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Quantum and classical correlations in four-wave mixing from cold ensembles of two-level atoms
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Quantum correlations in four-wave-mixing from ensembles of cold two-level atoms may prevail without
filtering over background light with well-known classical interpretations, such as Rayleigh scattering, as recently
experimentally demonstrated in Phys. Rev. Lett. 128, 083601 (2022). Here we provide an extended investigation
of this effect, in which we detail the experimental procedure and the variation of the quantum correlation with
various parameters of the system. Particularly, we show that the decay rate of the quantum correlations changes
with the number of atoms in the sample, providing another indication of its superradiance-like nature. The
nonclassical aspects of the signal occur for short timescales, but the long timescales carry as well a lot of
information on the classical correlations of the system. This slow classical regime presents also two clearly
distinct timescales, which we explain by two different pathways for the creation of biphotons. From the global
analysis of the data in all its timescales, we are able to derive an empirical expression to fit the data, resulting in
information on, among other parameters, the sample’s temperature and superradiant-like acceleration. In general,
the reported quantum correlations present a dependence on critical parameters of the system, such as optical
depth and excitation power, that is quite different from other systems used for biphoton generation, and are more
robust to changes in these parameters. This opens the possibility of exploring this process for efficient generation

of narrow-band biphotons or of other quantum-correlated photonic states of higher order.
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I. INTRODUCTION

An ensemble of two-level atoms coherently excited by
optical fields is a basic model for radiation-matter interac-
tions, being used as a first approximation for many physical
systems close to a resonance [1,2]. Even though light scattered
from single two-level atoms has shown quantum correlations
since the early days of quantum optics [3], the observation
of quantum correlations for light coming from ensembles of
pure two-level atoms in free space has been elusive, with in-
dependent emissions from different atoms blurring the strong
quantum signatures from individual atoms [4,5]. The problem
is that the number of accidental coincidences in the correlation
measurements grows with N2, the square of the number of
atoms, while coincidences originating from the same atoms
grow with N only.

A possible solution to this issue is to use a parametric
nonlinear process to enhance the single-atom coincidences to
a level above the accidental coincidences. The first nonlinear
process explored to circumvent this problem was spontaneous
four-wave mixing (SFWM) [6], in which two photons from
excitation lasers are absorbed with each followed by the spon-
taneous emission of another photon in a way that, in the
end, the system is left in the same initial state, see Fig. 1(a).
In this case, the conservation of energy and momentum is
verified among the four photons involved in the process. The
coincidence of detections of the two emitted photons results in
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a signal proportional to N? due to the constructive interference
between the indistinguishable contributions of the four-photon
process occurring in individual atoms in the ensemble. In this
first experiment, the angle 6 between excitation and detection
was 90°, and an atomic beam was used as a source for a large
number of atoms in the experiment’s field of view.

The cross-correlation function between the two photons
in Ref. [6] presented a symmetrical, oscillatory shape, with
a minimum at zero delay. Such antibunching behavior was
explained as a result of interference between sidebands, dislo-
cated by the detuning to the atomic resonance [Fig. 1(c)], and
the background Rayleigh scattering, with the same frequency
of the excitation laser [Fig. 1(b)], that is the main cause of
accidental coincidences. The creation of these sidebands was
expected from previous studies on Mollow triplet in resonance
fluorescence from single atoms [7-9]. Recently, this Mollow
triplet spectrum was observed from an ensemble of cold atoms
[10,11]. The classical bound related to the autocorrelation
function of one of the photon fields was also measured, but the
cross-correlation between the fields of the two photons in the
pair did not reach the threshold to demonstrate nonclassical
correlations [12]. Theoretical analysis was provided [6], how-
ever, that showed the possibility of having cross-correlations
of a purely quantum nature in the system.

Twenty years later, the problem of unfiltered SFWM in
an ensemble of two-level atoms was revisited in a series
of experiments with cold atoms [13-15]. Again, no quan-
tum correlations were observed, although the authors sought
more systematically the violation of classical bounds in their
signals and provided a more detailed account of the the-
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FIG. 1. (a) Scheme for spontaneous four-wave mixing (SFWM)
from an atomic cloud. Two counterpropagating laser beams of fre-
quency w excite identical two-level atoms, and a counterpropagating
pair of photons is generated forming an angle 6 with the direction of
excitation. Energy diagram of the two main processes participating
in the generation of photon pairs: (b) Rayleigh scattering with the
same frequency w, of the excitation fields and (c) scattering through
sidebands located at detunes A with respect to resonance, with A
large when compared to the transition’s natural linewidth.

oretical prediction for the observation of purely quantum
correlations.

Only in 2022 our group finally reported the experimen-
tal observation of such quantum correlations from unfiltered
SFWM in a cold ensemble of pure two-level atoms [16].
This observation was a consequence of the development of
the research field on the observation and control of quan-
tum correlations in four-wave mixing (FWM). Since the first
observation of squeezed states in FWM in 1985 [17], many
groups have succeeded in observing various kinds of quan-
tum correlations in FWM [18-23]. Particularly important for
the present work was the fast progress in generation and
optimization of quantum correlations from SFWM after the
proposal of the Duan-Lukin-Cirac-Zoller (DLCZ) protocol
for long distance quantum communication [24]. The heart
of the protocol is a delayed SFWM in two stages. First, a
Raman transition, induced by a write pulse in an ensemble
of three-level atoms in A configuration, results in the storage
of a collective entangled state in the system, heralded by
the spontaneous emission of a single photon. Second, a read
pulse maps the stored collective state into a second photon
with high probability, using a resonant electromagnetically
induced-transparency configuration. The overall SFWM pro-
cess involved the absorption of two photons from the write
and read fields and the spontaneous emission of the two cor-
responding photons. This proposal led to a fast experimental
development, whose central aspect was the control of the
stored collective states [25-33].

The relation between spontaneous emission and the cre-
ation of collective entangled states in atomic ensembles was
famously established in the work by Dicke almost seventy
years ago [34]. Even though, since then the modeling of the
role of spontaneous emission in the interaction of light with
atomic ensembles has been largely dominated by semiclassi-
cal theories that neglect the creation of such collective states.

Only after the DLCZ protocol, these entangled collective
states start to gain increased attention, now associated with
a class of phenomena without any alternative semiclassical
explanation. A preliminary work for the observations of quan-
tum correlations in Ref. [16] was then the characterization of
the classical bounds of correlation for the Rayleigh scattering
from an ensemble of cold two-level atoms [35], in which it
was theoretically shown that the first-principles theory for the
problem involving collective states provides exactly the same
result as the well known, and tested, semiclassical theory for
thermal light sources composed of a large number of two-level
atoms [5]. In this previous work, it was also introduced exper-
imental methods in order to deal with the typical nonergodic
nature of the signals from cold atomic ensembles, coming
from the limited periods of measurements between longer
periods to replenish the atomic trap.

Once one understands the role of collective states in the
signals generated from two-level atoms, one can apply for
them all techniques that were developed for A systems in
order to control such collective states. For example, it is well
known that any spurious light or electromagnetic field kept
on during measurements will disturb, to several degrees, the
phase between atoms in the collective state, smoothing sig-
nals relying on the state’s coherent nature [36]. The expected
violation of classical bounds by unfiltered two-level systems
is quite small, on the order of fractions of the bound value
[6,14,15], making them extremely sensitive to the smallest
disturbances by external fields or misalignments in the ex-
perimental setup. In contrast, filtered A systems presented
violations larger than hundreds of the value of the classical
bounds [28]. Even though, the introduction of filters in the sig-
nals from two-level systems should enhance their nonclassical
aspects [37], opening the use of strong cycling transitions for
diverse applications in quantum information, from quantum
sensing to the efficient generation of quantum correlated fields
for quantum communication. An initial step was taken by us
in this direction, where we achieved a proof of the principle
of increasing correlations from spectral filtering [11].

The present work extends the one in Ref. [16] in various
aspects. First, in Sec. II, we provide a deeper account of its
methodology. In Sec. Il A we give some details about our
experimental setup followed by the data analysis procedure
(Sec. II B). The main source of the nonergodicity nature of our
signal is investigated in Sec. II C. The normalized correlation
functions and Cauchy-Schwarz inequality are introduced in
Sec. IID to quantify the quantum behavior of the system. A
discussion, with supporting experimental results, on how the
quantum correlation degrades with the relaxation of some of
the experimental conditions is included in Appendix A. Sec-
ond, in Sec. III, the empirical model presented in Ref. [16] is
revisited (Sec. III A) and we provide new measurements of the
correlation decay as a function of the number of atoms in the
sample, which reinforces the indication of its superradiance-
like nature coming from the formation of collective states
in the medium (Sec. III B). We also introduce in Sec. IIIC
the first measurements of a third-order correlation function in
the system, with beatings in the conditioned autocorrelation
functions being considerably reinforced with respect to the
ones observed in the unconditioned signals. Third, in Sec. IV,
we introduce a new experimental setup, with a single beam
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FIG. 2. (a) Time sequence of the experiment. (b) Hyperfine and
Zeeman structure of the levels participating in the FWM process and
the spurious optical pumping mechanism to the dark 5S,,(F = 1)
level.

exciting the sample, that helps to clarify the origin of long-
time correlations in the system (Sec. IV A). We also provide a
series of measurements for the long-term correlations in the
system. Even though these slow correlations are all within
the classical bounds of our system, they provide considerable
information on its dynamics, such as direct measurements of
the ensemble’s temperature and the role of different scattering
angles on the observed correlations. In Sec. IV B, we extend
our empirical model to all timescales. Finally, in Sec. V we
draw our conclusions.

II. EXPERIMENTAL PROCEDURE

In this section, we recall our experimental setup [16] and
provide a detailed discussion about the measurement proce-
dure, including the data analysis and ensemble averages.

A. Setup and timing

An atomic cold cloud of ®’Rb atoms is prepared by turning
on the trapping lights, repumping lights, and magnetic fields
in a magneto-optical trap (MOT) during 23 ms [Fig. 2(a)]. The
trapping beams and magnetic field are then turned off, but the
repumping laser is kept on during an additional 0.9 ms to op-
tically pump the atoms to the 55,2 (F = 2) hyperfine ground
state [Fig. 2(b), left]. After 23.9 ms, all lasers and magnetic
field are off and we illuminate the cloud for 1 ms with ex-
citation laser beams blue detuned by A with respect to the
transition from 58/, (F = 2) to 5P3;»(F’ = 3), with a wave-
length around 780 nm. These excitation beams are circularly
polarised and optically pump the atoms inside the 55, (F =
2) manifold to the extreme Zeeman state 5S;,2(F = 2, mp =
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FIG. 3. Experimental setup for spontaneous four-wave mixing.
The counterpropagating excitation beams are represented by the solid
lines in red. Detected modes are indicated by the dashed orange
lines making an angle 6 with the excitation direction. The dashed
rectangle B is placed in the position where one of the excitation
fields is blocked for the experiments involving excitation coming
from a single direction. PM fiber, polarization maintaining fiber;
MOT, magneto optical trap; PBS, polarizing beam splitter; L, lens;
FBS, fiber beam splitter; SPCM, single photon counting module;
A/2 (A/4), half wave plate (quarter wave plate); D;, detector i, with
i = la, 1b, 2a, or 2b.

+2) (see Supplemental Material of Ref. [16]), from which
the atoms are constrained to the cycling transition 58, (F =
2,mp =+2) —> 5P3/2(F’ =3, mp = +43) [Flg 2(b), right].
In this situation, the atoms in the ensemble can be well ap-
proximated as pure two-level systems with a decay rate of
I' =27 x 6.06 MHz [38].

The typical optical depths OD in our cold ensemble range
from 4 to 18 and are controlled by tuning the power of the
trapping beams [31,35] and measured by determining the de-
tuning of the probe light resulting in the transmission of half
the initial pulse [39]. We estimate that OD = 15 implies about
N = 10° atoms in the region of the ensemble corresponding
to the detected mode [31]. The temperature of the cold atomic
cloud is around hundreds of uK [35].

Most of the experiments we report here were performed
with two counterpropagating excitation beams, but in some
experiments, one of the excitation beams was blocked (Fig. 3).
The beams were generated using polarization maintaining
(PM) optical fibers and focused to a 40 diameter of 420 um on
the atomic ensemble. They have the same power P, controlled
by independent polarizing beam splitters (PBS) and half wave
plates (1/2), and the same frequency, as they are derived from
the splitting of the same laser beam. The circular polarization
is set by quarter wave plates (A /4) right before the windows of
the vacuum chamber. Before reaching the quarter wave plates,
the linear polarizations of the excitation beams are cleaned
by sequences of two polarizing beam splitters (PBS) in each
arm and one of the beams is rotated by a half wave plate to
ensure they have the same circular polarization in the atomic
reference frame of the ensemble.

The two emitted photons are collected in a direction mak-
ing an angle of 8 = 3.0 £ 0.3° with respect to the excitation
beams and are directed to independent single-mode fibers

013703-3



MARINHO, ARAUJO, AND FELINTO

PHYSICAL REVIEW A 111, 013703 (2025)

(Fig. 3). The optical mode coupled in the detection fibers
has a diameter of 140 um on the atomic ensemble. The de-
tected mode is aligned to pass in the middle of the excitation
beams, as seen on the two CCD cameras used to monitor the
cloud of cold-trapped atoms. The two optical fibers for the
excitation beams are coupled to each other with efficiencies
larger than 70%, with similar coupling efficiency observed
between the two detection fibers. The quarter wave plates on
the two sides of the vacuum chamber turn the circular polar-
ization of the emitted photons into linear polarization, with a
typical 99% degree of polarization checked right before the
detection inputs. This degree of polarization for the emitted
photons provides our simplest verification for the polariza-
tion of the atoms in the intended two-level transition and see
Supplemental Material of Ref. [16] we show a more rigorous
technique through microwave spectroscopy to characterize the
populations of the atoms inside the 5S,,(F = 2) manifold.
The polarizations of the excitation beams and detected modes
are all optimized to maximize this number.

Four detectors (D1, Dy, for field 1 and D,,, Dy, for field 2)
collect the emitted photons during the 1-ms excitation window
(Fig. 3), with each detected mode split in two by a fiber
beam splitter (FBS) right before the respective detectors. In
this way, we have a Hanbury-Brown-Twiss interferometer in
each detected mode, allowing us to obtain the second-order
autocorrelation function for each field [5] simultaneously to
the cross-correlation functions between the two fields. The
detectors are avalanche photodetectors (APD, model SPCM-
AQRH-13-FC from Perkin Elmer). In order to evaluate these
correlation functions, the detection events are recorded using
a multiple-event time digitizer (model MCS6A from FAST
ComTec).

B. Data analysis

The time digitizer generates a file containing all the instants
t in which each APD fired, where 0 < ¢t < 1 ms with a reso-
lution of 100 ps. We remove then the data acquired during the
first 1 us and the last 20 us, because they lay at the rising and
falling edges of the 1 ms pulses. We also remove any possible
afterpulse by neglecting other detections occurring in a time
window of 100 ns after the firing of that detector [40].

After these preliminary actions, our analysis program scans
the files in order to collect single and joint counts. We compute
then the quantities N;(t), Nj;(t, t 4 T), and Ny, where

(1) [Ni(¢)] are the single counts of the detector i at instant
t, i.e., the number of times that the detector i fired at ¢.
Numerically, the N;(¢) are vectors containing n rows ranging
from 0 < ¢ < 1 ms in steps of 0.1 ns.

(ii) [NV;;(t,t+ 7)] is the joint coincidence between the
detectors i and j, i.e., the number of times that detector j
fired at ¢ 4+ t after the detector i fired at . Numerically,
the N;;(¢,t + t) are matrices with n rows and m columns
ranging from, respectively 0 < ¢ < 1 ms with steps of 0.1 ns
and 0 < 7 < gk also with steps of 0.1 ns, where 7, is set
previously.

(iii) [MNet] is the total number of samples, i.e., the number
of times that the 1 ms-pulses were sent to the cloud. As each
cycle has a duration of 25 ms [cf. Fig. 2(a)], for a total acqui-
sition time of 30 min for a single file, we have a total of 72 000

cycles per file. For several files, we sum the N;, N;;, and Ny
evaluated separately.

From the N;(t), N;;(t + 7), and N,o, above, we compute the
probabilities of single and joint counts p;(¢) and p;;(,t + 1),
respectively, as

Ni(t)

i(t) = — (1)
b Nt
and
Nii(t,t + 1)
pijt,t+1)= jN— )
tot

C. Optical pumping and nonergodicity

Once we have initially prepared the atoms in the 58> (F =
2, mp = +2), unfortunately they do not remain indefinitely
in the cycling transition, and we do observe a slow optical
pumping in the system to the dark 55;,,(F = 1) level. We
understand this optical pumping as coming mainly from resid-
ual magnetic fields that transfer some atoms to the 55,2 (F =
2, mp = +1), from which they have a small probability of
being excited to 5P;,,(F’ = 2, mpr = +2) and spontaneously
decay to 55,2(F = 1), a process illustrated on the right of
Fig. 2(b). In order to minimize this residual magnetic field,
we use the microwave spectroscopy technique described in
Refs. [16,35,41]. In this way, we cancel these residual mag-
netic fields down to around 23 mG. Even so, the effect is only
reduced but not totally eliminated.

To make the data analysis consistent, it is crucial to take
into account the typical nonergodic nature of our signal, i.e.,
processes where the atomic sample is not stationary over time,
either during the 1-ms period [16] or due to the long-term
MOT fluctuations during the whole acquisition time [35]. The
optical pumping described above results in a reduction in the
number of atoms in the ensemble during the excitation period,
as shown in Fig. 4, through the decay of p; and p;; over time.
The MOT fluctuations are due to environmental random fac-
tors such as room temperature and atom number fluctuations
due to long-time fluctuations of our atomic source.

Figure 4 exhibits the behavior of probabilities as a function
of time for different optical excitation powers P and detunings
A. To obtain these probabilities, first, we compute them using
Egs. (1) and (2) for each time ¢ over all trial periods and later
we average them over a time interval of 7 = 10 ps around
t. For the plots on the right-hand side, in each of them, we
plotted their maxima with respect to variations of 7 for a
particular instant 7, giving the quantity ﬁg’f‘““‘). Note that the
system does not reach a steady state, with the probabilities
falling down over time. On the other hand, the single proba-
bilities are on the order of 10~* while the joint probabilities
depend on the square of this value, i.e., 1078, Then, a long
period of measurements is required in order to obtain a high
signal-to-noise ratio, causing our signal to be susceptible to
the long-term fluctuations. These effects are treated appropri-
ately through the ensemble averages (1) and (2).

D. Normalized correlation functions

From the single and joint probabilities of Eqgs. (1) and
(2) above, we finally compute the normalized second-order
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correlation functions
pijt,t+1)
piOp;jt + 1)

where g;; is the correlation between detectors i and j. This
method of analysis assures that all g;;(t) — 1 for T — oo
(uncorrelated limit). Numerically, the product p;(t)p;(t +
T) is a matrix of the same size as p;;(t,t +7), and
the division in Eq. (3) is taken element by element. As
we have four detectors, and considering all possibilities
of click arrangements, we have six correlation functions
8ij = {81a2a> 126> &102a> 16265 1a1b» 82426} and six corre-
lation functions g;; = {g2414; &2b1a> &2a1b» 82010+ 1bla> §2b2a}-
Since g;; and g; differ only by the order of the detector which
fired first, we can build a single correlation function, denoted
by g;j for 7 < 0 and T > 0, where g;; (g;;) is valid for7 < 0
(t > 0). Thus, we have a total of six correlation functions
from —7 to 7. Four of these g;; functions are called cross-
correlation functions because they account for the correlations
between photons at different fields (1) and (2), and we denote
them by g1». Two of the g;; functions are called autocorrelation
functions because they account for the correlations between
photons of the same field (1) or (2), and we denote them by
g11 and g2. The g1 and g» have features of thermal fields
[35,42] with £11(0) = g22(0) = 2.

Our criterion for searching quantum correlations is the vio-
lation of a Cauchy-Schwarz inequality [12] valid for classical
fields:

gijt, 1 +1)= 3)

2
R(r) = g12(7)

= ———=x1, “4)
811(0)g22(0)

ma. ma.
— 9%% — 920
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FIG. 5. Maxima of the normalized correlation functions [(a),
(c), and (e)], and Cauchy-Schwarz inequalities [(b), (d), and ()]
as a function of time for different optical excitation powers P
and detunings A, with averages over a time interval of T = 10 us
around 7.

in the ideal situation where all detectors have the same ef-
ficiency. In practice [12], for our setup, we have two R
parameters, R, and R;, given by

81a20(T)81124(T)
81a16(0)82426(0)

_ 81a22a(T)g152p(T)

Ri(v) = - '
1(7) 81a16(0)82425(0)

Ry (1)

Figure 5 show the maxima of the normalized correlations
functions gET”"‘a‘) and Cauchy-Schwarz parameter R; and R;,
as a function of time. For each point, we take averages over a
time interval of T = 10 ps around ¢. The correlation functions
were obtained directly from the probabilities in Fig. 4 and ap-
plying the definition (3). We see that although the probabilities
decay with time, the correlations and the Cauchy-Schwarz in-
equalities remain nearly constant throughout the measurement
period. Dashed lines, on the left-hand side, indicate levels 1
for uncorrelated fields and 2 for thermal fields. Note that, as
expected, g11(0) = g22(0) & 2 [35]. On the right-hand side,
the dashed lines indicate the classical bound of the Cauchy-
Schwarz criterion. We see a clear inequality violation during
the whole period, showing its nonclassical behavior and ro-
bustness, even varying the optical power and detuning of the
excitation beams.

The behavior of the correlations functions giTj(‘L') as a func-
tion of t is shown in Fig. 6. The presence of oscillations and
antibunching in these correlation functions were reported and
discussed previously [14—16] and are due to the interference
between the two emission processes in the SFWM (interfer-
ence between processes (b) and (c) in Fig. 1). In Fig. 6(a),
we considered a time average only over 7 = 10 us around the
instant# = 0.5 ms, while in (b) the average was taken over the
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whole period (7 = 1.0 ms). We highlight here the consistency
of using the time average approach, which improves statistics
while preserving all features of the signal. Therefore, from
now on we will always consider an average with 7 = 1.0 ms
and omit this symbol. As discussed in Ref. [35], this proce-
dure of computing the correlation functions allows us to treat
nonergodic processes and enhance our data statistics.

III. FAST QUANTUM REGIME

In this section, we focus on the correlation analysis in
the fast quantum regime of tens of nanoseconds, the region
where the Cauchy-Schwarz criterion is violated. Figure 7 ex-
hibits the time behavior of the R; and R, parameters varying
the detuning while keeping constant the excitation power.
We observe that, for all detunings, the oscillation persists
approximately until 25 ns, but the maximum amplitude and
the violation region vary for each detuning. Furthermore, the
delay ty.x that corresponds to the maximum value of the
inequality violation is inversely proportional to the detuning
A of the atomic transition, i.e., Tyax o 1/A. In addition to the
dependence of the correlations with the repumping beam and
the polarization of the excitation beams (see Appendix A), the
criterion violation value is greatly affected by the alignment
of the four-wave mixing, which depends on the interaction
region of the excitation beams and the detection modes being
exactly in the center of the cloud of cold atoms. Also, the fiber
couplings of the excitation and detection modes must be on
the order of 70 to 80%.

A. Fast empirical expression

At this point, we will analyze in greater detail how the the-
oretical model [14,15] can be modified empirically to provide

P =350 uW b R b R

(a) A= +20r

AN

ST e U A V R O N

(b) A= +30I

(c) A= +40r

(d) A= + 50l
=2 &
€ AANARNAA
NAANN NV V VUV
0 -20 -10 0 10 20

T (ns)

FIG. 7. Dependence of the parameters R; and R, of the Cauchy-
Schwarz criterion as a function of t. The power was kept constant
at P = 350 uW while we varied the detuning, with (a) A = 420T,
(b) A = 430T", (c) A = +40T", and (d)A = +50I". The dashed line
indicates the frontier between quantum and classical correlations.

us with a satisfactory description of the temporal behavior
of the correlation functions. In the limit of large detunings,
short delays, and low excitation power, the correlations can be
written as [14]

4
gn(@)=1+ —z[e_zygf 4 eVt — e~ Wstret cos(Ar)],
T

(6)
where y, (y,) is the decay rate of the excited (ground) state
and A is the detuning from the atomic resonance. To match
the experimental data with theory, we assumed that y, =0
and empirically modified Eq. (6) to [16]

4
gu(m) =1+ f;[l + e T =272 cos(AgT)], (7)

with f, x, and Ag; being fit parameters.

The red solid line in Fig. 8 provides a fit from Eq. (7) for
a measurement with P = 175 yW and A = 420I". As a re-
sult, we obtain f = 1.57 £ 0.01, x = 5.03 £ 0.05, and Ag; =
(21.64 £ 0.02)I". The value of Ag; &~ A is consistent with the
theoretical expectation. The value f # 1, on the other hand,
indicates some discrepancy to the theory of Refs. [14,15]. An-
other striking difference was an increase in the rate of natural
decay, represented by the value x > 1, where for an individual
atom x = 1. Therefore, this may indicate the existence of an
acceleration in the decay rate due to collective effects, as ob-
served in Refs. [33,43] under similar experimental conditions.

B. Superradiance-like effects

In order to study the fast acceleration decay rate observed
in our data, we exhibit in Fig. 9 the correlation functions
and Cauchy-Schwarz inequalities for various optical depths,
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FIG. 8. Correlation function gb,,,(t) (filled black circles) and
theoretical empirical fit (solid red line) from Eq. (7). Measurement
was carried out with P = 175 uW and A = +20I". Similar results
were obtained for all other cross-correlation functions.

keeping excitation power and detuning fixed at P = 25 uW
and A = +29T", respectively. The solid red lines are theoreti-
cal empirical fits from Eq. (7). As the optical depth increases,
we can see an increase in the decay rate, characterized by
the oscillations “dying” in progressively shorter periods of
time as OD increases. Also, note that the maximum values
of the Cauchy-Schwarz criterion are practically independent
of variations in the number of atoms, which is in line with
the theoretical prediction [14,15]. As the correlation function
can be written as g12(t) = 1 + R..(t)/R%, where the coinci-
dence rate R.. o« N? (as expected for parametric processes)
and Ri o< N represents the Rayleigh scattering rate, this type
of behavior is quite different from what typically occurs in
A-type systems, where correlations grow with the increase
in the number of atoms [24,28,31]. The dependence of the
x parameter on the optical depth is plotted in Fig. 10. The
filled blue circles correspond to measurements with detun-
ing A = +29I', and the filled red triangles correspond to
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~
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-
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FIG. 9. On the left-hand side, we show the correlation function
851.(T) (filled black circles) and theoretical empirical fit (solid red
line) from Eq. (7) for different optical depths OD. On the right-hand
side, are the corresponding Cauchy-Schwarz inequalities.

—— Linear fit: a=0.47 = 0.02; b=1.00
10

0 5 10 15 20
oD

FIG. 10. Dependence of the x parameter with the optical depth.
Measurements with fixed power P =25 uW but detunings A =
+29T" (filled blue circles) and A = +20I" (filled red triangles). The
solid black line is a global linear fit, x = a x OD + b, of the data.

measurements with the same power of P = 25 uW but with
detuning A = +20T". It is important to remind here that the
number of atoms is not fixed throughout our 1-ms excitation
period, as can be inferred from the decays in Figs. 4(a), 4(c),
and 4(e). The fitted x reflects then an average acceleration of
the decay rate in that interval. We observe a linear relation of
x with OD, in addition to its independence with the detuning
A. A global linear fit, x = a x OD + b, of the data resulted
in a = 0.47 £ 0.02, where we fixed b = 1.00 to ensure that
there is no acceleration in the decay rate in the limit of a very
thin sample. This behavior in decay rates is reminiscent of
superradiance effects [31,33,43,44]. Such accelerated decay
can appear from the formation of a symmetric collective state
in the excited state of the atoms in the ensemble. The mecha-
nism is likely related to the time ordering for the formation of
sidebands in Fig. 1(c), which was recently directly observed in
Refs. [11,45]. As pointed out a long time ago in Ref. [9] (see
Fig. 7 of this reference), the first photon to leave the medium
in the SFWM in an ensemble of two-level atoms is the one
out of resonance. The ensemble is then left with a single atom
in the excited state, which will later decay into the second
photon. In this case, the first photon heralds the occurrence
of an instantaneous three-photon process that leaves an atom
in the excited state [45]. With the large detunings employed
in our experiments, the absorption of the excitation fields is
negligible throughout the ensemble, resulting in a uniform,
equal probability to excite any atom in the ensemble. We
expect this mechanism to result in a symmetrical collective
state in the excited state, such as the one resulting in the super-
radiant emission in the reading process of a DLCZ quantum
memory [31].

C. Conditioned second-order correlations

The Cauchy-Schwarz inequality is not the only criterion
for searching for quantum correlations in optical systems.
Another well-known condition used to characterize the single-
photon regime is the so-called conditioned second-order
correlation g2 (t) function [5,31], denoted by gi2> = g;;; and
defined as

PTG, ®)

gijjt, t+1)= i
Y pijO)piy(t + 1)
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FIG. 11. Conditioned second-order correlation function g?(t)
for A =20I" and excitation powers (a) P = 350 uW and (b) P =
175 uW. The dashed black line denotes the limit of inequality g >
1, valid for classical fields. For comparison, we added the second-
order correlations functions, gI bla (lime green) and gzwa (gold).

where p;;;(t,t + 1) is the probability of triple coincidences,
i.e., the probability for the detectors j and j’ of the same
field to click together at the instant ¢ + t after one of the
detectors of the opposite field have clicked at the instant ¢
[e.g., P1a2a2b(t, t + T) means that the detector 1a clicked at the
instant ¢ and the detectors 2a and 2b clicked simultaneously
at the instant ¢ 4+ t]. Equation (8) is valid for 7 > O only,
since the simultaneous click of j and j* will occur after the
single click of i. From Eq. (8), we calculate g(lz)z(t) from a
time average similar to the methods of Sec. II. By considering
the arrangement of detectors in our setup [Fig. 1(a)], we have
four g3 122 functions: g 12a)2aZb’ 12b)2a2 g2a1a1b’ and gy,,,,,- Quan-
tum correlations are verified if gf) < 1; ideally, g (% =0 for
single-photon states, and a value smaller than 1/2 indicates
suppression of the second-order components into the single-
photon regime [5,6,28,31,32].

Figure 11 displays the g)(7) functions for two different
pumping powers. For companson we added the second-order
correlations functions, gl bla (lime green) and g2h2a (gold). The
correlation peaks in the cross-correlations functions leading to
R > 1 also indicate regions of suppression of g?)(t) with re-
spect to the corresponding autocorrelation function. However,
we were not able to observe g#) < 1 for our experimental
data. In many systems, the reduction of optical excitation
power makes it possible to achieve the single-photon regime,
for example, in the DLCZ protocol [24]. This procedure here,
however, did not change significantly the shape of the g»(t)
function. The reason for this comes from the small degree of
Cauchy-Schwarz violation in our system [16]. In a paper em-
ploying the DLCZ-protocol scheme, for example, Laurat et al.
[28] observed a violation of the classical condition g(cz) >1

— Q222

— Jin1a

FIG. 12. Autocorrelation functions g1,(7) (green) and g22,(7)
(red) in the configuration with only one excitation beam. The contin-
uous curves represent fittings from Eq. (10). The global fit of the data
yields to a temperature of 7 = 300 = 10 pK, and a scattering angle

6, =2.7+0.1° and 6, = 180° — 0,. Measurement was carried out
with P = 310 uW and A = 450T".

only when the second-order cross-correlation function was on
the order or larger than 5, which is almost 1.6 times greater
than the correlations obtained in our two-level system [16].

IV. SLOW CLASSICAL REGIME

In the limit where T — oo, the system tends to become
uncorrelated. Therefore, the joint probability p;;(z, + 7) can
be factored as p;;(t,t + t) = p;(t)p;(t + t). Thus, the corre-
lation function in this limit becomes

t,t+1
hm g,j(t t+1)= lim M =
=00 pi(t)p;t +T)
The timescale to reach this limit characterizes the slow clas-

sical regime, which in our system occurs at tens of us (see
Figs. 12 and 13).

€))

A. Single-beam experiment

In order to verify the dependence of the decay time on
the long-term scale with the detection angle, we blocked one
of the excitation beams (see Fig. 3). Figure 12 shows the
autocorrelation functions g;; and g,, for one of the excitation
beams blocked. Also, there are no cross-correlations between
fields 1 and 2, so g = 1 (uncorrelated) for all T values.
For better visualization, they are not shown in Fig. 12. This
behavior is expected, as we no longer have a phase-matched
process with this spatial configuration of a single excitation
beam only. The photons detected by APDs Dy, and Dy, have
a scattering angle 6 = 3.0 £ 0.3°, and for detectors D, and
Dy, we have a scattering angle of 180° — 6 = 177 &+ 0.3°.
These different scattering angles directly impact the charac-
teristic times for the decay of the autocorrelation functions
81p14(7) and gop4(7), as observed in Ref. [35].

The temporal behavior of the autocorrelation functions
Z1p14(7) and gopo,(7) can be well described by a Gaussian-like
decay [35,41]

g(z)(‘l?) =14+A e—(f/fn)z’ (10)

with the Doppler decay time given by 7, = A/~/2u, where
A = X1/[2sin(0/2)] is the spatial period of the coherence
grating created between the excitation beam and the emitted
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FIG. 13. Cross-correlation g,,1,(7) (black) and autocorrelation
2Y(t) (blue), defined in Appendix B as the convolution between
Z1614(T) and gop04(7), including fast and slow time regimes, with the
T axis in a logarithmic scale. Other combinations of cross-correlation
functions give similar results. The black dots are the experimen-
tal data, and the red curves represent the theoretical empirical fit
from Eq. (11). Measurements were performed with fixed power
P =350 uW and varied detunings of —20, 420, +30, +40, and
+50I". The left (right) panels are data plotted with bin = 1 (bin =
100). These bins correspond to temporal resolutions of 0.1 and 10 ns,
respectively.

mode, with A being the wavelength and 6 the scattering angle,
u = /2kgT /m being the most probable velocity of atoms of
mass m at a temperature 7' and kp the Boltzmann constant. The
parameter A adjusts the value of the autocorrelation functions
at T = 0. While theoretically we expect A = 1, in order to
satisfy the statistics of thermal fields g*(0) = 2, noise and
angular mismatch may reduce the value of A. After finding the
value for A, we perform a global fitting of our experimental
data, using the temperature 7" of the atomic cloud and the
scattering angle 6; (corresponding to the light detected by
APDs Dy, and D) as global adjustment parameters [note that
0, is the angle 6 included in the parameter 7 of Eq. (10)].
The angle 0, (corresponding to the light detected by APDs
Dy, and D,;) is the supplementary of 6y, i.e., 6, = 180° — 6.
This relation between the angles is fixed by measuring the
quantum correlation in the SFWM signal right before block-
ing one of the beams. The fit yields to a temperature of T =
300 £ 10 uK, and a scattering angle 6, =2.7+£0.1°,A| =
0.60 £ 0.02, and A, = 0.62 £ 0.02. It is worthwhile to em-
phasize that we have assumed 6, as a fitting parameter, but
we restrict its fitting to return values inside the error bar of

0.3°. The broad qualitative agreement we obtained with this
procedure indicates that the angular difference between the
two detections leads to the appearance of two, very distinct,
slow decays.

Additionally, we noted in Ref. [46] that the autocorrelation
functions in Fig. 12 decay with nearly the same unnormalized
probabilities, at zero delays, for 8 = 3° (with decay time 7p;)
and for 6 = 177° (with decay time 7p;). The slight variations
are caused by detectors with slightly different efficiencies.
Based on these observations, we will propose in the next sub-
section an empirical modification in order to globally describe
the decay in the correlation functions, both on fast and slow
timescales.

B. Full empirical expression

In order to adjust the experimental data with the theory
on both fast and slow timescales, and based on the results of
Sec. IV A, we empirically write the cross-correlation function
as

§HP(T) =14 @4f/m?) (1 + e " —2cos(Agt)e ¥ /)
X [Ee—(f/fm)2 +(1 - E)e—(f/rnz)zl (11)

with f, x, Ag, Tp1, Tpa, and € fitting parameters. Our em-
pirical modification considered that a portion € of the atoms
in the ensemble are affected by Doppler broadening with a
decay time tp; and that a fraction (1 — €) of the atoms are
affected by Doppler broadening with a decay time tp;. A
similar approach is found in Ref. [35], where the Doppler
decay was explained from a first-principles theory in line with
Sec. IV A. These different Doppler decay times are associated
with scatterings with angles of § = 3° and 180° — 0 = 177°,
respectively, as mentioned in Sec. IV A. Once we have fixed
the angle 6, = 2.7°, the decay times are determined by the
cloud temperature, as in Sec. IV A. The parameters f, x, and
Ay were adjusted independently by first performing a fitting
on the short timescale (up to 50 ns).

In Fig. 13, we display the correlation function g,51,(7) with
the t axis in a logarithmic scale. All other cross-correlation
functions also exhibit similar behavior. The black dots are the
experimental data, and the red curves represent the theoretical
empirical fits from Eq. (11). The blue curves g?(t) are de-
fined in Appendix B as the convolution between g151,(7) and
Z2124(7) and thus are independent of detector labels. Compar-
ing the cross- and autocorrelations we observe a decoupling
between the fast and slow time regimes, with the acceler-
ated decay affecting more notably the cross-correlation in the
quantum fast regime, while the decay in the classical slow
regime is almost the same for both second-order functions.
We expect, then, to be able to build classical or semiclassical
theories for fields with thermal statistics of photons to explain
in more detail such slow temporal evolution [35,47], which
we approximate for now by the composite Gaussian decays
of Eq. (11). The left panels use bin = 1 and the right panels
use bin = 100. Bin = 1 and 100 correspond to temporal
resolutions of 0.1 and 10 ns, respectively. This change in
resolution was necessary because storing information on a
timescale of tens of us using a resolution of only 0.1 ns had a
prohibitive computational cost. We can observe a good fit of
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TABLE I. A table with fitting parameters including the fast and
slow timescales.

Aexp (IN) Ag (T) T (uK) € (%) f X

-20 23.7 350 48 1.24 44
+20 232 1300 14 1.26 53
+30 31.7 920 22 1.74 4.7
+40 39.8 475 22 1.48 4.7
+50 49.6 395 27 1.34 4.0

the theoretical-empirical expression to the experimental data.
Table I displays the corresponding values of the fitting param-
eters for the different detunings A considered. The differences
between the fitted detunings and the actual parameter are on
the order of what was reported before in Ref. [16]. As for the
parameters f and x, they are consistent with fluctuations in
the quality of alignment and atom numbers in the trap over the
long period of time that was taken to build Fig. 13, between
3 and 4 months. These are all quantities connected to the
short-time dynamics. For the long-time decay, we have a good
qualitative agreement, with reasonable timescales consistent
with previous results under similar conditions [35]. However,
the large variation of € for the negative detuning is just an
indication of a broader discrepancy, as we do observe some
ringing on the correlation functions for these conditions, see
inset for Fig. 13(b). For the other detunings, we did not ob-
serve such behavior, but we did observe minima followed by
small revivals of the correlation functions in the transition
between the two decay timescales, as shown by all insets
for the right panels in Fig. 13. These observations were not
accounted for by our simplified, empirical approach and may
require a first-principles theory of the process to be explained.

V. CONCLUSION

This paper delves deeper into the process of generating
nonclassical correlations between photon pairs from an en-
semble of pure two-level atoms from spontaneous four-wave
mixing. With slight empirical modifications to previous the-

Repumping: OFF Repumping: ON
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Ga1p
Gob1p
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FIG. 14. Dependence of the correlations g; and the Cauchy
inequalities R, and R, with the repumping beams. Panels (a) and
(b) [(c) and (d)] denote schemes with the MOT repumping laser
beams kept off (on), for P = 19 uW and A = —9T".

oretical treatments, we were able to describe the behavior
of the correlations both in the fast quantum regime and the
thermal regime. In the fast regime, two things deserve more
attention, namely, the maximum correlations predicted by the
theory and the acceleration in their decay rates. The theories
developed in Refs. [14,15] do not agree with each other con-
cerning the maximum possible values for the cross-correlation
functions. One of the reasons for this issue could be that the
authors used a completely quantum approach to determine
the biphoton generation rate, but they took into account a
treatment based on rate equations for the Rayleigh scattering.
Also, their quantum model does not take into account the
possibility of generating collective states, therefore also being
unable to explain superradiance-like effects, i.e., the accelera-
tion in decay rates due to collective effects [34]. Thus, a purely
quantum treatment from first principles for the whole process
is still an open question. We believe our present approach will
clarify these issues and serve as a guide for future theoretical
treatment.

On the other hand, in the slow classical regime, although
we have been able to empirically obtain important information
from the behavior on this scale, such as the temperature of the
atomic cloud, we still need a theory that takes into account
the atomic motion and the recoil of atoms after emitting
photons to properly explain our results. Such processes are
one of the main decoherence mechanisms in our system [35]
and would explain the decay of correlation functions on this
slow scale. Additionally, the contribution from scattering with
angles 6 and 180° — 6 must be considered in the signal in this
approach, as both scatterings give rise to different decay times
and some unexplained behavior around the transition between
the two timescales.

These correlations in our two-level system without any
filtering mechanism have a possible maximum bound [15,16].
This occurs because the biphoton generation rate grows with
the square of the number of atoms N 2 in the same way
as the accidental coincidences (background level), which are
proportional to the square of the Rayleigh scattering rate. This
happens in such a two-level system because both excitation
fields act on the same transition simultaneously, generating
noise in both emitted modes. However, we provided already
an initial demonstration that spectral filtering may enhance the
correlations in our two-level system [11], opening the way for
strong cycling transitions to be used in quantum information
applications.
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FIG. 15. Dependence of the correlations g;; and the Cauchy in-
equalities R, and R, with the polarization of the excitation beams.
Panels (a) and (b) [(c) and (d)] denote schemes with circular polar-
ization (linear), for P = 424 uW and A = 20I".

APPENDIX A: FACTORS THAT PREVENT THE
OBSERVATION OF QUANTUM CORRELATIONS

As pointed out in the main text and in Ref. [16], the main
experimental factor that degrades the cross-correlations is
misalignment between the four modes of the SFWM process,
and between them and the atomic cloud. Another critical issue
is to decrease as much as possible the crossing of the detection
modes with the excitation modes in any other material media,
like the windows of the vacuum chamber and other transparent
optical elements, as this may lead to spurious scattering of
excitation light into the detection modes. These are broad
principles that need to be followed in any SFWM experiment
exploring quantum correlations between the spontaneously
generated photon pairs. There are, however, other factors that
are particular for this system of cold atoms. Below we discuss
two of these factors that were not fully appreciated by previ-
ous groups working in the problem.

To illustrate the impact of the repumping beams on the
cross-correlations, we performed a measurement of g;;(7) and
R with and without the repumping beams. In Figs. 14(a) and
14(b), the absence of the repumping beams (Fig. 2) leads
to the observation of quantum correlations with a clear cri-
terion violation. However, when the repumping beams are
turned on [Figs. 14(c) and 14(d)], the quantum correlations
are suppressed, exactly as observed in Refs. [14,15]. It is well
known that any spurious light or electromagnetic field kept
on during measurements will disturb, to various degrees, the
phase between atoms in the collective state, softening signals
relying on the state’s coherent nature [36].

We also studied the dependence of the correlations on
the polarization of the excitation beams. In Figs. 15(a)
and 15(b), we show the results for the case in which the
excitation beams have circular polarization o ™. This config-
uration is responsible for carrying out the optical pumping for
the cyclic transition 58 ,2(F =2, mp = +2) — 5P (F' =
3, mp = +3), corresponding to a pure two-level system. On
the other hand, in Figs. 15(c) and 15(d), we show the results
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FIG. 16. Autocorrelation gi,(t) (green) and Zom.(t) (red)
functions including fast and slow time regimes, with the 7 axis in
a logarithmic scale. The blue curves represent the global convolution
from the data and are thus independent of detector labels and sym-
bolized by g®(r). Measurements were performed with fixed power
P =350 uW and varied detunings of —20, 420, +30, +40, and
+50I". The left (right) panels are data plotted with bin = 1 (bin =
100). These bins correspond to temporal resolutions of 0.1 and 10 ns,
respectively.

for the case in which the excitation beams have horizontal
linear polarizations. In this situation, the system can no longer
be described as having two pure levels, becoming a mixed
state with the atoms distributed among the five Zeeman sub-
levels associated with the hyperfine level F = 2. The atoms in
different Zeeman sublevels contribute independently through
different parametric processes [36], taking the correlations
back to the border of the classical region, as observed in
Refs. [14,15].

APPENDIX B: AUTOCORRELATION
FUNCTIONS BEHAVIOR

In order to demonstrate the behavior of autocorrelation
functions in both fast and slow timescales and ensure that
the manuscript is self-contained, we display in Fig. 16 au-
tocorrelations g151,(t) (green) and 2,57,(7) (red), with the ©
axis in a logarithmic scale. Since these functions exhibit close
similarity, we performed a global convolution to smooth out
the data and defined the quantity g®(z) (blue line) that is
independent of the detector labels.
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