsystems cannot, meeting the Borromean criteria
[16]. However, to date, a truly macroscopic Borromean bound
state has yet to be discovered. When considering macroscopic
objects that exhibit quantum effects, the first candidates that
come to mind are quantum vortices. These topological de-
fects, which exist widely in superconductors and superfluids,
possess stable quantized circulation. Given their quantum na-
ture and macroscopic observability, quantum vortices become
ideal candidates for realizing macroscopic Borromean bind-
ing.

Recent experimental advances have also pointed to the
possibility of tunable many-body interactions in ultracold
atom systems. Experiments using Feshbach resonances have
demonstrated precise control over both two-body and three-
body interactions, allowing researchers to observe Efimov
states and related phenomena in multicomponent systems
[17,18], especially for three-component SLi mixtures [19-23].
In addition to tuning the Feschbach resonance, newer methods
such as the periodic drive of the Floquet egineering [24,25]
and the optical lattices driven by microwave fields [26,27]
demonstrated that three-body interactions can be tuned inde-
pendently of two-body interactions without three-body loss.
By leveraging these advances in controlling three-body in-
teractions, it becomes feasible to explore the possibility of a
vortex Borromean state in three-component Bose gas.

II. MODEL

In this work, we employed coupled Gross-Pitaevskii equa-
tions to study a three-component Bose gas, with a particular

©2025 American Physical Society
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FIG. 1. (a) Borromean ring. (b) Particle Borromean state: Efimov
effect. (c) Vortex Borromean state.

focus on the effects of three-body interactions [26]:

Var =) Vr—r)+ Y Umrr). (1)

i<j i<j<k

Our study revealed that vortices can form special Borromean
bound states, in which three vortices can form a bound state,
but removing any vortex causes the remaining vortex pairs to
separate [Fig. 1(c)].

To illustrate the three-body interactions in a three-
component Bose gas, we consider the system’s energy
expressed in terms of the macroscopic wave functions. The
three-body interaction term is represented in an effective form

J

. 2v2
(ihd, + w)¥; = | — 7

m

[26,28,29], benefiting from recent advances in experimen-
tal techniques that allow for the independent manipulation
of three-body interactions. This approach captures the main
contributions of such interactions to the system’s dynamics
[30,31]:

E(W) = f Ax[K (V) + V ()],
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We assume that the three components are distinct hyperfine
states of the same atom, such as the spin-1 3’Rb BEC system,
resulting in identical atomic masses m and intracomponent
interaction strengths g. Here, g;; and g3 represent the two-
body and three-body interaction coefficients, respectively.
Our model focuses exclusively on intercomponent three-body
interactions, while neglecting intracomponent effects. This
is because intracomponent interactions primarily influence
the properties of individual vortices, such as their size and
core structure, rather than the interactions between vortices
in different components. Consequently, they do not exert a
qualitative influence on the macroscopic phenomena under
investigation.

By applying the variational principle to minimizing free
energy i, V; = 0F /8W; = §(E — uN)/8W}, where i is the
chemical potential and N is the particle number [ |y/|?, we can
derive the equations of motion from the energy functional, re-
sulting in the coupled three-component Gross-Pitaevskii (GP)
equations that include three-body interactions,

+ gl W2 4+ (|12 + (W *) + e|\yj|2|wk|2) W, (i, j, k) is a cyclic permutation of (1,2,3).  (3)

Here, to ensure the identical nature of the interactions among the three vortices, we choose g;; = 1 and gi23 = €.
Further, by consider a time dependence 9, ¥; = 0, we can obtain the stationary equation with the ground state wave function

V2
uwl:(— +g|wi|2+n(|\11,-|2+|wk|2)+e|wj|2|wk|2>wi, ;> =v* =

2m

The topology of its ground state is characterized
mU1)Y1=Z@®Z @ Z. 1t allows three kinds of winding
numbers [refer to (1,0,0), (0,1,0), (0,0,1)]. When mov-
ing around the (1,0,0)[(0,1,0),(0,0,1)] vortex, the phase of
W (W,, W3) rotates by 2w, while the phases of the other
components remain unchanged. Similarly, we can obtain rep-
resentations of multivortex structures such as (1,1,0) and
(1,1,1) [32,33].

III. VORTEX PROFILE AND INTERACTION

As a starting point, we can express the axisymmetric struc-
ture of a single vortex with quantum numbers (1,0,0) by

Vaen+2n+g?—C2n+g

2¢ @
[
writing its different components in the following form,
ll41,0,0) = v fi1.0.0)(r),
w3t = v ,0,0)(r), (5)

1,0,0
‘I’é ) = vl1.0,0)(1),

where r and 6 are the polar coordinates. The phase term 6
is present only in the first component, where the vortex is
located. The profile functions f1.0,0y, (1,0,0y, and 1 0,0y can
be obtained by substituting vortex configuration function in
Eq. (5) into stationary Eq. (4) with the boundary condition
(f(1,0,09> h(1,0,09» Lc1,0,00) = (1, 1, 1) as r — oo and f(1,0,0) —>
Oasr — 0.
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We adopt a common yet practical vortex structure as a
trial solution and improved the profile function trial solutions
for other components based on this, satisfying the boundary
conditions with the fullest degrees of freedom [34]:

,
f(l,o,O)(”) = W,

cr
hio0)=1+c— ﬁ,

cr
la,0.0)(r) = 1+C—W. (6)

By substituting these trial solutions into the GP equation,
we can obtain the correct coefficient relations for the vortex
profile functions,

a = p+ hz
(p™ —2p7)(pt + p7) 2v2m’ o
_ h2
bxc= P

(pt =2p7)(p* +p7) 2vPm’

where pt = g+ n + v?e and p~ = n + v?e. From this struc-
ture, we can obviously find that the instability condition shifts
from the two-component phase separation g < n [35] to the
inclusion of three-body interactions in g < n + v?e. If g >
n + v2e, a is always positive while the sign of b x ¢ depends
on the parameter p~ = v?e + 1. From the profile function
h.0,0) and [( 0,0, ¢ should be a small value and b should be a
positive value. Since v? = py is the background density, we
know then that the profile function of the unwinding com-
ponent at the vortex center is concave for pye +n < 0 and
convex for p;e + n > 0. Profile functions of vortices in the
other cases (0,1,0) and (0,0,1) can be obtained in the same
way.

With these structured functions, we can proceed to calcu-
late the interactions between two and three vortices. The initial
vortex distribution can be set up using a polar coordinate
system.

For example, consider two well-separated vortices (1,0,0)
and (0,1,0) in different components. Let us place the (1,0,0)
and (0,1,0) vortices at (x,y) = (R,0) and (x,y) = (—R, 0),
respectively. We use the polar coordinates (r, #) with the
origin (x,y) = (0,0) and express the relative coordinates
from (1,0,0) and (0,1,0) vortex center as [r(1,0,0), 6(1,0,0)] and
[7(0,1,0)> 0(0,1,0)]. Then we have
r} = (rcos® FR)’ +r’sin*0 = (x FR)* + 7,

l

rsin @
tan 9, = 4

= . (®)
rcosO FR xFR

withi =1 or (1,0, 0), 2 or (0, 1, 0), the minus sign for i = 1
or (1,0, 0), and the plus sign for i = 2 or (0, 1, 0). Then the
vortex configurations can be expressed as

0, n
9
Ja+r?

cr

=)

10,0 " i
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Similarly, in the three-vortex case, we can consider
the third vortex (0,0,1) that be placed at (x,y) = (O, «/§).
Thus, the three vortices form a C; rotationally symmetric
structure,

(0,1,0) i0 i
» = ve" 0 fio1.0)[r0,1,0)] = ve

0.1,0
Wg( )= vlg1olrornl =v]| 14c—

”(20,0,1) =r*sin’6 + (rcosf — \/§R)2,

rcosf — +/3R
tan 6,0,1) = © rsing v

and we can write the profile function caused by the three
vortices in each component. Using these structures allows for
precise calculations of vortex interactions.

With these vortex structures and profile functions, we can
calculate the actual vortex interactions. In the case of two vor-
tices, the interaction potential can be obtained by subtracting
the individual energies from the total energy as

Uia,0 = /dzx(5K(1,1,0) + 8V, 1,0)), (10)

where two contributions come from the Kkinetics en-
ergy 8Ka.1.0) = KW ") — k(w0 — g0y and
the interaction potential energy V(i 1,0 = V(\lli(l’l’o)) —
V(kIJl.(l’O’O)) - V(\IJI.(O’I’O)), where \I!l.(l’l’o) come from the stan-
dard Abrikosov ansatz W0 = p= 1y 0OGOLO [36]
Then, by using the derivation of the interaction potential with
respect to the distance, one can then calculate the interaction
force

oUq,1,0)

20R (i

Fui0 =-
For the three-vortex case, we repeat the above steps, but
consider replacing one of the vortices with a vortex pair,

Ui ='/.dzx(fSK(l,m)+3V(1,1,1)),

U,
Fuiin = —%, (12)

with contributions from the kinetic energy 6K 1,1y =

K(\Ili(]‘]‘])) — K(\IJl.(]‘]‘O)) — K(\I/l.(o‘o’l)) and interaction
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FIG. 2. Vortex interaction potential and force as the function of distance. (a), (b) Interaction between two vortices. From top to bottom, the
three-body interaction decreases; at p~ = 0 (¢ = 0.4375g), there is no interaction between two vortices. (c), (d) For the same parameters, the
three-vortex interaction becomes nonmonotonic when p~ > 0: The vortices attract each other below a critical distance and repel above it. (e)
Interaction diagram showing vortex Borromean binding at € = 0.6g. Below the critical distance, three vortices attract while two vortices repel.

potential ~ energy  8V(i1,1) = V(\Ill.(l’l'l)) - V(\I—’i(l’l’o)) —
V(wi(o,o,n)’ where \yi(l,l,l) _ 1)72wl'(1,0,0)qji(0,1,0)\1111(0,0,1).

IV. VORTEX BORROMEAN STATE

We start with a simple assumption: For the sake of con-
venience, we assume the small quantity ¢ to be 0. This
implies that the vortex does not induce fluctuations in the other
components, with 4(r) = [(r) = 1. We will later demonstrate
that this assumption is entirely reasonable when the coupling
strength is not sufficiently large. This simplification allows us
to more easily calculate the interaction between two vortices,

arctanh(R/v/R? + a)
RVRZ+a
Fii0 = —1/2a*mv*(n + v¥e)
y Rva+R? — (a+ 2R2)arctanh( aiRz)
R2(a + R2)3/2

U(I,I,O) = aznv4(n + UZE)

13)

‘We observe that in the case of two vortices, the vortex in-
teraction direction depends only on p~ = 1 + v%e. Without
loss of generality, we use the parameters i=m =1, g=7,
uw =4, and fix n = —0.5g with the scales of length and time

by the characteristic value £ = v//i*/2mu and 7 = i/ [37].
As shown in Figs. 2(a) and 2(b), as € gradually increases,
the interaction force remains negative when p~ < 0 (/g <
0.4375), representing an attractive force between the two
vortices. When p~ > 0, the force becomes positive, and the
two vortices repel each other. This indicates that the interac-
tion direction between the two vortices does not change with
distance and is monotonic.

However, for the three-vortex case, we find that the poten-
tial energy is

Uiy = /dzxv4[77(1 —k3)(1 — k) +n(1 — k3)(1 — k)

+ve(l — kika)(1 — k3)], (14)

7 (21.2,3)
a+r (21,243)
sition relative to vortex i. This integral is difficult to solve
analytically, but from its form, we can see that it is no
longer a monotonic function dependent only on p~. We can
use high-precision discrete methods for numerical integra-
tion to simultaneously obtain the interaction force F; 1,1y =
—8U(1’1’1)/38R.

Figures 2(c) and 2(d) show the interaction potential energy
and force for three vortices, using the same parameters as
in the two-vortex case shown in Figs. 2(a) and 2(b). It can
be observed that in the case of three vortices, when p~ > 0,
there is a critical distance R.. Below this critical distance,
the vortices attract each other; above this critical distance, the
vortices repel each other. In Fig. 2(e), we selected one of the
parameters € = 0.6g to compare the interactions between two
vortices and three vortices directly. On the left side of the
critical distance indicated by the dashed line, the two vortices
repel each other while the three vortices attract each other.
This indicates the emergence of a new vortex state, whose
topological structure remarkably aligns with the Borromean
rings. We refer to this phenomenon as the vortex Borromean
binding.

We validated this theoretical result through numerical sim-
ulations of the dynamical evolution of the equations of motion
in Eq. (3). The actual simulation results of vortex dynamics
are provided in Fig. 3 and in a movie in the Supplemental

where k¢ 23 = and r; refers to the coordinate po-
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Three vortex Two vortex

t/T1=60 t/T1=60

FIG. 3. The dynamic evolution of vortex Borromean states with
€ =0.6g and R/& = 1. Finally, the three vortices approach each
other to form a giant vortex, while the two vortices completely
separate.

Material [38]. It can be observed that, starting from the same
initial distance, three vortices gradually attract each other,
forming a giant vortex, while two vortices gradually move
apart until they no longer interact.

By repeatedly performing numerical simulations with
varying initial vortex distances, we can obtain the phase dia-
gram of the vortex Borromean states, showing the variation of
the critical distance with three-body interactions, as shown in
Fig. 4. On the left side of the critical p, (e, = 0.4375g), there
is the fully bound state phase where the three vortices (rings)
are completely intertwined, and even if one vortex (ring) is
removed, the remaining two are still entangled. On the right
side of the critical p_, there are two phases: When the distance
is greater than the critical value, it is the completely unbound
state phase; when the distance is less than the critical value, it
is the vortex Borromean states, where the binding of each pair
of vortices (rings) is mediated by the third vortex (ring). If one
vortex (ring) is removed, the remaining two are unbound.

From the critical distance we can find that when the cou-
pling constant € is small, the theoretical results under the
(c = 0) approximation match well to the actual simulation
values. However, when ¢ is large, this approximation is no
longer valid, because the vortex profile deformation can no

47 —R_(c=0.01p™)
--R (c=0)
3l I - - €,=0.4375g(p” =0)
@ E ® Simulation
w ' J )
T2 4 @%"’Q O
1F S
©+00 »
0 L 1 L L L L L

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
elg

FIG. 4. Phase diagram of vortex Borromean states with fixed
n/g = —0.5. Three-ring diagrams illustrate how three vortices in-
teract; adjacent two-ring diagrams show whether the remaining two
vortices are bound when the red ring is removed. The left structure
represents the fully bound state, the bottom shows the Borromean
states, and the right depicts the completely unbound state. The
dashed curve represents ideal vortex calculations with ¢ = 0, the
solid curve represents calculations with ¢ = 0.01(p~)%, and the red
dots indicate numerical simulation results.

longer be ignored, so we need to consider a finite c. By exam-
ining the vortex profile functions, a reasonable analysis can be
made here. Assuming that c is a small value and proportional
to (p~ )¢, then ¢ and b should be modified as follows,

c=1t(p),

1 1 n

t (p)* N pt = 2p7)(pt + po) 20%m’
so that when using the parameters r+ = 0.01 and d = 3, we
observe that the theoretical results are in complete agreement
with the numerical simulation outcomes. As a result, we have
obtained a more accurate theoretical phase diagram in Fig. 4,
which further validates the accuracy of our trial solutions.

Through a comprehensive scan of n and €, we have fur-

ther mapped out the complete phase diagram of the vortex
Borromean states, as illustrated in Fig. 5. We systematically
scanned all regions with a §n = e = 0.01 interval, identi-
fying the nonzero R, regions where the vortex Borromean
states occur. This analysis clearly shows that the vortex
Borromean states emerge in all regions where p~ =n +
v?e > 0, indicating that the phenomenon is highly con-
trollable. For experimental observations, this suggests that
identifying the interaction range where p~ > 0 could enable
the detection of the vortex Borromean states.

(15)

V. VORTEX ANTI-BORROMEAN STATE

All the results discussed above were obtained under the
condition of negative two-body interaction n. In Fig. 6,
we explored the region with positive two-body coupling
and discovered another vortex topological phenomenon: vor-
tex anti-Borromean states. This discovery is remarkably
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FIG. 5. The complete phase diagram of the vortex Borromean
states. The color bar indicates critical distance; the red line
shows p~ = 0. Zero critical distance (left region) means no vortex
Borromean states.

counterintuitive—unlike the conventional Borromean ring
topology, where three bodies are interlinked and removing
one causes the entire structure to collapse, the anti-Borromean
states demonstrate the opposite behavior. In this effect, two
vortices form a stable bound state, but the introduction of
a third vortex causes the system to unbind, breaking the
established topological linkage. This interaction leads to a
topological structure that is difficult to intuitively visualize, as
it breaks from the typical understanding of how such systems
should behave, which typically rely on the concept of mutual
dependence among all components for stability. Such results
suggest that the range of possible topological configurations
in quantum many-body systems is more diverse than tradi-
tionally thought, beyond those previously imagined in particle
systems, potentially leading to the discovery of new quantum
phases and transitions.

VI. DISCUSSION

Our results provide a convincing (theoretical and numer-
ical) case of extending the Borromean bound states to a
macroscopic vortex system. The significance of the vortex
Borromean states lies in its observational advantages: The
vortex Borromean states provides a unique opportunity to
visually or directly observe the three-body interaction and the
formation of the Borromean ring structure. In addition, the
vortex anti-Borromean states go beyond the theoretical scope
of few-body physics, which represents an unexpected reversal
of Borromean topology, reflecting the unique influence of
three-body interactions in macroscopic systems.

For experimental realization, the most promising candidate
is the spin-1 BEC system, such as that formed with 8’Rb
atoms, where the three hyperfine states mp = {—1, 0, 1} act
as the three components [39]. By utilizing magnetic Fesh-
bach resonances [21,23], the relative strengths of two-body
and three-body interactions could be precisely controlled. To

(a) 0.06

=T F(1:1,0)

F(1:1,1) ]

c/g=-0.48

0.04 |

L 0.02

—R (c=0.01p™)
- - R (c=0)

® Simulation

-0.7 -0.6 -0.5 -0.4

FIG. 6. (a) The interaction force displaying the vortex anti-
Borromean states by fixed n = 0.3g and € = —0.48g. On the left side
of the critical distance represented by the dashed line, the three vor-
tices have repulsive interactions, while the two vortices attract each
other (for a specific simulation, see the movie in the Supplemental
Material [38]). (b) Phase diagram of vortex anti-Borromean states
with fixed n = 0.3g.

create and observe such states, one could first establish the
presence of vortices in each component individually using
phase imprinting techniques [40], followed by tuning the
intercomponent interactions to induce the collective binding
of the three vortices. By tracking the motion of the vortices
[41,42], one could visually observe the Borromean state in
a macroscopic vortex system. In addition to spin-1 BECs,
similar theoretical and experimental explorations of the vortex
Borromean state can be extended to other vortex systems,
such as Fermi superfluids or polar molecule systems, where
similar multibody interaction dynamics are anticipated to
emerge.
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