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Entanglement in 2p atom pairs in H2 photodissociation as studied by measuring the angular
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An angular correlation function (ACF) of a pair of Lyman-α photons produced in photodissociation of H2

with linearly polarized incident light is measured on a whole sphere at a 33.66-eV photon energy so that
we may distinctly substantiate that the 2p atom pairs are in the state previously identified by Torizuka et al.
as the 2p atom-pair state [Phys. Rev. A 99, 063426 (2019)], who measured the ACF only on a circle in the
plane perpendicular to the incident light beam. The 2p atom-pair state determined with much less uncertainty
than before is investigated in terms of whether or not the state is entangled. We discover that the pair of
fragment H(2p) atoms is certainly entangled in terms of the electron-electron entanglement, and obtain the
entanglement entropy of the 2p atom-pair state. The similar discussion is made in terms of the electronic
spatial-spin entanglement too, where the spatial motion and spin motion of electrons are considered nonidentical
partial systems at variance with the former electron-electron entanglement. It turns out that the pair of fragment
H(2p) atoms is entangled in terms of the electronic spatial-spin entanglement as well as the electron-electron
entanglement.

DOI: 10.1103/PhysRevA.111.023116

I. INTRODUCTION

Entanglement is an intrinsic concept in quantum mechanics
[1]. It has been extensively used as a resource for quantum
information technology [2], and the investigation on entan-
glement has expanded into the fields adjacent to quantum
information as well [3]. The entanglement will play a sig-
nificant role in atomic and molecular processes and it is a
fascinating subject to investigate those processes in terms
of the change of entanglement measures for the composite
systems involved. As for dissociation of molecules, Miyagi
et al. [4] and Jänkälä et al. [5] have predicted that entan-
gled pairs of H(2p) atoms are produced through the breakup
of H2 molecules in the doubly excited Q2

1�u(1) state and
have shown that the entanglement may be substantiated with
measuring the angular correlation function (ACF) of a pair of
Lyman-α photons.

The photodissociation process of H2 into H(2p) + H(2p)
was at first investigated with measuring the cross section for
emitting a pair of Lyman-α photons against the incident
photon energy in the range 30–44 eV [6], and the cross sec-
tion was measured also for D2 [7] and HD [8] as well as
H2 in terms of the isotope effect. Recently, the same cross
section curve was measured again for H2 [9], which result is in

*Contact author: nkouchi@chem.titech.ac.jp

agreement with the earlier ones. It has been well substantiated
from those cross-section curves as well as theoretical inves-
tigations, e.g., Ref. [10], that H(2p) atom pairs are produced
and decayed through the following process:

H2
(
X 1�+

g

)+ γex → H2[Q2
1�u(1)] in the FC region

→ H(2p) + H(2p)

→ H(1s) + H(1s) + γLy-α + γLy-α, (1)

where γex is a linearly polarized incident photon, γLy-α a
Lyman-α photon, and “FC region” stands for the Franck-
Condon region. Typical distance between the two H(2p)
atoms in process (1) reaches 93 µm at a 33.66-eV incident
photon energy when they emit the Lyman-α photons [11]. The
formation of a pair of H(2p) atoms is a suitable subject for
investigating whether or not the molecular dissociation can
produce entangled atom pairs because most of the 2p atom
pairs originate from the Q2

1�u(1) state in the photoexcitation
of H2 in the range of the incident photon energy 30–44 eV.
The potential energy curve and resonance width of the dou-
bly excited Q2

1�u(1) state have been calculated against the
internuclear distance in the range below 6a0 [12,13]. The
theoretical investigations by Miyagi et al. [4] and Jänkälä et al.
[5] are early ones in the next phase of the cross-section mea-
surements mentioned above.

Inspired by Refs. [4,5], Tanabe et al. [14,15] and Nakanishi
et al. [16] measured the ACF of Lyman-α photon pairs at
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a 33.66-eV incident photon energy, which gives a maximum
cross section for emitting Lyman-α photon pairs [6–9], to find
out that the experimental ACFs, contrary to the expectation,
are not in agreement with the theoretical ACFs in Refs. [4,5].
Torizuka et al. [11] have measured the ACF of Lyman-α pho-
ton pairs at a 33.66-eV incident photon energy again, but in
a wider angular range at a narrower angular step with smaller
distortion than in Refs. [14–16]. From the ACF, Torizuka et al.
[11] have identified the state of a 2p atom pair to be not the
Q2

1�u(1) state but the superposition of the Q2
1�u(1) and

Q2
3�+

u (2) state. However, Torizuka et al. [11], as well as
previous authors [14–16], have measured the ACF only on
a circle in the plane perpendicular to the linearly polarized
incident light beam, the circle which is termed a dipole circle
according to Ref. [5], and there remains a possibility that the
experimental ACF does not coincide with the theoretical ACF
derived from the 2p atom-pair state identified by Torizuka
et al. [11] out of the dipole circle. The reason for the possi-
bility is as follows. It has been shown based on the analytical
expression of the ACF [17] that it is impossible to derive the
ACF on a whole sphere from the ACF on the dipole circle.
The agreement on the dipole circle does not hence ensure the
agreement on other regions. We consequently aim at measur-
ing the ACF of Lyman-α photon pairs on a whole sphere to
examine whether the experimental ACF coincides with the
theoretical one by Torizuka et al. [11] over the whole sphere.
The state of 2p atom pairs may be determined with much less
uncertainty through the ACF of Lyman-α photon pairs on the
whole sphere than through the ACF simply measured only on
the dipole circle. We also aim at determining whether or not
the state of 2p atom pairs is entangled along the established
criterion mentioned in the Appendix. We try to investigate
entanglement of the precursor molecular state of the 2p atom
pairs too taking advantage of the known electron configuration
of the state. It is a fascinating subject to investigate the change
of entanglement during dissociation.

Regarding the types of entanglement, we discuss two
types: one is the electron-electron entanglement and the other
is the electronic spatial-spin entanglement. In the former en-
tanglement, the two electrons in two-electron systems under
study are partial systems, which are identical particles, and, in
the latter entanglement, the spatial motion and spin motion of
those electrons are considered two partial systems, which are
not identical “particles.”

Recently, Dochain et al. [9] measured the relative ACF
of Lyman-α photon pairs at three points within the dipole
circle with the linearly polarized incident light at a 33.6-eV
photon energy and calculated the ACF on a relative scale in
the same angular range as in Ref. [11]. Their experimental
and theoretical results are not so contradictory with those by
Torizuka et al. [11] in terms of shape. However, their method
for calculating the ACF is in remarkable contrast with the
method used by Torizuka et al. [11] in terms of how to write
the 2p atom-pair state and how to calculate the probability
density for the simultaneous detection of two photons (Tor-
izuka et al. have used the same method as the present one).
The comparison with the study by Dochain et al. [9] is referred
to in Sec. IV.

This paper is organized as follows. Section I is followed
by Sec. II, where we describe an overview in Sec. II A, setups
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FIG. 1. The space-fixed XY Z frame. ε̂: the unit polarization vec-
tor of the linearly polarized incident light, k: the wave-number vector
of the incident light. See Sec. II A for details. Produced with revising
Fig. 1(b) in Ref. [17].

in Sec. II B, and the procedure for obtaining the ACF on a
whole sphere step by step in detail in Sec. II C. In Sec. III, the
experimental ACF on a whole sphere is obtained. The part of
discussion is divided into two sections, i.e., Secs. IV and V.
In Sec. IV, the state of 2p atom pairs is definitely identified,
and in Sec. V, the entanglement of the 2p atom-pair state is
investigated as well as that of the precursor molecular state of
the pair. In Sec. VI, we conclude this paper with summarizing
what has been achieved. The Appendix is a preparation for
Sec. V, in which we review entanglement in two-electron
systems.

II. EXPERIMENTS

A. An overview

The experiments were carried out at the bending beam
line BL20A [18] of the Photon Factory, Institute of Materials
Structure Science, KEK, as in the early experiments [11,14–
16]. The linearly polarized light was used with a 33.66-eV
photon energy and 140-meV energy width. The principle for
measuring the ACF on a whole sphere is based on the general
expression of the ACF, which is a superposition of cosine
functions of four angular variables specifying the directions
of two detectors and involves five coefficients [17]. In order to
obtain the ACF on a whole sphere, we may just measure the
ACF in a sufficiently wide range of the angles to determine
those coefficients.

We introduce a frame of reference held fixed to the inci-
dent light beam, termed the space-fixed frame (see Fig. 1).
The origin O of the space-fixed XYZ frame is taken on the
incident light beam. The incident light travels down the pos-
itive direction of the X axis, and the positive direction of
the Z axis points to the direction of the unit polarization
vector of the linearly polarized incident light ε̂. The Y axis
is taken so that the space-fixed XYZ frame is a right-handed
system. We arrange two photon detectors with respect to the
space-fixed frame, detectors which are labeled c and d. The
direction of each detector is specified by the Euler angles
(�c/d ,�c/d , 	c/d = 0) as seen in Fig. 1, provided that each
detector is originally on the +Z axis. This definition of the
detector angles (�c/d ,�c/d ) is the same as in [4,11,14–17].

023116-2



ENTANGLEMENT IN 2p ATOM PAIRS IN H2 … PHYSICAL REVIEW A 111, 023116 (2025)

FIG. 2. The detector arrangement in setup 1 (a) and setup 2 (b). (a) The detector arrangement on the gas cell as well as the coincidence
system in setup 1. (b) The detector arrangement on the gas cell in setup 2. The same as Fig. 1 about ε̂ and k. In (b), the detector C, positioned
to face in opposite direction to the detector B, is hidden by the gas cell. The positive directions of �C′ , �D′ , and α, which are measured from
ε̂, are shown. AMP: amplifier; CFD: constant-fraction discriminator; TDC: time-to-digital converter; PC: personal computer. (a) Reproduced
from Fig. 1 in Ref. [11].

We use the convention that �c/d = 3
2π if the detector is on

the dipole circle.

B. Experimental setups

We obtain the ACF on a whole sphere from the result
out of the dipole circle in this experiment and that on the
dipole circle in Ref. [11]. Both results were obtained with
separate setups. The setup used in the present experiment
is referred to as setup 2 while that used by Torizuka et al.
[11] is referred to as setup 1. Setup 2, as well as setup 1, is
described for explaining how to obtain the ACF on a whole
sphere, but the description of setup 1 is given where necessary.
Setup 1 is equipped with a cylindrical gas cell and setup
2 is equipped with an octagonal prism gas cell, on which
cells photon detectors are put. The detector arrangement in
setups 1 and 2 is illustrated diagrammatically in Fig. 2. The
configuration of the photon detectors in setup 2 is the same
as in setup 1, and refer to Ref. [11] for the reason why we
have concluded that only Lyman-α photons, with a 121.6-nm
wavelength for H atoms, are detected at a 33.66-eV incident
photon energy. The solid angles subtended by the detectors in
setup 2 are 0.21 sr and those by the detectors in setup 1 are
0.64 sr, where the detectors are seen from the origin of the
space-fixed XY Z frame. The flux of incident photons passing

through an exit of the gas cell in setups 1 and 2 was recorded
with measuring photocurrent of an Au plate, not shown in
Fig. 2.

Setup 2 is equipped with six detectors labeled A–F : A–D
are put out of the dipole circle while E and F are put on it as
seen in Fig. 2(b). The detectors A–F are rotated as a whole
over the incident light beam and let the rotation angle be
denoted by α, which is measured from the unit polarization
vector of the linearly polarized incident light ε̂ as shown in
Fig. 2(b) with the positive direction of the angle α being
shown. The direction of the vector ε̂ was experimentally de-
termined with the measurement of the angular distribution
of photoelectrons from He such as in setup 1 in the manner
described in Ref. [16]. The apparatus for this measurement is
not shown in Fig. 2.

Setup 1 is equipped with two detectors, labeled C′ and D′,
and they are put on the dipole circle. At variance with setup
2, the detectors are rotated independently over the incident
light beam. In the early study with setup 1, the detector labels
c and d referred to the specific detectors in setup 1 [11,
14–16]. However, in this paper, the labels c and d are a type
of variables, and the variables c and d refer to any of the
specific detectors A–F , C′, and D′ throughout setups 1 and 2
(in Sec. II A, the detector labels c and d are used in this sense).
The transformation from the rotation angle α of the gas cell in

023116-3



YUTARO TORIZUKA et al. PHYSICAL REVIEW A 111, 023116 (2025)

FIG. 3. The block diagram of the system for simultaneously
measuring the coincidence time spectra for all the pairs of the de-
tectors in setup 2. The same as Fig. 2 about CFD, TDC, and PC.

setup 2 to (�c,�c) is readily derived for c = A–F , where α

ranges from −180◦ to 180◦.
In experiments with the static gas target being used, the

sample gas pressure in the gas cell should be carefully cho-
sen so that the reactions of H(n = 2) atoms with hydrogen
molecules do not affect the ACF. It has been discovered from
thoroughly examining the proportionality of the two-photon
coincidence count rate to the H2 gas pressure that the reactions
do not play a role in the pressure range lower than ∼2 Pa. The
experiments with setup 2, as well as setup 1, were carried out
at pressures of ∼1 Pa within a variation of ±5%.

The arrival time of a Lyman-α photon at each detector in
setup 2 is recorded with the system shown in Fig. 3 so that we
can build up the coincidence time spectra for all the pairs of
detectors simultaneously. The coincidence system in setup 1
is shown in Fig. 2(a). See Fig. 2 in Ref. [11] as for an exam-
ple of coincidence time spectra. The accidental coincidence
counts, as well as the contribution of cascade from H(n � 3)
to H(2p), are subtracted in the manner described in detail
in the early paper [16]. The false coincidence counts due to
cosmic muons [16] were sufficiently low in comparison with
the true coincidence counts so that the false ones were not
subtracted, which is the same as in the experiments with setup
1 [11].

C. Procedure to obtain the ACF on a whole sphere

There are 15 pairs of the detectors in setup 2 and we
measure 15 ACFs as a function of the angle α (the number
of combinations to choose 2 from 6 is 15). We write, for
example, (A, B) for the pair of detectors A and B. According
to the analytical expression of the ACF [17], those 15 pairs
are divided into the following four groups so that all the pairs
in each group give the same ACF as a function of α:

(1) {(A, B), (C, D), (A,C), (B, D)}, referred to as the AB
group;

(2) {(A, D), (B,C)}, referred to as the AD group;
(3) {(A, E ), (A, F ), (B, E ), (B, F ), (C, E ), (C, F ), (D, E ),

(D, F )}, referred to as the AE group;
(4) (E , F ).

The AB, AD, and AE groups give the ACFs out of the
dipole circle, but the EF pair gives the ACF on the dipole
circle.

First, we measure the relative ACFs for the AB group, AD
group, AE group, and the EF pair as a function of α with setup
2. In addition to those four ACFs, we have in our hands three
relative ACFs early measured on the dipole circle as a function
of �C′ with setup 1 [11]. However, not all of those seven ACFs
are put on the same relative scale of the vertical axis. Hence,
second, we unify many relative scales of the vertical axis to
one relative scale, and eventually obtain the ACF on a whole
sphere on the absolute scale in units of sr−2. In Secs. II C 1–
II C 3, the procedure is mentioned at each stage.

1. Measuring the ACFs on separate vertical scales

This stage was mentioned in Ref. [11], but in terms of
only setup 1. It is thus mentioned here in a general way. We
start with the relation between the two-photon coincidence
count rate Ṅcd (�c,�c,�d ,�d ), abbreviated to Ṅcd (�c,�d ),
and the angle-differential cross section for emitting a pair of
Lyman-α photons, denoted by d2σ/d� d�′ = q(�,�′), be-
cause q(�,�′) divided by the angle-integrated cross section σ

is equal to the ACF:

Ṅcd (�c,�d )

P × iAu(�c,�d )

= C(�c,�d ) Gcd (�c,�d ) ηc ηd 〈q〉(�c,�d ). (2)

The incident photon energy is held fixed at 33.66 eV in the
experiments with setups 1 and 2. In the right-hand side of
Eq. (2), 〈q〉 is the angle-differential cross section averaged
with the angular resolution, C(�c,�d ) an instrumental con-
stant, and ηc(d ) a detection efficiency of the photon detector
c(d ) for a Lyman-α photon. A geometric factor Gcd (�c,�d )
is an integral of (the detector c solid angle) × (the d
solid angle) over the interval of the gas cell on the X axis.
The geometric factor Gcd (�c,�d ) and instrumental constant
C(�c,�d ) are independent of (�c,�d ) if the detectors c and
d are rotated over the incident light beam such as in setups
1 and 2. In the left-hand side of Eq. (2), P is pressure of
hydrogen gas in the gas cell and iAu is the photocurrent from
the Au plate located below the exit hole of the gas cell, both
quantities which are measured in setups 1 and 2. However, it is
difficult to measure the four quantities other than 〈q〉(�c,�d )
in the right-hand side. We hence carry out the reference
measurement at a fixed arrangement of the detectors so that
we can cancel those four quantities taking advantage of the
independence of Gcd (�c,�d ) and C(�c,�d ) of (�c,�d ) as
seen below:

Ṅcd (�c,�d )/[P × iAu(�c,�d )]

ṄR
cd

(
�R

c ,�R
d

)
/
[
PR × iR

Au

(
�R

c ,�R
d

)] = 〈q〉(�c,�d
)

〈q〉(�R
c ,�R

d

) , (3)

where the quantities with a superscript “R” refer to those in
reference measurements. We choose the reference arrange-
ment (�R

c ,�R
d ) as follows: for the measurement with setup
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1 (c = C′ and d = D′) [11],

(
�R

C′,�
R
D′
)=(�R

C′ =−π

2
, �R

C′ = 3

2
π, �R

D′ = π

2
, �R

D′ = 3

2
π

)
,

(4)

and for the measurement with setup 2 [c(d ) = A–F and
c �= d],(

�R
c ,�R

d

)=(�R
c (α=0),�R

c (α=0),�R
d (α=0),�R

d (α=0)
)
.

(5)

In fact, we use

Ṅcd (�c,�d )/[P × iAu(�c,�d )]
1
2

({
ṄR′

cd

(
�R

c ,�R
d

)
/
[
PR′ × iR′

Au

(
�R

c ,�R
d

)]}+ {ṄR′′
cd

(
�R

c ,�R
d

)
/
[
PR′′ × iR′′

Au

(
�R

c ,�R
d

)]}) = 〈q〉(�c,�d )

〈q〉(�R
c ,�R

d

) , (6)

instead of Eq. (3): the Ṅcd measurement is carried out between the ṄR′
cd and ṄR′′

cd reference measurements.
Let the left-hand side of Eq. (6) as a whole be denoted by Rcd (�c,�d ; �R

c ,�R
d ) so that Rcd (�c,�d ; �R

c ,�R
d ) is an ACF as a

function of (�c,�d ) on the relative scale with reference to 〈q〉(�R
c ,�R

d ) [the reference arrangement (�R
c ,�R

d ) is held fixed]. We
can thereby obtain several ACFs on separate relative scales at separate ranges of detector angles with setups 1 and 2 as follows:

RC′D′
(
�C′ ,�D′ ; �R

C′ , �R
D′
)

vs (�C′,�D′ ), (7a)

Rcd
(
�c(α),�d (α) ; �R

c ,�R
d

)
vs α for (c, d ) ∈ AB, AD, and AE groups, (7b)

REF
(
�E (α),�F (α) ; �R

E ,�R
F

)
vs α, (7c)

where (�C′ ,�D′ ) in Eq. (7a) stands for (�C′, 3
2π, �D′ , 3

2π ).
Equations (7a) and (7c) are the relative ACFs on the dipole
circle and Eq. (7b) is the relative ACFs out of the dipole circle.

As seen in Eq. (2), we measure not q(�c,�d ) but
〈q〉(�c,�d ), which is averaged q(�c,�d ) with the angular
resolution. We have carefully examined the influence of the
angular resolution on the angular averaging in setup 2 experi-
ments to discover that the equation 〈q〉(�c,�d ) = q(�c,�d )
holds to a good approximation for the ACFs shown in this
article including those measured with setup 1 but it fails to
hold for 〈q〉(�A,�C ) and 〈q〉(�B,�D), both of which belong
to the AB group. The results for the AC pair and BD pair in the
AB group are hence excluded from panel (3) in Fig. 4 [panel
(3) is for the AB group], but those for the AB pair and CD pair
remain there.

2. Unifying the vertical scales in the ACFs

In order to match the relative scales in Eqs. (7b) and (7c)
to the relative scale in Eq. (7a), we obtain the ratios of ref-
erence cross sections 〈q〉(�R

c ,�R
d )/〈q〉(�R

C′ ,�
R
D′ ) for c(d ) =

A–F and c �= d so that the ratios act as a unification factor as
shown below: the ACF,

the ratio︷ ︸︸ ︷(
〈q〉(�R

c ,�R
d

)
〈q〉(�R

C′,�
R
D′
)
)

Rcd
(
�c(α),�d (α); �R

c ,�R
d

)
= 〈q〉(�c(α),�d (α))

〈q〉(�R
C′ ,�

R
D′
) vs α,

in setup 2 [c(d ) = A–F and c �= d] and the ACF in Eq. (7a) in
setup 1 are the ACFs on the unified relative scale of the verti-
cal axis with reference to only 〈q〉(�R

C′ ,�
R
D′ ). Our principle for

obtaining the unification factor 〈q〉(�R
c ,�R

d )/〈q〉(�R
C′ ,�

R
D′ ) is

that we search for a special angular coordinate on the dipole
circle (�̃(c,d )

C′ , 3
2π, �̃

(c,d )
D′ , 3

2π ) that satisfies q(�R
c ,�R

d ) =
q(�̃(c,d )

C′ , 3
2π, �̃

(c,d )
D′ , 3

2π ) for each (c, d ) with c(d ) = A–F

and c �= d . Such angular coordinates have been actually dis-
covered and we have obtained the unification factors within
the ACF on the dipole circle. The discovery of the special
angular coordinates enables us to obtain the unification fac-
tors without the procedure of unifying the vertical scales.
In searching for such (�̃(c,d )

C′ , 3
2π, �̃

(c,d )
D′ , 3

2π ), we use an
analytical expression of the ACF [17] and the invariance of
the ACF under the rotation around the Z axis (see Sec. IV A
in Ref. [17]). We can thereby obtain seven ACFs on the unified
relative scale as seen in Fig. 4 (at this stage, consider the scale
of the vertical axis the unified relative one), the four of ACFs
which are measured with setup 2 in this experiment [© in
panels (3)–(6)] and the remaining three have been measured
with setup 1 [� in panels (1) and (2)] [11]. We arrange the
two ACFs for �D′ = −�C′ and �D′ = −�C′ + π together in
panel (2) since it has turned out from the analytical expression
of the ACF [17] that those ACFs are the same.

We need the relative values at �C′ = − 3
4π,−π

4 , π
4 , 3

4π in
reference to the value at �C′ = −π

2 in panel (2) in Fig. 4 to
obtain the unification factors for panels (3) and (5), but those
experimental points are missing because setup 1 has the limi-
tation that |�C′ − �D′ | � 120◦ [11]. Those missing values are
restored with the linear interpolation near the missing points
in panel (2).

3. The ACF on a whole sphere

In order to obtain the ACF on the absolute scale in units
of sr−2 on a whole sphere from the ACFs on the unified
relative scale, symbols in Fig. 4, we introduce the analytical
expression of the ACF on a relative scale [17]

f r (�c,�c,�d ,�d )

= kr
1 + kr

2(cos 2�c + cos 2�d )

+ kr
3[cos 2(�c − �d ) + cos 2(�c + �d )]

+ 2kr
4 cos(�c − �d )[cos 2(�c−�d )− cos 2(�c + �d )]
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FIG. 4. The experimental ACF [symbols and dashed curve (light blue)] and theoretical ACF (red solid curve) originating from the
|1u; η, R → ∞〉 state in Eq. (24). The symbols (�) in panels (1) and (2) were measured with setup 1 [11], and the symbols (©) in panels
(3)–(6) have been measured in this experiment. The scale of the vertical axis is not a relative one but absolute one. In panels (3)–(6), for
example, the symbol AB stands for the pair of detectors A and B, and the pairs in the same panel give the same ACF as a function of the angle
α. Refer to the beginning of Sec. II C for details.

+ 2kr
5 cos 2(�c − �d )[2 − 2 cos 2�c − 2 cos 2�d

+ cos 2(�c − �d ) + cos 2(�c + �d )], (8)

where kr
1–kr

5 are coefficients independent of (�c,�d ). Inte-
grating f r (�c,�c,�d ,�d ) over the whole range of the solid
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angles yields∫ π

�c=0

∫ 2π

�c=0

∫ π

�d =0

∫ 2π

�d =0
f r (�c,�c,�d ,�d ) d�c d�d

=
(

kr
1 − 2

3
kr

2 + 2

9
kr

3

)
(4π )2. (9)

Hereafter,
∫

. . . d�c d�d means integrating over the whole
range of the solid angles.

In order to discuss how to determine five coefficients kr
1–kr

5
in f r (�c,�d ), we write the ACFs in Eqs. (7) based upon
f r (�c,�d ) in Eq. (8) as follows [the ACFs in Eqs. (7) are
on the separate relative scales of the vertical axis, but those
below are on the unified relative scale]:

f r
(
�C′, 3

2π,�C′ + π, 3
2π
)

= ar
1 + 4ar

2 cos2 �C′ + 8ar
3 cos4 �C′, (10)

f r
(
�C′, 3

2π,−�C′ , 3
2π
)

= br
1 + 4br

2 cos2 �C′ + 8br
3 cos4 �C′, (11)

f r
(
�C′, 3

2π,−�C′ + π, 3
2π
)

= br
1 + 4br

2 cos2 �C′ + 8br
3 cos4 �C′, (12)

f r (�A(α),�A(α),�B(α),�B(α))

= cr
1 + 2cr

2 cos2 α + 2cr
3 cos4 α, (13)

f r (�A(α),�A(α),�E (α),�E (α))

= dr
1 + dr

2 cos2 α + 4dr
3 cos4 α, (14)

where Eqs. (10)–(12) correspond to the ACFs on the
dipole circle in Eq. (7a), and Eqs. (13) and (14) to the
ACFs out of the dipole circle in Eq. (7b). The coefficients
ar

i , br
i , cr

i , and dr
i (i = 1, 2, 3) are expressed as linear combi-

nations of kr
1–kr

5 in Eq. (8). The reason why f r (�A(α),�D(α))
and f r (�E (α),�F (α)) are not considered is that the former

ACF turns out to be a part of the ACF in Eq. (10) in the interval
[45◦, 135◦] and the latter ACF is equivalent with the ACF in
Eq. (10).

The coefficients ar
1–ar

3, br
1–br

3, cr
1–cr

3, and dr
1–dr

3 in
Eqs. (10)–(14) are obtained with fitting the ACFs in those
equations to the corresponding experimental ACFs on the
unified relative scale in Fig. 4 (symbols) obtained in the
stage of Sec. II C 2. It has turned out that the coefficients
kr

1–kr
5 in Eq. (8) are expressed as linear combinations of

ar
1–ar

3, br
1–br

3, cr
1–cr

3, and dr
1–dr

3 , which fact shows that
the present angular range is sufficiently wide to determine
the coefficients kr

1–kr
5 in Eq. (8). We have hence fitted

f r (�c,�c,�d ,�d ) in Eq. (8) to all the experimental ACFs
on the unified relative scale in Fig. 4 (symbols) after con-
verting those experimental ACFs (symbols) to functions of
(�c,�c,�d ,�d ), and have obtained the values of kr

1–kr
5. On

the other hand, it has turned out to be impossible to determine
the coefficients kr

1–kr
5 from only the ACF on the dipole circle.

Once the coefficients kr
1–kr

5 in Eq. (8) are obtained, the ACF
on the absolute scale in units of sr−2 on a whole sphere,

dP
d�c d�d

(�c,�d ), is given by [see Eq. (9)]

dP

d�c d�d
(�c,�d ) = 1(

kr
1 − 2

3 kr
2 + 2

9 kr
3

)
(4π )2

× f r (�c,�c,�d ,�d ). (15)

Note that f r (�c,�d ) includes the coefficients kr
1–kr

5. In deriv-
ing Eq. (15), we use the normalization relation that integrating
an ACF over the whole sphere yields unity. The symbols on
the unified relative scale in Fig. 4 have been ultimately put
on the absolute scale in units of sr−2 with multiplying the
relative values of symbols by the factor 1

[kr
1−(2/3)kr

2+(2/9)kr
3](4π )2

in Eq. (15).

III. RESULTS

In order to show the experimental ACF on a whole sphere
on the absolute scale, we introduce an analytical expression of
the ACF in units of sr−2 in explicit form [17]

dP

d�c d�d
(�c,�d ) = 1

(4π )2
{a1 + a2(cos 2�c + cos 2�d ) + a3[cos 2(�c − �d ) + cos 2(�c + �d )]

+ 2a4 cos(�c − �d )[cos 2(�c − �d ) − cos 2(�c + �d )]

+ 2a5 cos 2(�c − �d )[2 − 2 cos 2�c − 2 cos 2�d + cos 2(�c − �d ) + cos 2(�c + �d )]},

a1 − 2

3
a2 + 2

9
a3 = 1. (16)

Here, the combination of both equations is equivalent to
Eq. (15). The ACF in Eq. (16) is simply specified by a 1 × 5
matrix

(a1, a2, a3, 2a4, 2a5). (17)

We use this matrix to express the ACF as a function of the four
angular variables.

In Fig. 4, shown is the graph of the experimental ACF on a
whole sphere in units of sr−2 (dashed line), i.e., the graph of
dP/d�cd�d in Eq. (15) with the values of kr

1–kr
5 determined

through the fit of Eq. (8) to the experimental data (symbols)
on the unified relative scale as mentioned in Sec. II C 3. The
explicit expression of the dashed line in the form of Eq. (17)
is

(a1, a2, a3, 2a4, 2a5)Expt

= (0.974 ± 0.002, −(3.9 ± 0.2) × 10−2,

(2 ± 1) × 10−3, (3.2 ± 1.7) × 10−3,

(4.7 ± 0.5) × 10−3)Expt. (18)
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Also shown in Fig. 4 (symbols) is another experimental ACF
in units of sr−2, the ACF which is obtained with the manner
mentioned at the last part of Sec. II C 3.

The uncertainty in the ACF is in the order of
10−3/(4π )2 sr−2 as seen in Eq. (18), and is much smaller
than the constant and dominant component due to a1. The
anisotropy of the ACF is not so strong as seen in Eq. (18):
a1 is much larger than the absolute values of others. Recently,
three experimental points were reported on a relative scale at
�C′ = −180◦, −135◦, and − 90◦ for the �D′ = �C′ + π ar-
rangement on the dipole circle [9], points which are consistent
with the present results in panel (1) in Fig. 4 in terms of shape
(see Fig. 13 in Ref. [9]).

IV. IDENTIFYING THE 2p ATOM-PAIR STATE: REVISITED

The 2p atom-pair state identified by Torizuka et al. through
the ACF measured on the dipole circle [11] is examined
through the present ACF measured on the whole sphere. As
mentioned in Ref. [11], our principle is the following:

(i) We prepare a “trial” state of 2p atom pairs that is
reasonably accessed from the precursor Q2

1�u(1) state in
process (1).

(ii) We calculate the theoretical ACF for the trial 2p atom-
pair state.

(iii) We examine whether or not the theoretical ACF is in
agreement with the experimental ACF.

(iv) If the agreement is obtained, we identify that trial state
of 2p atom pairs as the real 2p atom-pair state (the end of
task), else we go back to step (i) and keep going until reaching
the end of the task.

In this principle, it is essential that trial states of 2p atom
pairs are physically reasonable and the method of calculating
ACFs is appropriate. The experimental ACF with which the
theoretical ACF is compared was the one measured only on
the dipole circle in the previous study [11] while it is the
one measured on the whole sphere in this study. As men-
tioned above, we start with a pure ensemble. If it does not
work, we consider a mixed ensemble. In Sec. IV A, we re-
view the identification by Torizuka et al. [11] to find out
several issues in step (i) above, issues which we resolve in
Sec. IV B.

We write electronic states of H2 molecules relying on the
Born-Oppenheimer approximation. For this purpose, we in-
troduce one more frame of reference held fixed to the protons
in the molecule, termed the molecular frame, as shown in
Fig. 5 besides the space-fixed XY Z frame in Fig. 1. We label
the two electrons 1 and 2 and the two protons a and b. The
z axis in the molecular xyz frame points from proton a to b
as shown in Fig. 5 with those protons at rest with respect to
the space-fixed frame. The origin of the molecular frame is
taken at the midpoint between protons a and b, and is taken

FIG. 5. The molecular xyz frame as well as the space-fixed XY Z
frame. The same as Fig. 1 about ε̂ and k. See Sec. IV for details.
Produced with revising Fig. 1(a) in Ref. [17].

to coincide with the origin of the space-fixed XY Z frame. The
molecular xyz frame is specified with respect to the space-
fixed XY Z frame with the Euler angles (φ, θ, 0) as seen in
Fig. 5 (0 � φ � 2π and 0 � θ � π ). Electronic states of H2

molecules are written with reference to the molecular frame,
and hence parametrically involve the relative position vector
of the two protons R [R = (R, θ, φ) and R denotes internu-
clear distance]. The orbital angular momentum of electrons
is denoted by L̂, the spin angular momentum of electrons
by Ŝ, and the sum of them by Ĵ, where the atomic unit is
used. As will be seen in due course, electronic states of H2

as Ĵz eigenstates are considered at R → ∞ while those as
simultaneous eigenstates of L̂z and Ŝz are considered in the
Franck-Condon region. The nuclear motion is not taken into
account.

In the calculation of the ACF by our group [4,11,17], we
assume that the molecular xyz frame of an H2 molecule not
having absorbed an incident photon is randomly oriented with
respect to the space-fixed XY Z frame and the molecular frame
of an H2 molecule having absorbed an incident photon does
not rotate against the space-fixed frame during the dissoci-
ation into H(2p) + H(2p), which assumptions fit with the
present experiment as well as the early ones [11,14–16].

A. Review of the identification in Ref. [11]

Staring from the ACF measured only on the dipole circle,
and after testing several trial states, Torizuka et al. [11] have
identified the 2p atom-pair state as an 1u state at infinite
internuclear distance. The 1u state at R → ∞, denoted by
|1u; η, ηSO, R → ∞〉, is given as [11]

|1u; η, ηSO, R → ∞〉 = 1√
2

{∣∣3�+
u ; R → ∞〉[ 1√

2

(∣∣χ e
11

〉− eiη
∣∣χ e

1 −1

〉)]

− e−iηSO

[
1√
2

(∣∣1�Lz=+1
u ; R → ∞〉+ eiη

∣∣1�Lz=−1
u ; R → ∞〉)]|χ e

00〉
}
, (19)
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TABLE I. The entanglement entropies of the 2p atom-pair state (R → ∞) and precursor molecular state (R = Re) in the H2 photodissoci-
ation as well as the united-atom He state (R = 0).

Internuclear distance R = 0 R = Re R → ∞ min maxa

A. Electron-electron entanglement
Offset entanglement entropyb 1.1c 1 1.718d 0 3e

Slater rank 2 6 1 8

B. Spatial-spin entanglement
Entanglement entropy 0 0 1 0 2f

Schmidt rank 1 1 2 1 4

a The maxima refer to only R = Re and R → ∞.
bA measure for two-electron systems (see Appendix, Sec. 2).
cFrom Ref. [22].
d(17/6) + log2 3 + (1/

√
6) log2(49 − 20

√
6) = 1.718.

elog2(d/2), where d = 16. See Appendix, Sec. 2.
flog2d , where d = 4. See Appendix, Sec. 1.

where 0 � η � 2π (it is a last trial state and has eventually
been identified as the real 2p atom-pair state). Here, the
|3�+

u ; R → ∞〉 state is given by Eq. (29) in Ref. [11], the
|1�Lz=±1

u ; R → ∞〉 states by Eq. (7) in Ref. [11], and the
spin eigenstates for the two-electron system, |χ e

S=0,Sz=0〉 and
|χ e

1±1〉, by Eqs. (6), (30), and (31) in Ref. [11] (the |χ e
00〉

state is the singlet state and the |χ e
1±1〉 states are two states

of the three triplet states in total). The |χ e
10〉 state, another

triplet state, does not occur because the |3�+
u ; R → ∞〉|χ e

10〉
state is a 0u state. The |3�+

u ; R → ∞〉 and |1�Lz=±1
u ; R → ∞〉

states have been antisymmetrized and symmetrized, respec-
tively, with respect to the permutation operator of electrons
1 and 2 so that the |1u; η, ηSO, R → ∞〉 state is antisymmet-
ric. The symbol ηSO denotes the phase angle of the matrix
element,〈

3�+
u ; R → ∞∣∣〈χ e

11

∣∣ĤSO(R → ∞)
∣∣1�Lz=+1

u ; R → ∞
〉∣∣χ e

00

〉
,

(20)

where ĤSO(R) expresses the spin-orbit coupling in a hydro-
gen molecule at internuclear distance R [11], and ηSO turns
out to be zero in this study as mentioned later while it was
unknown in Ref. [11]. The 1u state is a superposition of
the Q2

1�u(1) and Q2
3�+

u (2) states. The reason why such
a superposition occurs has been mentioned in Ref. [11], but
will be investigated again in an exact way when solving the
two-state problem between those two states later. Note that
Torizuka et al. [11], as well as we, have not intended to
write entangled 2p atom-pair states, but have just written the
states so that they possess the characteristics that they should
possess.

The |1u; η, ηSO, R → ∞〉 state is, in fact, dependent on
(θ, φ), which specifies the molecular xyz frame with respect
to the space-fixed XY Z frame, but the (θ, φ) dependence
is restricted to the ket vectors and the coefficients in the
superposition are not dependent on (θ, φ) in the right-hand
side of Eq. (19). The reason why the coefficients are not
dependent on (θ, φ) is that in process (1) the processes
proceed in the same manner irrespective of (θ, φ) after the

photoexcitation [17]. Because of such a fact about the (θ, φ)
dependence as well as simplicity, the (θ, φ) dependence is not
shown explicitly in Eq. (19). In what follows, we omit the
(θ, φ) dependence in state vectors as long as no confusion
occurs.

Torizuka et al. [11] have used two approximations to get
to the 1u state in Eq. (19). One is solving the two-state prob-
lem between the Q2

1�u(1) state and Q2
3�+

u (2) state as Jz

eigenstates instead of solving the nine-state problem among
the nine 1u states shown in Table I in Ref. [11], where the
doubly excited Q2 states correlating with the n = 2 + n = 2
dissociation limit are listed, and the other is using the strong-
coupling approximation in solving the two-state problem, the
approximation that the magnitude of the difference of the
diagonal matrix elements in the 2 × 2 Hamiltonian matrix
of the two-state problem is neglected against the magnitudes
of the off-diagonal matrix elements. The reason why such
an approximation has been adopted is that the eigenstates
are readily obtained without complicated calculations even
though those eigenstates are approximate. The validity of
the latter approximation has not been substantiated while
the former approximation has been sufficiently justified [11],
and let us rigorously solve the two-state problems between
the |3�+

u ; R → ∞〉|χ e
1 ±1〉 state and |1�Lz=±1

u ; R → ∞〉|χ e
00〉

state without resorting to the strong-coupling approximation
(double sign corresponds). Depending on the results, the co-
efficients in the superposition in Eq. (19) may change: in
Eq. (19) the two states are superposed with the equal weight.
The value of ηSO is obtained in the course of solving the
problems.

B. Trial 2p atom-pair state obtained with exactly solving
the two-state problems

The electronic Hamiltonian Ĥ ele(R) of a hydrogen
molecule is written at internuclear distance R as

Ĥ ele(R) = Ĥ ele
0 (R) + ĤSO(R), (21)
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where Ĥ ele
0 (R) is the electronic Hamiltonian with only the

Coulomb interaction being considered. The 2 × 2 repre-
sentation matrices of Ĥ ele(R → ∞) in terms of the bases
{|3�+

u ; R → ∞〉|χ e
1±1〉, |1�Lz=±1

u ; R → ∞〉|χ e
00〉} are calcu-

lated as

⎛
⎜⎝

〈3
�+

u

∣∣〈χ e
1±1

∣∣ĤSO
∣∣3�+

u

〉∣∣χ e
1±1

〉 = 0
〈3
�+

u

∣∣〈χ e
1±1

∣∣ĤSO
∣∣1�Lz=±1

u
〉∣∣χ e

00

〉 = ±[α2/(24
√

6)
]

〈1
�

Lz=±1
u

∣∣〈χ e
00

∣∣ĤSO
∣∣3�+

u

〉∣∣χ e
1±1

〉 = ±[α2/(24
√

6)
] 〈1

�
Lz=±1
u

∣∣〈χ e
00

∣∣ĤSO
∣∣1�Lz=±1

u
〉∣∣χ e

00

〉 = 0

⎞
⎟⎠, (22)

in atomic unit of energy (double sign corresponds), where
“R → ∞” is omitted in the spatial ket and bra vectors and
ĤSO(R → ∞) for simplicity, and α is the fine structure
constant. In Eq. (22), the origin of energy is taken at the
dissociation limit of H(n = 2) + H(n = 2) with the spin-orbit
coupling not being considered, with the dissociation limit
which both the Q2

1�u(1) and Q2
3�+

u (2) states correlate [19].
We refer to the explicit expression of ĤSO(R) in Eq. (3.4.2)
on p. 181 in Ref. [20]. We separately solve the two two-
state problems for the matrices in Eq. (22) (one is the Jz = 1
problem and the other is Jz = −1 problem). Remarkably,
we see from Eq. (22) that the strong-coupling approxima-
tion which Torizuka et al. [11] have used is strictly valid
for both of the Jz = ±1 problems because the magnitude
of the difference of the diagonal matrix elements is exactly
zero. In other words, the strong-coupling “limit” applies. In
addition, we learn from the (1,2) element in the matrix in
Eq. (22) for Jz = 1 that ηSO = 0. We remark that there occur
the singlet-triplet superpositions between the Jz = ±1 com-
ponents of the Q2

1�u(1) state and Jz = ±1 components of
the Q2

3�+
u (2) state with the strong-coupling limit at R → ∞

even for H2 (double sign corresponds). Considering the en-
ergy origin in Eq. (22), we find out that the major reason
why the spin-orbit coupling is so effective that the singlet-
triplet superpositions occur at R → ∞ lies in the degeneracy
of the Q2

1�u(1) and Q2
3�+

u (2) states at R → ∞ without
considering the spin-orbit coupling. On the other hand, as
well known, such a superposition hardly occurs in the Franck-
Condon region for H2. That is because the potential energy
curves of the Q2

1�u(1) and Q2
3�+

u (2) states without con-
sidering the spin-orbit coupling are apart from each other by
∼1 eV in the Franck-Condon region [12] and the magnitude
of the difference of the diagonal matrix elements dominates
the magnitudes of the off-diagonal matrix elements in the
2 × 2 representation matrix of Ĥ ele(R) with R being in the
Franck-Condon region. Summarizing, the spin-orbit coupling
has to be taken into account even in H2 in the case that the
potential energies of the states involved, but without consider-
ing the spin-orbit coupling, are equal. This case refers to the
present R → ∞ region, and we hence use Ĵz eigenstates there.
However, the extremely opposite case refers to the Franck-
Condon region, and we do not need to take the spin-orbit
coupling into account. We hence use L̂z and Ŝz eigenstates
there.

We then derive the exact and physically meaningful eigen-
states in the two-state problems in Eq. (22). There exist a
high-energy state and a low-energy one for each of the Jz = 1
and −1 problems, and we take the one that approaches the

Q2
1�u(1) state as the spin-orbit coupling becomes negligible

because the precursor doubly excited state of the 2p atom pairs
is the Q2

1�u(1) state in the Franck-Condon region as shown
in process (1). It is the low-energy state that satisfies such a
requirement. The low-energy states are shown below for the
Jz = ±1 problems,∣∣1Jz=±1

u ; R → ∞〉 = (1/
√

2)
(∣∣3�+

u ; R → ∞〉∣∣χ e
1 ±1

〉
∓∣∣1�Lz=±1

u ; R → ∞〉∣∣χ e
00

〉)
(double sign corresponds). (23)

We then take the superposition of the |1Jz=±1
u ; R → ∞〉 states

above as follows (0 � η � 2π ):

|1u; η, R → ∞〉 = (1/
√

2)
(∣∣1Jz=1

u ; R → ∞〉
−eiη

∣∣1Jz=−1
u ; R → ∞〉), (24)

so that the |1u; η, R → ∞〉 and |1u; η + π, R → ∞〉 states
compose the set of eigenstates for the permutation operator of
protons a and b. The |1u; η, R → ∞〉 state hence expresses all
the low-energy 1u states that satisfy the indistinguishability of
protons as η ranges from 0 to 2π . In addition, the |1u; η, R →
∞〉 state is antisymmetric with respect to the permutation
operator of electrons 1 and 2 since, as mentioned below
Eq. (19), the |3�+

u ; R → ∞〉 and |1�Lz=±1
u ; R → ∞〉 states in

Eq. (23) are antisymmetric and symmetric, respectively. The
|1u; η, R → ∞〉 state consequently follows the indistinguisha-
bility of identical particles. Summarizing, it is the |1u; η, R →
∞〉 state in Eq. (24) that is the exact and physically meaning-
ful eigenstate in the present two-state problems, and we use
the state as a trial state of 2p atom pairs. This state is the same
as the state in Eq. (19) (ηSO = 0) based on the strong-coupling
approximation since the approximation has ultimately turned
out to be strictly valid as mentioned before.

C. Calculation of ACF, comparison with experiment,
and state identification

We have then calculated the ACF originating from the
|1u; η, R → ∞〉 state in Eq. (24) [= the |1u; η, ηSO = 0, R →
∞〉 state in Eq. (19)] in the manner mentioned in Ref. [11].
The outline of the manner is described in brief [4,11,17]:

(1) The light field is expressed in the form of photon
number states, and the single-photon state for the Lyman-α
fluorescence is written using the Weisskopf-Wigner theory.

(2) Each hydrogen atom built on proton a or b emits a
Lyman-α photon independently and separately. Refer to the
time evolution in each hydrogen atom in Eqs. (8)–(13) in
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Ref. [11]. The two-photon two-electron state |�; η〉 in the
final stage in process (1) is obtained through the time evolu-
tion of the nonphoton two-electron state |1u; η, R → ∞〉|vac〉
in the second stage, where the ket-vector |vac〉 denotes the
vacuum state of light. The |�; η〉 state is explicitly expressed
in Eq. (33) in Ref. [11]. The characteristic of the no-photon
two-electron state |1u; η, R → ∞〉|vac〉 is carried over to the
two-photon two-electron state |�; η〉, and the inherited char-
acteristic emerges in the ACF.

(3) The probability density for detecting photon pairs is
calculated as a function of detector positions and detection
times by means of quantum optics, i.e., the expected value
of the operator Ê

(−)
c Ê

(−)
d Ê

(+)
d Ê

(+)
c , which is an operator with

four electric fields aligned in the normal order, is calculated
for the two-photon two-electron state |�; η〉, where (θ, φ)
specifying the internuclear axis is held fixed in the state
|�; η〉. The calculated probability density is then averaged
with the (θ, φ, η)-distribution, and the detector position part
of the averaged one yields the ACF of Lyman-α photon pairs
originating from the |1u; η, R → ∞〉 state. Note that the prob-
ability density for detecting photon pairs cannot always be
written as a product of the probability densities for detecting
each photon [4].

The calculated ACF originating from the |1u; η, R → ∞〉
state in Eq. (24) is given in the form of Eq. (17) by

(a1, a2, a3, 2a4, 2a5)Theo

= (627/640, −(3/128), 27/1280, 3/80, 21/1280)Theo

= (0.980, −2.34 × 10−2, 2.11 × 10−2, 3.75 × 10−2,

× 1.64 × 10−2)Theo, (25)

and is shown with the solid line (red) in Fig. 4 to compare
the solid line with the experimental ACF on a whole sphere
[dashed line (light blue)]. The absolute values, not the relative
values, of the experimental ACF enable us to compare the cal-
culated and experimental ACFs quantitatively. Equation (25)
is equivalent to Eq. (37) in Ref. [11]. Note that the calculated
ACF is independent of the value of ηSO, which fact is the
reason why Torizuka et al. [11] were able to calculate the ACF
although they did not calculate the value of ηSO.

At first glance at Fig. 4, it may appear that, in some places,
there are discrepancies slightly larger than experimental errors
between the experiment (symbols) and theory (solid line).
The error bars in Fig. 4 were evaluated from the statistical
uncertainty of each two-photon coincidence count rate in the
left-hand side of Eq. (6) using the law of the propagation of
errors. There are, in fact, errors due to other sources as well.
One of them is the error caused by restoring the missing data
that are needed to obtain the unification factors for panels
(3) and (5) in Fig. 4 as mentioned in the last paragraph in
Sec. II C 2. This error appears to considerably contribute to
the discrepancies mentioned above, which observation will
now be substantiated. Simply speaking, if data (symbols) in
some panel decrease, those in other panels increase because
of the normalization relation of the ACF. In this regard, we
should note that the experimental data (symbols) are slightly
and systematically higher than the theory (solid line) in panels
(3) and (5) in Fig. 4 but, conversely, the former are lower than
the latter in other panels with almost the same extent as the

extent of being high in panels (3) and (5). This fact strongly
indicates that our observation is valid, and we conclude that
the discrepancies beyond the error bars are attributed to the
error caused by restoring the missing data. The experimental
ACF (symbols) and theoretical ACF ( solid line) are indeed
in agreement within the error bars in Fig. 4. Note that such
agreement is obtained although the theory involves no adjust-
ing parameters that may change the shape and magnitude of
the ACF. The small oscillation in the theoretical ACF around
�C′ = 0◦ and ±180◦ in panel (2) in Fig. 4 is made smeared
out in the experimental ACF by the error bars and scattering
of data points, scattering which is due to the instability in the
position of the incident light beam and is not involved in the
error bars.

We then examine the similarity between the experi-
mental ACF ( dashed line in Fig. 4), dPExpt/d�c d�d ,
given by Eq. (18) and theoretical ACF (solid line in
Fig. 4), dPTheo/d�c d�d , given by Eq. (25) not only
in the angular range in Fig. 4 but also over the whole
sphere. Comparing (a1, a2, a3, 2a4, 2a5)Expt in Eq. (18) and
(a1, a2, a3, 2a4, 2a5)Theo in Eq. (25), we find discrepancies
beyond the uncertainties in Eq. (18). As mentioned in the
previous paragraph, those discrepancies are attributed to the
error caused by restoring the missing data, the error which is
not involved in the uncertainties in Eq. (18). We examine the
similarity with a different way as well, i.e., we calculate the
root mean square of the deviation between the experiment and
theory defined as

σrms

=
√∫

[(dPTheo/d�c d�d )−(dPExpt/d�c d�d )]2d�c d�d∫
d�c d�d

.

(26)

The value of σrms is to be compared with the dominant con-
tribution a1/(4π )2 sr−2, i.e., 1/(4π )2 sr−2. The value of σrms

is calculated to be 0.046/(4π )2 sr−2, which is much smaller
than 1/(4π )2 sr−2. The deviation σrms is mostly due to the
error caused by restoring the missing data mentioned in the
previous paragraph. It follows from the above that the sim-
ilarity between the four-variable function dPExpt/d�c d�d

and dPTheo/d�c d�d is satisfactory. Besides, we examine
the similarity between dPExt/d�c d�d and dPTheo/d�c d�d

in terms of how they depend on angular variables. It has
been found from Eqs. (18) and (25) that dPExpt/d�c d�d and
dPTheo/d�c d�d have common characteristics as follows:

(a) a1 � |a2|, |a3|, |2a4|, |2a5| and a1 � 1.
(b) The sign of each element in (a2, a3, 2a4, 2a5), which

determines the oscillation around a1/(4π )2 sr−2, is (negative,
positive, positive, positive).

It hence turns out that the function dPExpt/d�c d�d

and dPTheo/d�c d�d slightly and synchronously oscillate
around 1/(4π )2 sr−2 against the angular variables over the
whole sphere [when one increases (decreases), the other
also increases (decreases)]. Note that the small oscillation of
dPExpt/d�c d�d seen in panels (3) and (5) in Fig. 4 appears
not to be significant since the amplitude is negligible against
the error bars and the oscillation appears to be attributed to
the scattering of data points. The function dPExpt/d�c d�d
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will indeed be independent of α in panels (3) and (5) in
Fig. 4 such as dPTheo/d�c d�d . We conclude from all the
discussions about (a1, a2, a3, 2a4, 2a5), σrms, and the variable
dependence that the four-variable function dPTheo/d�c d�d

and dPExpt/d�c d�d are sufficiently similar to argue that the
former reproduces the latter.

Dochain et al. [9] recently calculated the ACF based on the
identification of the 2p atom-pair state by Torizuka et al. [11].
It is the relative ACF calculated in the angular range in panels
(1) and (2) in Fig. 4. As mentioned in Secs. I and II C 3, it is
impossible to obtain the coefficients a1–a5 in Eq. (16) from the
ACF on the dipole circle. No large difference is seen between
their curve and the present theoretical ACF in terms of shape
(see Fig. 13 in Ref. [9]), although minor discrepancies in
shape are seen in places in the angular range in panel (2) in
Fig. 4. However, we should point out that their calculation
method is at very much variance with ours in several respects
as mentioned below.

Dochain et al. [9] considered the mixed ensemble of 16
1u states. They showed the list of the eigenvalues of L̂z and
Ŝz for each electron with respect to each 1u state in their
Table I, but showed no explicit expressions of those 1u states.
According to their Table I, the indistinguishability of elec-
trons is likely not to be considered in any 1u state because
the eigenvalues of L̂z and Ŝz are definite for each electron
with respect to each 1u state as mentioned just above. The
indistinguishability of protons is also likely not to be consid-
ered in any 1u state because the superpositions of the Jz(�̃
in their Table I) = ±1 states are not taken at variance with
Eq. (24). On the other hand, we have considered the indistin-
guishability of electrons and that of protons in writing the 2p
atom-pair state in Eq. (24), as already mentioned in Secs. IV A
and IV B.

Aside from the above, there is a large difference between
the method of Dochain et al. [9] and ours in calculating the
probability density for detecting photon pairs. Dochain et al.
[9] expressed the probability density for detecting photon
pairs as a product of the probability densities for detecting
each photon, and calculated the latter probability density for
detecting a single photon in the method where fluorescence
is considered the electromagnetic wave emitted by an electric
dipole. In contrast with Dochain et al. [9], we calculate the
probability density for detecting photon pairs by means of the
two-photon correlation function in quantum optics [see points
(1)–(3) mentioned at the beginning of this subsection]. Our
method has shown that the probability density for detecting
photon pairs cannot always be expressed as a product of the
probability densities for detecting each photon [4].

As discussed above, there exist fundamental differences
between our method for calculating ACF and that of Dochain
et al. [9]. Which one to adopt is a difficult question to answer
and remains a matter of controversy. In state identification, the
validity of theories in use has to be questioned just as much as
the agreement or disagreement between experimental results
and theoretical predictions. In this paper, as mentioned so far,
we have taken the standpoint that the indistinguishability of
identical particles should be satisfied at R → ∞. The reason
is that both H(2p) atoms have originated from the same H2

molecule through its dissociation and it is formal and physi-
cally meaningless to label the electrons 1 and 2 and protons
a and b, regardless of internuclear distance. In this respect,
we note that the experimental ACF in Fig. 4 is free of H2

gas pressure as mentioned in the second paragraph from the
end of Sec. II B. Since we have taken such a standpoint, two-
photon two-electron states of the present electronic-photonic
system are not always product states of a photonic state and
an electronic state, and two-photon states are not always prod-
uct states of two one-photon states. In such cases, using our
method is “safer” than using the method of Dochain et al.
[9] because according to our method the probability density
for detecting photon pairs cannot always be expressed as a
product of the probability densities for detecting each photon
[4] as above mentioned but Dochain et al. [9] write the for-
mer probability density as a product of the latter probability
densities.

Summarizing, we argue from the sufficient similar-
ity over the whole sphere between dPExpt/d�c d�d and
dPTheo/d�c d�d calculated in our method that the 2p atom
pairs in the H2 photodissociation are in the 1u state in Eq. (24)
[= Eq. (19) with ηSO = 0]. This is the identification of the 2p
atom-pair state within the framework of our method. However,
it is worthwhile to investigate the entanglement of the 2p
atom-pair state in Eq. (24) based on the physical picture that
the dissociating molecule is a molecule.

V. ENTANGLEMENT OF THE 2p ATOM-PAIR STATE
AND PRECURSOR MOLECULAR STATE

We investigate whether or not the 2p atom-pair state in
Eq. (24) is entangled, and then derive entanglement measure
of the state. We also try to investigate the entanglement of
the precursor molecular state of the 2p atom pairs as well.
The precursor molecular state is the Q2

1�u(1) state at Re as
seen in process (1), where Re is the equilibrium internuclear
distance in the ground electronic state of H2. In Sec. V A,
we argue the electron-electron entanglement with electrons
1 and 2 being considered partial systems. In Sec. V B, we
argue the spatial-spin entanglement with the spatial motion
and spin motion of electrons being considered two partial
systems, which are not identical “particles” in contrast with
the electron-electron entanglement in Sec. V A.

In the Appendix, we review what are needed to discuss
entanglement. They are the Schmidt decomposition, Schmidt
rank, Schmidt coefficient, and entanglement entropy, which
refer to two-particle systems whether the particles are iden-
tical or not (see the Appendix, Sec. 1). Others are the Slater
decomposition, Slater rank, and offset entanglement entropy,
which refer to two-electron systems with the indistinguisha-
bility of electrons having to be taken into account (see the
Appendix, Sec. 2).

A. Electron-electron entanglement

1. The 2p atom-pair state

We investigate the electron-electron entanglement of the
2p atom-pair state, the |1u; η, R → ∞〉 state in Eq. (24). To
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this end, we introduce the linear space for the two-electron
system H̄(1, 2; R → ∞), spanned by a basis Ē1 × Ē2, where
Ēi (the electron label i = 1, 2) is the orthonormal basis de-
fined as

Ēi = {∣∣2pa
−1(i)

〉
,
∣∣2pa

0(i)
〉
,
∣∣2pa

+1(i)
〉
,
∣∣2pb

−1(i)
〉
,
∣∣2pb

0(i)
〉
,∣∣2pb

+1(i)
〉
,
∣∣2sa(i)

〉
,
∣∣2sb(i)

〉}× {∣∣α(i)
〉
,
∣∣β(i)

〉}
(i = 1, 2).

(27)

Here, for example, the ket vector |2pa
−1(i)〉 reads that elec-

tron i is in the one-electron state |2pa
−1〉, which is the

2p state with Lz = −1 built on proton a. The notation
|state label (particle label)〉 keeps being used in this sense
from now on. The ket vectors |α〉 and |β〉 are the spin
eigenstates for an electron as usual. The bases Ē1 × Ē2,
Ē1, and Ē2 have been used in Ref. [11], and are referred
to as the atomic bases in this paper. The linear space for
electron i, H̄(i; R → ∞), is spanned by Ēi (i = 1, 2) and
H̄(1, 2; R → ∞) = H̄(1; R → ∞) ⊗ H̄(2; R → ∞). We in-
troduce one more basis of H̄(1, 2; R → ∞), i.e., Ē ′

1(R →
∞) × Ē ′

2(R → ∞). Here, Ē ′
i (R) (the electron label i = 1, 2)

is the orthonormal basis defined as

Ē ′
i (R) = {∣∣π−1

u 2p(i); R
〉
,
∣∣π−1

g 2p(i); R
〉
, |σu 2p(i); R〉, |σg 2p(i); R〉, ∣∣π+1

u 2p(i); R
〉
,
∣∣π+1

g 2p(i); R
〉
,

|σu 2s(i); R〉, |σg 2s(i); R〉}× {|α(i)〉, |β(i)〉}(i = 1, 2). (28)

See the correlation diagram between united atom and separated atom states for homonuclear diatomic molecules, e.g., Fig. 10.14
on p. 505 in Ref. [21]. The superscripts ±1 in the π states express the values of Lz. The bases Ē ′

1(R) × Ē ′
2(R), Ē ′

1(R), and Ē ′
2(R)

are referred to as the molecular bases. The atomic basis Ēi and molecular basis Ē ′
i (R → ∞) are related with each other through

a unitary matrix. For further description, we introduce the one-electron linear space H̄(R) and one-electron basis Ē ′(R), which
are obtained with omitting the electron label i in H̄(i; R) and Ē ′

i (R), respectively. Here, H̄(i; R) is the linear space for electron
i. Summarizing, the dimension d for the space of electron i, H̄(i; R), is 16 for the electron label i = 1, 2 and H̄(1, 2; R) =
H̄(1; R) ⊗ H̄(2; R) for any R. We discuss the entanglement of the 2p atom-pair state and precursor molecular state of 2p atom
pairs in a unified way with the molecular basis Ē ′

i (R) (the electron label i = 1, 2).
We have decomposed the |1u; η, R → ∞〉 state in Eq. (24) by means of the Slater decomposition (“R → ∞” is omitted in

each one-electron state for simplicity):

|1u; η, R → ∞〉 =
√

2
√

p∞
1

(
1√
2

∣∣∣∣|g2; η(1)〉 |u2; η(1)〉
|g2; η(2)〉 |u2; η(2)〉

∣∣∣∣
)

−
√

2
√

p∞
1 eiη

(
1√
2

∣∣∣∣|g1; η(1)〉 |u1; η(1)〉
|g1; η(2)〉 |u1; η(2)〉

∣∣∣∣
)

+
√

2
√

p∞
2

(
1√
2

∣∣∣∣|u4; η(1)〉 |g4; η(1)〉
|u4; η(2)〉 |g4; η(2)〉

∣∣∣∣
)

−
√

2
√

p∞
2 eiη

(
1√
2

∣∣∣∣|u3; η(1)〉 |g3; η(1)〉
|u3; η(2)〉 |g3; η(2)〉

∣∣∣∣
)

+
√

2
√

p∞
3

(
1√
2

∣∣∣∣|u6; η(1)〉 |g6; η(1)〉
|u6; η(2)〉 |g6; η(2)〉

∣∣∣∣
)

−
√

2
√

p∞
3 eiη

(
1√
2

∣∣∣∣|u5; η(1)〉 |g5; η(1)〉
|u5; η(2)〉 |g5; η(2)〉

∣∣∣∣
)

, (29)

where p∞
1 , p∞

2 , and p∞
3 are the Schmidt coefficients, and

specifically

p∞
1 =

(
3 + √

6

12

)2

, p∞
2 =

(
1

2
√

6

)2

, p∞
3 =

(
3 − √

6

12

)2

.

(30)

Here, the one-electron state |u1; η〉, for example, is expressed
with a superposition of the elements of Ē ′(R → ∞) as fol-
lows:

|u1; η〉 = − 1
2

∣∣π−1
u 2p

〉|α〉 − 1
2 e−iη

∣∣π+1
u 2p

〉|α〉 + 1√
2
|σu2p〉|β〉,

(31)

where “R → ∞” is omitted in the spatial ket vectors in the
right-hand side and “u1” reads as the first ungerade state.
Equation (29) holds for any η (0 � η � 2π ), i.e., the Schmidt
coefficients are independent of η. The one-electron states in
Eq. (29), |u j; η〉 and |g j; η〉 ( j = 1 − 8), are normalized and
orthogonal to each other.

We immediately find from Eq. (29) that the Slater rank
of the |1u; η, R → ∞〉 state is 6, and hence conclude that
the |1u; η, R → ∞〉 state is certainly entangled in terms

of the electron-electron entanglement (if “the state’s Slater
rank” >1, the state is entangled, as seen in the Appendix,
Sec. 2). We then obtain the offset entanglement entropy for the
|1u; η, R → ∞〉 state from Eq. (29) according to the method
described in the Appendix, Sec. 2. The offset entanglement
entropy is a measure of entanglement of states in two-electron
systems (see the Appendix, Sec. 2). The offset entanglement
entropy and Slater rank for the |1u; η, R → ∞〉 state in terms
of the electron-electron entanglement are shown in Table I (the
R → ∞ column). It has been substantiated from the Slater
rank and offset entanglement entropy that the 2p atom-pair
state, the |1u; η, R → ∞〉 state in Eq. (24), is entangled and
the measure of entanglement is considerably large: the offset
entanglement entropy amounts up to 57% of the maximum.

The offset entanglement entropy of the 2p atom-pair state
is influenced by the avoided crossings seen in the potential
energy curve of the Q2

1�u(1) state [12], which is the precur-
sor molecular state of the 2p atom pairs as seen in process
(1), because the 2p atom-pair state is the end point of the
cumulative histories in the dissociation from the precursor
molecular state in the Franck-Condon region up to the 2p
atom-pair state. In this regard, it is significant to obtain the
offset entanglement entropy of the precursor molecular state,
which attempt is carried out in the next subsection.

023116-13



YUTARO TORIZUKA et al. PHYSICAL REVIEW A 111, 023116 (2025)

2. The precursor molecular state of the 2p atom pairs

The precursor molecular state is the Q2
1�u(1) state at

R = Re as seen in process (1). The main electron configura-
tion of the Q2

1�u(1) state is known to be (2pπu)(2s σg) =
(πu 2p)(σg 2s) at Re [12,23] (the authors of those papers
showed only the main configuration). Starting with the main
configuration, we write the Q2

1�u(1) state at R = Re in terms
of the molecular basis in Eq. (28) so that the state follows
the indistinguishability of electrons and that of protons, which
procedure is the same as in deriving the 2p atom-pair state in
Eq. (24):∣∣1�u; η, Re

〉∣∣χ e
00

〉 = 1√
2

(∣∣1�Lz=1
u ; Re

〉
+ eiη|1�Lz=−1

u ; Re
〉)∣∣χ e

00

〉
(0 � η � 2π ),

(32)

where the |1�Lz=±1
u ; Re〉 components of the Q2

1�u(1) state
are written as∣∣1�Lz=±1

u ; Re
〉 = 1√

2

(∣∣π±1
u 2p(1); Re

〉|σg 2s(2); Re〉
+ ∣∣π±1

u 2p(2); Re
〉|σg 2s(1); Re〉

)
(double sign corresponds). (33)

The contribution of electronic continua is not taken into
account, like the line in calculating entanglement measures
for doubly excited states of He atoms [22]. Since the spin-
orbit coupling is negligible in comparison with the Coulomb
interaction in the Franck-Condon region, the following equa-
tion holds:

|1u; η, Re〉 = ∣∣1�u; η, Re
〉∣∣χ e

00

〉
. (34)

We have decomposed the |1u; η, Re〉 state in Eq. (34) by
means of the Slater decomposition to obtain the Slater rank
and offset entanglement entropy of the state. Those results
are shown in Table I (the R = Re column). The precursor
molecular state of the 2p atom pairs is entangled in terms of
the electron-electron entanglement, but is not as entangled as
the 2p atom-pair state.

The Q2
1�u(1) state correlates with the doubly excited

1Po(2s)(2p) state of He atoms as R → 0 (the united atom
limit) [12]. Cuartas and Sanz-Vicario [22] calculated entan-
glement measures of doubly excited states of He atoms and
found that only the (2s)(2p) configuration was involved in
the |2(0, 1)+2 ,1 Po〉 state, which is the lowest member of the
1Po series converging to the He+(n = 2) ionization threshold.
The Q2

1�u(1) state hence turns out to correlate with the
|2(0, 1)+2 ,1 Po〉 state in He atoms as R → 0. The entanglement
entropy of this state in He atoms was calculated, but it is the
contribution from the spatial part alone [22]. The offset en-
tanglement entropy originating from the spatial and spin parts
is shown in Table I (the R = 0 column). The |1u; η, R → 0〉
state, the |2(0, 1)+2 ,1 Po〉 state in He atoms, is as entangled as
the precursor molecular state of the 2p atom pairs in terms of
the electron-electron entanglement.

As seen in Table I, the offset entanglement entropy and
Slater rank for the |1u; η, R〉 state increase as internuclear
distance R increases from Re to infinity in terms of the
electron-electron entanglement, but it is unknown how they

change as a function of R between Re and infinity. This
increase is attributed to the fact that many electron configu-
rations are involved at R → ∞ while the main configuration
dominates other ones at Re. A more detailed discussion on
the reason for such increase will be made in a forthcoming
article. As a general tendency, we may argue that the larger
the multiplicity, the larger the measure of entanglement.

B. Spatial-spin entanglement

1. The 2p atom-pair state

We rewrite the 2p atom-pair state in Eq. (19) (ηSO = 0) as

|1u; η, ηSO = 0, R → ∞〉

= 1√
2

∣∣3�+
u ; R → ∞〉[ 1√

2

(∣∣χ e
11

〉− eiη
∣∣χ e

1−1

〉)]

+ 1√
2

(− ∣∣1�u; η, R → ∞〉)∣∣χ e
00

〉
, (35)

where the ket vector |1�u; η, R → ∞〉 in the right-hand
side is defined as |1�u; η, R → ∞〉 = (1/

√
2)(|1�Lz=1

u ; R →
∞〉 + eiη|1�Lz=−1

u ; R → ∞〉). We immediately find the
|1u; η, ηSO = 0, R → ∞〉 state to be expressed in the form of
the Schmidt decomposition as it stands because each of the
spatial ket vectors occurs only once and they are orthogonal
to each other, and the same is seen in the spin ket vectors,
which are [1/

√
2 (. . . )] and |χ e

00〉.
It turns out from Eq. (35) that the Schmidt rank of the

|1u; η, ηSO = 0, R → ∞〉 state is two and the state is hence
entangled in terms of the spatial-spin entanglement (if “the
state’s Schmidt rank” >1, the state is entangled, as seen in
the Appendix, Sec. 1), and the spin-orbit coupling brings
about the spatial-spin entanglement. We then obtain the en-
tanglement entropy of the |1u; η, ηSO = 0, R → ∞〉 state in
Eq. (35) according to the method described in the Appendix,
Sec. 1. The entanglement entropy and Schmidt rank of the
|1u; η, ηSO = 0, R → ∞〉 state in terms of the spatial-spin en-
tanglement are shown in Table I (the R → ∞ column). The
2p atom-pair state is entangled too in terms of the spatial-
spin entanglement besides the electron-electron entanglement
discussed in Sec. V A 1. The entanglement entropy in terms
of the spatial-spin entanglement reaches up to 50% of the
maximum.

2. The precursor molecular state of the 2p atom pairs

It is obvious that the precursor molecular state, the
|1u; η, Re〉 state in Eq. (34), is a product state and hence a
nonentangled state in terms of the spatial-spin entanglement
(see the Appendix, Sec. 1), while it is an entangled state in
terms of the electron-electron entanglement as discussed in
Sec. V A 2. The entanglement entropy of the |1u; η, Re〉 state
is hence zero in terms of the spatial-spin entanglement, which
result is also shown in Table I as well as the Schmidt rank
of the state (the R = Re column). A product state is possible
in the problem of the spatial-spin entanglement at variance
with the problem of the electron-electron entanglement since
in the former the two motions are not identical “particles” but
in the latter electrons are identical.

As mentioned in the second paragraph from the end of
Sec. V A 2, the |1u; η, R → 0〉 state is the |2(0, 1)+2 ,1 Po〉 state
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in He atoms. The |1u; η, R → 0〉 state is hence written as
|spatial〉|χ e

00〉. The entanglement entropy of the |1u; η, R → 0〉
state is consequently zero in terms of the spatial-spin en-
tanglement because of the same reasoning in the |1u; η, Re〉
state, which result is shown in Table I as well as the Schmidt
rank (the R = 0 column). The |1u; η, R → 0〉 state is a nonen-
tangled state in terms of the spatial-spin entanglement while
it is an entangled state in terms of the electron-electron
entanglement.

The entanglement entropy and Schmidt rank for the
|1u; η, R〉 state increase as internuclear distance R increases
from Re to infinity in terms of the spatial-spin entanglement
as seen in Table I, which increase is attributed to the fact
that the Q2

1�u(1) state comes to be superposed with the
Q2

3�+
u (2) state as R → ∞ while they are not superposed

around R = Re as mentioned below Eq. (22). The increasing
role of the spin-orbit coupling brings about the increase of
the measure of the spatial-spin entanglement for the |1u; η, R〉
state as the dissociation goes on. Such an increase in the mea-
sure of entanglement is another manifestation of the general
tendency referred to at the end of Sec. V A 2, i.e., the larger
the multiplicity, the larger the measure of entanglement.

VI. CONCLUSION

We have measured the ACF of a Lyman-α photon pair on
a whole sphere in the photodissociation of H2 with linearly
polarized light at a 33.66-eV incident photon energy in order
to investigate entanglement in the two-electron system and
have had significant results as follows.

(a) Considering the atom pair a diatomic molecule with
infinite internuclear distance as mentioned in Sec. IV C, we
have concluded that the 2p atom pairs produced in the pho-
todissociation are in the |1u; η, R → ∞〉 state in Eq. (24)
[=|1u; η, ηSO = 0, R → ∞〉 in Eq. (19)].

(b) We have found out by means of the Slater decomposi-
tion that the 2p atom-pair state is certainly entangled in terms
of the electron-electron entanglement. The offset entangle-
ment entropy of the 2p atom-pair state has been obtained and
has turned out to reach up to 57% of the maximum. The same
discussion has been tried for the precursor molecular state of
the 2p atom pairs with only the main electron configuration
being considered. It has turned out that the precursor molec-
ular state is also entangled in terms of the electron-electron
entanglement but is not as entangled as the 2p atom-pair state.

(c) We have found out that the 2p atom-pair state is entan-
gled also in terms of the electronic spatial-spin entanglement
and the entanglement entropy of the state reaches up to 50%
of the maximum while the precursor molecular state of the
2p atom pairs is not entangled in terms of the spatial-spin
entanglement. This large difference between R → ∞ and R =
Re is brought about by the difference in the influence of the
spin-orbit coupling on electronic states.
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APPENDIX: A PREPARATION FOR DISCUSSING
ENTANGLEMENT IN TWO-ELECTRON SYSTEMS

In this Appendix, we review entanglement for states of
two-electron systems with the indistinguishability of electrons
being taken into account (see Secs. 2.6.1 and 3.3 in Ref. [3]),
an Appendix which is a preparation for Sec. V. First, the
general discussion is briefly made on entanglement in two-
particle systems, and then we move on to the discussion on
entanglement in two-electron systems.

1. Entanglement in two-particle systems

We consider states of a two-particle system composed
of particles 1 and 2. Those particles may or may not be
identical. We prepare two d-dimensional linear spaces of
one-particle states involved for the particles 1 and 2, spaces
which are denoted by H(1) and H(2), respectively. For a
given state of the two-particle system |	〉 ∈ H(1)⊗H(2),
it is trivial that the state |	〉 is expanded through any
orthonormal bases for H(1) and H(2), bases which are
{|ψ ′

i (1)〉|i = 1, 2, . . . , d} and {|φ′
j (2)〉| j = 1, 2, . . . , d}, re-

spectively: |	〉 =∑d
i, j=1 ci j |ψ ′

i (1)〉|φ′
j (2)〉, where ci j is a

complex number. The number of nonvanishing terms is at
most d2. On the other hand, choosing the adequate orthonor-
mal bases of H(1) and H(2), i.e., {|ψi(1)〉|i = 1, 2, . . . , d}
and {|φ j (2)〉| j = 1, 2, . . . , d}, respectively, it is known that
the state |	〉 may always be decomposed as [3]

|	〉 =
s∑

i=1

√
p	

i |ψi(1)〉 |φi(2)〉, (A1)

where p	
1 � p	

2 � · · · � p	
s > 0. Note the remarkable fea-

ture in Eq. (A1) that (1) |ψi(1)〉 occurs only once and |φi(2)〉
occurs only once too (i = 1 − s) and (2) the number of terms
is at most d , feature which is in much contrast with that in the
trivial expression above. Equation (A1) is termed the Schmidt
decomposition of the state |	〉. The number s, the number
of terms in the Schmidt decomposition in Eq. (A1), ranges
from unity to d and is termed the Schmidt rank of the state
|	〉. The positive numbers p	

i (i = 1, 2, . . . , s) are referred
to as the Schmidt coefficients of the state |	〉 and satisfy the
normalization relation

s∑
i=1

p	
i = 1. (A2)

The entanglement measures for the state |	〉 are derived
from the set of Schmidt coefficients for the state |	〉, {p	

i |i =
1, 2, . . . , s}. For example, the entanglement entropy of the
state |	〉, denoted by Sen(|	〉), is derived as,

Sen(|	〉) = −
s∑

i=1

p	
i

(
log2 p	

i

)
. (A3)

See Eq. (31) in Ref. [3].
The Schmidt decomposition in Eq. (A1) applies to any

two-particle system whether the particles are identical or not.
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We can determine from the Schmidt rank s of the state |	〉
whether or not the state is entangled if the particles are not
identical: (i) if s = 1, the state |	〉 is not entangled, in which
case Sen(|	〉) = 0, and (ii) if s > 1, the state |	〉 is entangled,
in which case Sen(|	〉) > 0. The entanglement entropy of the
state |	〉 is a measure of entanglement of the state |	〉 for sys-
tems composed of two nonidentical particles. It ranges from
zero to log2 d , where “zero” refers to nonentangled states, as
mentioned just above, and “log2 d” refers to the maximally
entangled state.

For systems composed of two identical particles, the char-
acteristic construction due to the indistinguishability of those
identical particles would occur in the Schmidt decomposition.
Special attention should be hence paid to the criterion for
determining whether or not the state |	〉 is entangled and
measures of entanglement of the state |	〉. In the next sec-
tion, we discuss entanglement in two-electron systems in this
respect.

2. Entanglement in two-electron systems

We consider states of a two-electron system composed of
electrons 1 and 2. We prepare two d-dimensional linear spaces
H(1) and H(2) of one-electron states involved for electrons 1

and 2, respectively, as in Appendix, Sec. 1. As both particles
are identical, H(1) and H(2) are the same if we omit the
electron label. We hence take one more d-dimensional linear
space H, which is obtained with simply omitting the electron
label in H(1) [H(2)]. Because of the indistinguishability of
electrons, the state |	〉 [∈ H(1) ⊗ H(2)] is antisymmetric
with respect to the permutation operator of electrons 1 and
2. Equation (A1) may be rewritten in the form such that Slater
determinants occur as a result [24,25]:

|	〉 =
s/2∑
i=1

α	
i

1√
2

[|υ2i−1(1)〉|υ2i(2)〉 − |υ2i(1)〉|υ2i−1(2)〉]

=
s/2∑
i=1

α	
i

(
1√
2

∣∣∣∣|υ2i−1(1)〉 |υ2i(1)〉
|υ2i−1(2)〉 |υ2i(2)〉

∣∣∣∣
)

, (A4)

where the coefficients α	
i are nonzero complex numbers and

the set of one-electron states involved {|υi〉|i = 1, 2, . . . , d} is
an adequate orthonormal basis for H. The Schmidt rank s is
an even number since the summation is taken from i = 1 to
s/2. The decomposition of the state |	〉 in Eq. (A4) is termed
the Slater decomposition of the state |	〉 [24,25]. The set of
Schmidt coefficients for the state |	〉 is written as

s(|	〉) =
s elements︷ ︸︸ ︷(∣∣α	

1

∣∣2/2,
∣∣α	

1

∣∣2/2,
∣∣α	

2

∣∣2/2,
∣∣α	

2

∣∣2/2, . . . ,
∣∣α	

s/2

∣∣2/2,
∣∣α	

s/2

∣∣2/2
)
, (A5)

where |α	
1 |2/2 � |α	

2 |2/2 � · · · � |α	
s/2|2/2 > 0 and the set

s(|	〉) is expressed in the form of a row vector. It is remark-
able that any of |α	

i |2/2 (i = 1, 2, . . . , s/2) occurs twice, and
such a twin structure is attributed to the indistinguishability of
electrons. The normalization relation in Eq. (A2) is rewritten
as

s/2∑
i=1

∣∣α	
i

∣∣2 = 1. (A6)

Because of the normalization relation, it follows that

0 <
∣∣α	

i

∣∣2 � 1 (i = 1, 2, . . . , s/2). (A7)

We stress that the state composed of a single Slater deter-
minant in the Slater decomposition in Eq. (A4) is indeed a
nonentangled state though such a state appears an entangled
state because it is not a product state [25]. We briefly argue
the reason why the following state is nonentangled:

1√
2

∣∣∣∣|υ1(1)〉 |υ2(1)〉
|υ1(2)〉 |υ2(2)〉

∣∣∣∣
= 1√

2
[|υ1(1)〉|υ2(2)〉 − |υ2(1)〉|υ1(2)〉]. (A8)

In this state, the state of each electron is definite, i.e., one
electron is in the state |υ1〉 and the other electron is in the
state |υ2〉. The state expressed as Eq. (A8) is hence nonen-
tangled. It does not matter which electron 1 or 2 is in the
state |υ1〉 or |υ2〉 because it is formal to distinguish indistin-
guishable electrons with labeling. Refer to Ref. [25] for more
detailed reasoning. The number of the Slater determinants in

the Slater decomposition in Eq. (A4), the number which is
termed the Slater rank of the state |	〉 [24], consequently
gives a criterion for determining whether or not the state |	〉
in Eq. (A4) is entangled [25]: (i) if “the Slater rank of the
state |	〉” = 1, the state |	〉 is nonentangled, and (ii) if “the
Slater rank of the state |	〉” >1, the state |	〉 is entangled.
The indistinguishability of electrons gives the large influ-
ence on the criterion for the determination of entanglement
or not.

We then find out the influence of the indistinguishability
of electrons on the entanglement entropy. The entanglement
entropy for the state |	〉, Sen(|	〉), is calculated from the set
of Schmidt coefficients in Eq. (A5) to be

Sen(|	〉) = −
⎛
⎝ s/2∑

i=1

∣∣α	
i

∣∣2 log2

∣∣α	
i

∣∣2
⎞
⎠+ 1. (A9)

As Eq. (A7) holds, we obtain

Sen(|	〉) � 1. (A10)

The equality holds if and only if the Slater rank of the state
|	〉 is unity [25], i.e., if and only if the state |	〉 is com-
posed of only one Slater determinant. In such a case, the
value of Sen(|	〉) is always unity whatever the one-electron
states involved in the determinant are, and the “unity” hence
comes from the Slater determinant itself. It consequently
follows that the invariant part “1” in the right-hand side of
Eq. (A9) is attributed to the indistinguishability of electrons.
The entanglement entropy has an advantage that it may be de-
composed into the contribution from the indistinguishability
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of electrons and that from other sources. We choose the entan-
glement entropy from among a various range of entanglement
measures because of this advantage. From the above-
mentioned discussion, we have a significant conclusion that
the indistinguishability of electrons does not contribute to
entanglement and the quantity

Sen(|	〉) − 1 = −
s/2∑
i=1

∣∣α	
i

∣∣2 log2

∣∣α	
i

∣∣2 (A11)

is a better measure of entanglement for the state |	〉 than
Sen(|	〉) itself [25]. In this paper, we use “Sen(|	〉) − 1”
as the entanglement measure for the state |	〉. The en-
tanglement measure “Sen(|	〉) − 1” is termed the “offset”
entanglement entropy for the state |	〉 in this paper. The offset
entanglement entropy is what expresses the amount of en-
tanglement in two-electron systems. The offset entanglement
entropy ranges from zero to log2(d/2), where “zero” refers
to nonentangled states, as mentioned above, and “log2(d/2)”
refers to the maximally entangled state.
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