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Motional entanglement of remote optically levitated nanoparticles
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We show how to entangle the motion of optically levitated nanoparticles in distant optical tweezers. The
scheme consists in coupling the inelastically scattered light of each particle into transmission lines and directing
it towards the other particle. The interference between this light and the background field introduces an effective
coupling between the two particles while simultaneously reducing the effect of recoil heating. We analyze the
system dynamics, showing that both transient and conditional entanglement between remote particles can be

achieved under realistic experimental conditions.
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I. INTRODUCTION

Superposition states are one of the most fascinating man-
ifestations of quantum mechanics. When dealing with two or
more degrees of freedom, superpositions can produce strong
correlations that make the joint state of the system nonsepara-
ble, or entangled. Several works in the field of nanomechanics
have prepared these quantum correlations between the mo-
tional degrees of freedom of two mechanical resonators, from
individual atoms [1] to microbeams [2,3], microscale drum
resonators [4—6], and acoustic modes of bulk resonators [7].
Extending this capability to levitated optomechanics [8,9]—
i.e., generating motional entanglement between two optically
levitated nanospheres in high vacuum—is a milestone in the
field [10-13]. On the one hand, entangled states would allow
levitated nanoparticles to show quantum motional features
without necessarily requiring the preparation of non-Gaussian
states, a task which remains challenging despite recent pro-
posals [14—16]. On the other hand, entangled states of two
particles at controllable long distances could be used as
probes to characterize yet unknown sources of decoherence
[17], as well as for quantum-enhanced sensing and metrology
[18-21].

Recent experiments have taken crucial steps towards entan-
glement in levitated optomechanics by showing mechanical
ground-state cooling of levitated nanoparticles in free space
[22,23], as well as strong and controllable light-mediated
interactions between two levitated nanoparticles [24,25]. In
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these setups, however, the trapping laser’s shot noise induces
a high degree of motional decoherence which prevents the
generation of entanglement [13]. So far, proposals to address
this issue have included trapping nanoparticles inside a high-
finesse optical cavity to enhance the coupling-to-decoherence
ratio [13,26-28], nonoptical coupling mechanisms [29-31],
and using squeezed light to reduce measurement backaction
noise [13,32].

In this work, we propose a method based on optical
forces to generate entanglement between levitated nanopar-
ticles across long distances (up to meter scale) without a
high-finesse optical cavity nor the use of squeezed light. We
engineer long-range interactions by directional coupling of
the light scattered off each nanoparticle into optical trans-
mission lines within a closed loop configuration. Fine tuning
of the accumulated phase in the transmission lines allows
adjusting the effective coupling sign and strength, and to sup-
press the photon recoil. We derive the equations of motion
for the system and provide an analytical description of the
system dynamics. Finally, we demonstrate the generation of
both transient and conditional entanglement.

II. MODEL

A dielectric nanoparticle illuminated by a tightly
focused laser experiences a restoring optical force. For
small displacements, its motion is harmonic and imprints a
position-dependent phase onto the scattered laser photons,
which in turn generate recoil [33]. Since scattering events
occur randomly, recoil produces a fluctuating force acting
on the nanoparticle. This form of optomechanical backaction
represents the dominant fluctuating force in ultra-high
vacuum [34]. Hereafter, we focus on the nanoparticle motion
along the optical axis z and introduce the displacement
operator g =z/ (ﬂzzpf) normalized to the zero point
fluctuations z,pr = /1/(2mS2y), where m and €2) denote

©2025 American Physical Society
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FIG. 1. (a) Angular spectrum of the ¢ interacting mode associ-
ated with an x polarized tweezer propagating along z. Solid (dashed)
lines represent a cut in the yz (xz) plane. (b) Schematic illustration
of two optical tweezers interconnected via optical transmission lines
characterized by a transmittance 1 and phase delay 6. The fields a{;1
and al,, denote the interacting modes prior and after interaction with
each nanoparticle, a’,, denotes the loss-induced vacuum fluctuations
entering the loop.

out

the nanoparticle mass and resonance frequency, respectively.
While light-matter interactions in free space involve every
mode of the electromagnetic continuum, it is possible to
identify a collective mode that is solely responsible for the
optomechanical interaction with ¢g: the interacting mode
[23,35,36]. These collective modes are weighted superposi-
tions of plane waves, which are entirely characterized by their
angular spectrum in reciprocal space. Owing to reciprocity,
the interacting mode both dictates the angular spectrum of
inelastically scattered light (the output field) and of the modes
driving the particle motion (the input field). In the Heisenberg
picture, the annihilation operators of the interacting mode
before and after the interaction with the particle are denoted
by ain and aqy, respectively. Crucially, the angular spectrum of
the interacting mode associated with ¢ is strongly anisotropic:
it predominantly propagates against the tweezer; see Fig. 1(a).

Harnessing such directionality, we couple the backscat-
tered light, which carries information about the nanoparticle’s
motion, from the output of one tweezer to the input of another.
This can be accomplished using circulators that define a one-
way loop in combination with transmission lines (e.g., optical
fibers). Hereafter, we consider the case of two identical optical
tweezers interconnected with identical optical transmission
lines, as illustrated in Fig. 1(b). Each transmission line intro-
duces a phase lag 6 and has a finite transmittance n owing to
finite collection efficiency and imperfect mode matching. In
principle, for a tweezer system with NA = 0.85, the overall
efficiency can reach values up to n = 0.5 for free-space prop-
agation or 0.35 when using dedicated mode matching optics
and optical fibers [23]. Losses, in turn, allow independent,
uncorrelated modes d.x; to leak in the loop. Inline optical
switches allow to sever the loop and divert the backscattered
light from each nanoparticle to separate homodyne receivers
that are used for state initialization and tomography.

We now derive the equations of motion for the compos-
ite system. As the transmission-line loop can be regarded
as a bad ring cavity, delayed interactions within a mechani-
cal period can be neglected if Q¢L/(Fcy) < 1 where L, ¢,
and F denote the loop length, optical group velocity, and

cavity finesse, respectively. For standard optical fibers, using
F=>0-n»/(1-n)* Q~2m x 100kHz, and n = 0.5,
the approximation holds up to L ~ 10 m; see Appendix A.
Each nanoparticle, labeled by the index j = 1, 2, obeys the
Langevin equation

Gj+ Q%q; = Q204 (al, +alh), (1)

where I'y represents the decoherence rate due to quantum
backaction. For a dipolar scatterer, the localization parameter
I"q/S€20 does not depend on the laser power and is proportional
to the particle volume and to the fifth power of the trapping
laser wave vector [34-36]. This allows tuning I'q/€2g over a
wide range by appropriately choosing the particle size and
the laser wavelength. In addition to Eq. (1), we can write the
input-output relations [37]

oul - a + 1\/ 2r qj’ (2)

withi = +/—1 the imaginary unit. Equations (2) and (1) show
that the amplitude quadrature of the interacting mode drives
the motion, while the phase quadrature probes it. Given the
loop geometry considered in Fig. 1(b), the input-output fields
must satisfy the closure relations

= (Viay + 1= nal’)e’ 3)

As shown in Appendix A, solving Egs. (2) and (3) for the two
input fields yields

aljn = gL [1@(0{6]1 + 6]3—;) + 8n (aaéxt + ai;j)]’ (4)

where «(0) = ﬁeie denotes the transmission line trans-
fer function, gr.(9) = a/(1 — «?) the Airy function of the
effective low-finesse resonator generated by the loop, and
gf] = (1 — n)/n. The amplitude quadrature of a;, drives the
nanoparticle’s motion. Equation (4) thus indicates that the
loop effect is twofold. The first term, o agrq; renormalizes
the trap stiffness depending on the round-trip phase 26. The
second term, & gr.g3— j, introduces a coupling term originating
from the modulation of the on-site optical force due to the
interference between the tweezer and the interacting mode of
the distant particle. For convenience, we write dynamics in the
normal mode basis upon introducing the joint modes g+ =
(g1 £ ¢2)/v/2 and py = (p1 £ p2)/+/2, associated with the
nanoparticle common (4) and relative (—) motion. From
Egs. (1) and (4), we obtain

Ge + Qg = Qo/4Tqna, ©)
where
41 in(0
Q= szo(szo + ay/1sin0) ) )
1+nF2/ncos)

defines the normal mode frequencies, and ny are two mu-
tually uncorrelated fluctuations driving the joint modes. The
derivation of Eq. (5) and the expressions for ny are provided
in Appendix B.

In Fig. 2(a) we plot Q2 for '/ =1 as a function of
the phase 0. For 6 € [0, 7] we observe that the value of Qi
(Q2) is always larger (smaller) than the bare oscillator one
Q% This fact is a manifestation of the normal mode splitting
in coupled oscillators. Note that the splitting can exceed the
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FIG. 2. (a) Squared eigenfrequencies of the joint modes in units
of the bare oscillator frequency 23 vs the transmission line phase
(#) and for different collection efficiencies (n). In the shaded gray
area the resonance frequency becomes imaginary, leading to an in-
stability. (b) Dependence of the joint modes’ decoherence rates I'y,
in units of the bare oscillator one (2I'y). In both panels the dashed
black line traces the uncoupled oscillator case (n =0), and we
used I'y /2 = 1.

frequency bare modes, which is the hallmark of ultra-strong
coupling [38-40]. Consequently, 2> becomes negative and
the antisymmetric mode g_ becomes unstable (shaded gray
area); see Appendix B for details. Finally, we calculate the
decoherence rates I'y = 2Fq/\f2 ,which are proportional to the
effective photon recoil rates that drive the joint modes. We
obtain

1 1—n
21+ nF2ncos®)

Ni = /R dt (ne(t)ne(t)) = (7)

Figure 2(b) shows the dependence of I'y on the phase 6
and transmittance 1. While the noise strength for the com-
mon mode (+) is peaked at & = 0 and reaches a minimum
at 6 = mr, the trend is opposite for the relative mode (—).
Importantly, it is possible to identify values of & where both
'y and I'_ are lower than the corresponding bare oscillator
value (dashed black line). Thus, the loop effect is not just
to redistribute photon recoil between the two particles but
can actually reduce it overall. We can understand this fact
by noticing that the loop introduces an effective low-finesse
resonator (limited by 1), which in turn suppresses the density
of states into which the particle scatters. All panels in Fig. 2
can be extended to the phase interval [, 2] by swapping the
common and relative modes.

III. DYNAMICS

The expectation value and covariance matrix of the state
vector vI' = (g4, p+, q_, p—) fully encode the state. Initially,
we consider both nanoparticles to be in a low-occupation

state with (vp) = 0 and covariance matrix Xy = <V0V0T>, where
the overline denotes symmetrization. State preparation can be
accomplished by using the optical switches to reroute the scat-
tered light from each particle to separate homodyne receivers;
see Fig 1(b). Using an optimal Wiener filter, parametrized by

a central frequency Qy and linewidth I'y, given by

Q= Q41+ 04T /)2,
Ty = /293, — 292, (8)

the conditional state of each particle is described by a covari-
ance matrix Xy with matrix elements

1 Tw
Oy =go 1
8n I'y
o L Iw
W 8nr, QFF
q 0
1 I
Ey = ——%. 9)
161 T4

characterized by a state purity P = 1/4/4|Zw| = /0. The
measurement records are then used to stabilize the nanopar-
ticle conditional state with ¥y = Xy using feedback [41-43].
Once this state initialization is completed, we turn off the
feedback and reroute all the light back in the loop.

Starting from this initial condition, we compute the evo-
lution of the covariance matrix ¥ = X¢ + X", which is split
into two terms associated with the coherent and incoherent
dynamics, respectively. Since the joint modes in Eq. (5) are
decoupled, each diagonal block of X evolves independently.
The matrix exponential generating the flow of each subspace
is ®4(t) = S[/r=IR[¢+1S[/r£]"", where S[] is a squeez-
ing matrix with parameter /7y = v/Q0/Q+, and R[¢.] is a
clockwise rotation by an angle ¢ = Q¢ in phase space. The
coherent terms yield

TL() = @4 ()T @ (1) (10)

For stable dynamics, i.e., Q2% > 0, each element in Eq. (10)
oscillates at twice 2+. In contrast, in the case of unstable
dynamics, the covariance matrix elements get squeezed at a
rate o< exp(2€24t) [44]. The incoherent contribution is

sin?2 12
w2l (P2 T e, (11)
t) = .
+ 12 2. +sin2 )
Q| ri'sin?g,  2etinide 221 O

indicating a monotonous growth of the position and momen-
tum variance at a rate 'y, and correlation oscillations at
2Q4; see Appendix C for details. In the following, we use
our knowledge of the time-dependent covariance matrix X(t)
to demonstrate that the in-loop dynamics generates motional
entanglement.

IV. TRANSIENT ENTANGLEMENT

Heisenberg’s uncertainty principle puts a fundamental
lower bound on quantities of the form (Aq?) + (Ap?),
with j € {%, 1,2}. We can identify, however, a second set
of quantities vy = ((Aq3 ;) + (Ap? ;))/2, whose lowest
reachable value is not affected by the uncertainty principle.
Here U represents any local transformation on the two
particles—such as phase changes, free evolution, or squeezing
operations—that is symplectic, in other words, that leaves
the commutator between conjugate variables unaffected:
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FIG. 3. (a) Time evolution of the entanglement witness vy, for
different values of I'y. The loop efficiency is n = 0.5, and the phase
0 = 2m /3. The entanglement revivals oscillate at twice 2., since
q- is unstable. [(b), (c)] Wigner distributions of the two particles at
t = 0, corresponding to the initial state of the bare oscillators for
I"q/S2 = 2. The dashed circle is the covariance of the zero point
motion. [(d), ()] Wigner distributions of the joint modes after an
interaction time t* &~ w /(2€2, ), showing characteristic two-mode
squeezing features.

(iv, piv] :==[Uqi, Upil = lg;, pi], with i € {1, 2}. Accord-
ing to the Duan-Simon criterion, the motional state of the
two particles is entangled if vy = (Ag% ;) + (Ap2 ) <1
for some local symplectic transformation U [45,46]. We can
generalize this statement by introducing vp;,, the minimum
value of vy under all possible symplectic transformations U
[5,47,48]. Figure 3(a) shows the time evolution of vp;,(¢) for
a loop efficiency n = 0.5, a phase 6§ = 27 /3, and for some
representative values of I'y/€2o. In all curves €2_ is imaginary,
while the common mode (+) is stable. As a result, vy, oscil-
lates at twice the stable mode frequency €2.;. The separability
criterion is thus maximally violated at a time * ~ 7 /(224).
Moreover, vpi, decreases with increasing I'y. This is because
the correlations (two-mode squeezing) scale exponentially
with ©_, which in turn grows with I'q according to Eq. (6).
In contrast, the decoherence rate scales only linearly with I'y.
Finally, the entanglement vanishes at large times as photon
recoil eventually degrades the initial state purity.

Figures 3(b)-3(e) show the Wigner functions W, ~
exp[—V]T-ZV ;1 of the initial state in the single-particle basis

W&’z, and after an interaction time #* in the joint mode basis
WZ, for I'y/€2 = 2. Position squeezing in Figs. 3(b) and
3(c) is due to the departure from the weak measurement limit
(n"q/0 < 1) and the consequent breakdown of the rotating-
wave approximation [42]. Moreover, we notice that the
covariance ellipses (solid tangerine lines) associated with the
Wigner functions Wi are anticorrelated and that the unstable
mode (—) is squeezed 7.5 dB below the zero point motion
(dashed black lines) at an angle £_ = arg(1 — r;l). These are
both signatures of the emergence of large two-mode squeezing
interactions in ultra-strongly coupled oscillators [40,49].

We conclude this section extracting the maximal logarith-
mic negativity Ey = —10min[0, log,,(vmin)] as a function of
0 and I'y. We show the results in Fig. 4 for the case of
n = 0.5 [Fig. 4(a)] and n = 0.3 [Fig. 4(b)]. Interestingly, even
if larger negativities are reached within the unstable region
in parameter space (solid red line), for n = 0.5 the particles
are entangled even in the stable portion of parameter space.

Eyn (dB) 0.0 [T 0.6

N (dB) 0.0 3.0

0/)n

(b)
2 4 6 8 10 12 14
1—‘q/'QO

051.01520253035
Iﬂq /QO

FIG. 4. Maximal log negativity generated by transient dynamics
vs Iy and 6. Panels (a) and (b) correspond to a loop efficiency n =
0.5 and n = 0.3, respectively. The solid red line bounds from the
right the instability region.

The existence of entangled motional states in the dynamically
stable region of parameter space occurs for n > 0.35, as we
observed numerically. Moreover, the negativity for a fixed
(n, 8) first grows with I'y but finally saturates for I'y /29 > 1.
Indeed, in such a regime Q2 o £y, but as correlations grow
o exp(f2_t), the optimal interaction time #* Q;l decreases,
resulting in a squeezing factor exp(2$2,$2;1) independent of
[y. If the efficiency is n < 0.25, irrespective of the value of
(I'4, n) no entanglement can be generated. We believe that the
cause is an interparticle coupling rate that does not sufficiently
exceed the overall decoherence rate.

To experimentally certify the generation of an entangled
state of motion, one needs to reconstruct X. As we show in
Appendix E, this can be accomplished via an optimal retrod-
iction filter after subtracting the imprecision noise associated
with the monitoring process [42,50,51].

V. STATIONARY CONDITIONAL STATE ENTANGLEMENT

In the previous sections we have considered a binary situ-
ation where all the backscattered light was either circulating
in the loop or was diverted into homodyne receivers. We now
investigate an intermediate configuration where a fraction 1y,
of the light coupled in the transmission line (with collection
efficiency 7.) is used to measure the system. Simultaneously,
a fraction n = n.(1 — ny,) circulates in the loop. Our goal is to
show that the conditional state of the system is also nonsepara-
ble. We denote with al:? the optical fields at the measurement
ports. In-loop correlations among the noise terms @', makes
the analytic expression of al.? rather lengthy; we report it in
Appendix D. The key feature is that combining the two fields
with a beam splitter, as shown in Fig. 5(a), results in out-
put fields a* = (al + a2)/+/2 that encode only information
about the respective joint mode displacement g+. A homo-
dyne receiver with analyzer angle ¢ measures the quadrature
ZE = cos pXE + sin oY%, where X* and Y denote respec-
tively the amplitude and phase quadratures of the fields az.
Interestingly, in Appendix D we show that fixing the analyzer
angle @4 of each detector to

tan g5 = cot(9) F [ /5 sin(@)] ™" (12)
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FIG. 5. (a) Schematic illustration of the joint modes displace-
ment measurement apparatus. (b) Log negativity of the conditional
state as a function of I'y and 6. The collection and measurement
efficiency are n. = 0.5 and n,, = 0.8, respectively. The gray region
indicates unstable solutions.

allows collecting the maximal amount of information on ¢,
with efficiency 7 = n.nm/(1 — n). Correspondingly, the im-
precision noise inherent to the measurement and the process
noise (backaction) decorrelate, allowing to map our system
onto the standard problem of continuous position measure-
ments in optomechanics [50,52]. Drawing from its toolbox,
we can readily write the conditional state covariance matrix
Yw of the bipartite system. At the optimal analyzer, it is
indeed sufficient to substitute Q¢ — Q4, I'q — 2Fq./\/i and
n — 7+ in Egs. (8) and (9), to obtain an expression for
Y. Note that the steady-state conditional covariance matrix
reached for a continuous measurement does not depend on
the initial state. This is a consequence of the backaction intro-
duced by the measurement process.

In Fig. 5(b) we calculate vy, for the conditional state
covariance Xy as a function of the backaction rate I'y and
transmission line phase 6. We assume a collection efficiency
ne. = 0.5, and measured fraction n, = 0.8, yielding effec-
tively a loop transmission n = n.(1 — n,) = 0.1. In some
regions of the parameter space, especially in vicinity of the
unstable region, vy, reaches values that are comparable to
those obtained in Fig. 4(a) for the same collection efficiency
(ne = n = 0.5) but in the absence of a measurement apparatus
(nm = 0), even for moderate ratios I'y /€29 A 1. Indeed, for the
optimal analyzer angles @4, there is no loss of information,
and thus no added noise associated with the measurement pro-
cess. We therefore anticipate that the measurement outcomes
at the optimal analyzer angles @1 can be processed using an
optimal filter and controller to asymptotically stabilize the
conditional state, thereby preparing an entangled steady state
of motion of the two nanoparticles.

VI. CONCLUSION

We proposed a scheme to entangle levitated nanoparticles
held in optical tweezers at meter-scale distances solely har-
nessing optical forces. Importantly, our scheme does not rely
on high-finesse cavities or the injection of squeezed light. The
nanoparticles must be trapped in ultra-high vacuum where
their motion is predominantly driven by photon recoil, an
already demonstrated regime [34]. Coupling the backscattered
light into the loop is equivalent to maximizing the detection
efficiency [33], where values higher than 30% have been

achieved [23]. Finally, the phase acquired in the loop can be
stabilized by extracting and monitoring a small fraction of the
circulating light.

Generalizing our results to an asymmetric configuration,
e.g., by setting uneven transmission line phases, will feature
a rich parameter space characterized by nonreciprocal inter-
actions and vacuum noise correlations [13]. Such entangled
states may enhance the force-gradient sensing capabilities
of our platform [29], with applications in searches of new
physics [53]. Moreover, entangling the motion of massive
objects at large distances is a promising prospect for test-
ing quantum mechanics [9,54-56] or to perform locality
loophole-free Bell tests with levitated objects [57,58], a task
that is significantly more challenging as it requires non-
Gaussian operations [59,60].
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APPENDIX A: INPUT FIELDS
In order to obtain Eq. (4), one can start by imposing the
in-loop conditions
ailn = (\/ nzagul + V1= nzagxl)’
a = e (Ymag, + /1 —maly,). (A1)

Inserting the input-output relations [Eq. (2)] yields

dh = (R 1TT) + T ).
ay, = € (Vi (al, +iy2Tqq) + V1= mag,).  (A2)

Finally one can solve this equation set for the input ampli-
tudes. Defining; = . /7 jelef and inserting the second relation
in the first we get

(1— al“Z)ailn
= i/ 20T @) (Jimigy + e ¥ )
+ ei(91+92)( 771(1 — nz)aéx[ + e_ig‘ magxt)’

(A3)

which can be simplified into Eq. (4) assuming a fully sym-
metric configuration, i.e., n; = 1, = n and 6; = 6, =6, and
introducing the short-hand notations g; = a/(1 — «?) and
g =0—=n/n.

Next we analyze the optical density of states (DOS) in
the coherent loop. To do this, it is sufficient to evaluate the
input field variance associated to the leaky external fields
al.. We do so in the simplest fully symmetric case. The
noise terms associated with information loss in the loop read
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a, = ng,,(otaéXt + aaé;S), and their correlation is then
1—n?
1 — 25 cos 26 + n?

= piri8(t —1).

(al)al@)) = 8t —1)

(A4)

All other two point correlators vanish under the assumption
that the external fields leaking into the loop are in vacuum.
Interestingly, the above equation corresponds to the Airy
function modeling the transmission of a resonator, with 6
representing the round-trip phase spanning [0, 7] within a free
spectral range. Equation (A4) describes how the presence of
the loop modifies the DOS. Depending on the phase factor 9,
the DOS can be either boosted or suppressed, which reflects
directly into the strength of the recoil heating driving each
particle.

We now calculate the input field amplitude quadrature,
which is the one driving the motion of the particles. Hereafter
we assume that the system is fully symmetric, and we focus
on X\ = (al, +a;")/+/2 as the expression for X2 follows
imposing exchange symmetry. We can separate the amplitude
quadrature terms in a coherent contribution

X0 = — /2T Im[gr(aqi + ¢2)]

= —/4lq[f1(0)q2 + 81(0)q1], (A5)
plus a noise term associated with vacuum fluctuations
X" = Re[gygr (aag + aiy)]
=&y [(g2Xelxt + fzxezxt) - (gl Ye}(t + fl Ye%(t)]’ (A6)
where we have introduced the coefficients
n(l+n)sind
iy =1 -
1 —2ncos20 +n
n(l —n)cos6
friy= -
1 —2ncos20 +n
©) = 7 sin 20
&1 1 —2ncos20 +n2’
n(cos26 —n)
82(0) = (A7)

1 —2ncos20 +n?’

By inspection, Eq. (AS5) amounts to a bilinear coupling
between the two particles (first term), and a self-energy contri-
bution that modifies the resonance frequency of each particle
(second term). The fluctuating force in Eq. (A6) drives the
motion of the coupled system and depends upon the collec-
tion efficiency n and phase 6 of the transmission lines, as
one would expect given the modified DOS in the loop; cf.
Eq. (A4). Furthermore, these optical fluctuating forces are
mutually correlated. Their variance and correlation are

1

((62")7) = So0. (Aa)
T 0
(X" X5") = —J?C_OZ(Z o (A8b)

which we computed assuming once again an input vacuum
state. Both quantities are proportional to the density of optical
states in the loop, while correlations among the baths driving

the particle motion vanish only for specific values of the
transmission line phase.

APPENDIX B: JOINT-MODE BASIS

A convenient basis to describe the physics of a coupled
oscillator system is the joint-mode (or normal-mode)
basis that diagonalizes the system Hamiltonian in the
single-particle subspace. For a symmetric system composed
of two identical oscillators, the joint modes’ position and
momentum operators are defined as

g+ = (@1 £ @)/V?2,
pr = (p1 £ p2)/V2,

corresponding to the common (+) and relative (—) oscillations
of the two nanoparticles in the optical traps. In this new basis,
Eq. (1) from the main text decouples, and we obtain two
independent oscillators, described by the equations of motion

Gr + Qhge = Qoy/4Tgna, (B2)

which coincides with Eq. (5). The effect of the coupling is
twofold. On the one hand, we introduce resonance frequencies
(normal-mode splitting) defined as

4 /n sin(0) )
1+nF2/ncos®))
On the other hand, the optical force noise seen by each

oscillator is modified by the coupling. This time, the two
forces are uncorrelated (n;7n_) = 0, and their variance is

1 1—n
21+nF2/mcos®)’

as given in Eq. (7). The eigenfrequencies and the amplitude
of the (nonlocal) fluctuations driving the two joint modes can
be compactly written as

Q% = Q% — 4T Qos1,

(BI)

Q= QO(QO + (B3)

(B4)

ne = gy(syYe — 53 X), (BS)
with coefficients
. F./nsin0
b 1+ nF2mcosh’
oo TSt (B6)
2 1 +nF2/ncosb

In Eq. (B5) we have defined the joint-mode quadratures in
analogy to the joint modes of the motional operators. It is
worth also noticing that—in the absence of damping—the
dynamical stability of the oscillator dynamics requires
that both joint-mode frequencies are real-valued positive
numbers. As €2, is real and positive in the entire parameter
space 0 € {0, mr}, the system is dynamically stable if and only
if Q2 > 0. The boundaries of the stability region are thus
parametrized by the roots of

sinf® +2./nAcos(@) + (1 +n)A =0, (B7)

where A = Qo/(41'q/n). For angles 6 € [0, 7], using some
trigonometric relations and completing the squares yields the
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solutions for the transmission line phase

242 /(1 +n) £ /1 —A%(n — 1)
1+ 4A%p
defining the unstable region through 6_ < 6 < 6,. This
instability can be understood as one of the modified
spring constant of the normal modes becoming negative.
The stability condition can be generalized in a rather
straightforward way to the case including some mechanical
damping y in the oscillator susceptivity, upon substituting A

with A, = (y2/4 + Q3)/(4TQ20./M).

cosfy = — (B8)

APPENDIX C: TRANSIENT SOLUTIONS

In the following, we calculate the evolution of the sys-

tem vector state covariance matrix X(7) =: (vvT), where
v = (g4, p+, g, p—)T and where the overline denotes once
again symmetrization. We start from an initial arbitrary state
parametrized by X,. We assume a regime of motion gov-
erned by the photon recoil, such that we can safely neglect
the effects of the thermal bath. We introduce the ratios be-
tween the bare oscillator frequency and the normal mode
frequencies ry = /24, and write the quantum Langevin
equations (QLEs) in the joint mode basis

G+ = Qop+,
pr = —Quri'qe + /4Tqnz. (CI)

Since the £+ modes are decoupled and the fluctuating forces
n4 are uncorrelated, the evolution of the state vectors vy =
g+, p+)" is independent of each other. We cast the QLEs in
vector form v = Ayvy 4+ w, introducing the drift matrix

A 0 2 (C2)
=7 —Qirf 0

and the process noise vector wy = ,/4I'(0, n+)T, fully char-
acterized by the symmetrized covariance matrix

0 0
W = (wowh) = 40 N7 (0 1). (C3)

Note that Eq. (C2) can be decomposed into the form presented
in the main text. The evolution of the state vectors v;(t) =
®;(1)v;(0) + [y ds ®;(r — s)w;(s) is ruled by the matrix ex-
ponential

A cos(2;1) r4 sin(€2;t)
¢y == (—ril Sin(2,1)  cos(S1)
B J= 0 cos(2,t)  sin(R;1)
U= (— sin(Q;t)  cos(Q ,-z))

L 0
x | V= , (C4)
0 N+
which we decomposed into the sequence of squeezing opera-

tions and rotation that we used in the main text. Similarly, the
state vector covariance matrix evolves according to

i) =®;(1)Zo®;(t)" +/ ds®;(t — )W;®,(t — )"
0

= Z5(1) + X)), (&%)

where we separated the terms stemming from the unitary
dynamics (X€) from those associated with decoherence (X").
Denoting the initial displacement variance, momentum vari-
ance, and their (symmetrized) covariance as Q%, POZ, and E
respectively, the matrix elements of X read

Bg = Qf cos™(Qjt) 4 r7 P sin® () + r;Ep sin(2Q;1),
%5 = P cos™(Q;t) + r; Qg sin® (1) — ry ' Eg sin(2Q;1),
55 = Eocos(2Q;t) + (riPs — r;'Q5) sin(2R;1)/2,  (C6)
while those of X" are
5p =204 Q; N7 ri [t — sin(2Q;1)/2],
Tp =20 Q7 N7 [Q;r — Q7' sin(29;1)/2],
T =204 Q; N sin® (1) (C7)

Notice that in the unstable regime these equations are valid,
but as Q2_ becomes imaginary, the trigonometric functions
turn into hyperbolic, yielding an exponential divergence of
some of the expectation values of the state vector and of the
covariance matrix elements.

Since the joint modes evolution is decoupled and uncor-
related, we can build the covariance matrix X(¢) for the
composite system state vector vI = (¢, p; g_ p_), using
as diagonal blocks X (t) and X_(¢). The covariance matrix
associated with the single-particle basis VXTP =(q1 p1 92 p2),

can be obtained through X, = RXR", with the transforma-
tion matrix

—
(e}

R=—

1
110
VAR (C8)

o1 0 -1

We can write the covariance matrix in the form

X, = (i Z) (C9)

where the blocks o and B refer to the covariance matrices
of the first and of the second particle respectively, while y
refers to cross correlations between the two particles. Due to
the bilinear coupling among the nanoparticles; motion, that
amounts both to a beam splitter and a two-mode squeezing
interaction, we anticipate in the transient dynamics of the sys-
tem the build up of strong inter-particle correlations. We use
as entanglement witness the minimum symplectic eigenvalue
for our bipartite system

Vimin = \/ZA —2,/A? —4detX,, < 1,

with A = deta + detf — 2dety.

In the main text, we use Eq. (C10) to test whether an entan-
gled state arises at some time 7 from the coupled dynamics of
the system. To initialize the system, we imagine diverting all
the light present in the transmission lines onto a pair of homo-
dyne receivers, thus suppressing the coupling, while recording
measurements of the individual particle displacements. Such
measurements can be used to stabilize with high fidelity the
conditional state of the two particles. Specifically, we can
extract the conditional state from the measurement record

(C10)
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FIG. 6. (a) Modeling of the modified transmission line allowing
a fraction n,, of the collected light from the jth nanoparticle to be
routed onto a measurement apparatus. (b) Schematic illustration of
the joint modes displacement measurement apparatus.

with the causal Wiener filter derived in Ref. [42]. Taking the
limit of a negligible thermal decoherence, (C; = I'q/y > 1),
this filter is characterized by a central frequency and linewidth
given by Eq. (8). The resulting conditional state is character-
ized by a covariance matrix with elements given by Eq. (9).
At t =0, up to moderate ratios I'q/€2o, we assume that an
optimal controller can be used to prepare each particle into an
unconditional state X , & Xy.

APPENDIX D: IN-LOOP POSITION MEASUREMENTS
OF THE JOINT MODES

In this Appendix we describe a continuous measurement
of the joint modes’ displacement amplitudes. To do so, we
need to consider a slightly more complicated model for our
transmission lines, including three elements: two beam split-
ters and a phase shifter; see Fig. 6(a). The first beam splitter
models the information loss due to the finite collection ef-
ficiency and imperfect mode matching into the transmission
line, we denote its transmission 7.. The second beam splitter
is used to sample a small portion of the signal and has trans-
mission 7,,, = 1 — 1. The phase shifter allows us to tune the
transmission line phase delay 6. The closure relations for the
in-loop input fields are

a,? = & [V (Viieag + Vebig) + Vimcea |
= 10 [\/_aoul +faext]

where we used the fact that b, and cl,, are uncorrelated
noise sources and defined the line transmission n = 7.7,,. The
above equation tells us that the input fields in Eq. (4) are not
modified. Nevertheless we need to keep in mind the noise

decomposition
’ nmnc b nm ]
ext - CX[ CXt

in order to take into account correlations among noise sources
when closing a feedback loop.

The optical fields on the reflection ports of the pick-off
beam splitters read

(D1)

D2)

A ﬁcnmbéxt + ﬁmcéxt' (D3)

J — J
= —A/MNeNMmloy —

Inserting the input-output relations [Eqgs. (2) and (4)] from the
main text one finds the coherent part of the fields

12 A2

e =—17— 3 [q12 +aq 1], (D4)
with ', = nenmI’q and with the noise terms
T s
+ [1__1i2a2:| cur
- ym [f B+ \/ZT‘ ixi} (D3)

The fields a{;] = ahe+ a{;m carry information on particle
displacements. Depending on the transmission line phase
0 = arg(«) the displacements may be encoded in different
quadratures, yielding a suboptimal measurement of g ». If we
instead mix these two fields on a beam splitter, as shown in
Fig. 6(b), the coherent part of the fields at the symmetric (+4)
and antisymmetric (—) output ports provide a direct measure-
ment of the joint modes

£ 2
lFa

gz, (D6)

am,c

while the noise terms read
= vV nmnc n r
1 :F exl 1 :F

with b5, = (bl £ b%,)/+/2 and ¢, = (céxt +2)/V2. A
phase quadrature measurement of = yields

= VAT wsEqe + /W 57X + s Y ]

+ ﬁmg—m[slixjt + (77'“ +s2>Yi]

m nm

]cj;t, (D7)

(D8)

while an amplitude measurement yields
Xy = —VAT Tz + T Is2X," — 577,
+\/—nm[<nm )Xci_sfiyci}
Mm
where we have introduced the coefficient

‘_ +,/ncost — 1
1+nF2/ncosb’

and s; » are defined by Eq. (B6). For a fixed analyzer angle
@ one measures the quantity ZE = cos pXF + singpYE. In
general, the measurement outcomes can be decomposed into
signal and imprecision terms Z= = Z:g + Zifnp. The amount
of information gathered on the joint modes’ position for a
given analyzer angle ¢ reads

“g = /4", (sin gos — COS @5, )CI:I:

In the limiting case where all the light is diverted onto
the detectors (n, = 1), the particles decouple, and all the
information on the particles’ position is encoded in the
phase quadrature of the measurement field. Furthermore, only

D9)

(D10)

(D11)
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the vacuum fluctuations amplitude quadratures X}fc drive
the particle motion, while the phase quadratures only enter
the imprecision noise terms in ZZ. This is not surprising,
as such a limiting case corresponds to the standard frame-
work of continuous position measurements in free-space
optomechanics.

However, beyond this limiting case, the amplitude and
phase quadratures of the vacuum fields contribute to both
the imprecision er and measurement backaction n4 terms,
indicating a correlation between these quantities. The question
then is whether for some value of the analyzer angle we can
find a measured field quadrature that provides the maximal
information on the joint mode displacement without being
affected by bath correlations. We calculate the (symmetrized)
correlator

Co = (nsZ;)

imp

= g, {(sTYe — 57X )(cos pXin + sin @¥np))

= /NcNm(sin (psci + cos gosf),

where we plugged the external field decomposition (D2) in ny
and denoted X;¥ and Y% the fluctuating terms in Egs. (D9)
and (D8), respectively.

Remarkably, from the ¢ dependence of Eqs. (D11) and
(D12) becomes clear that whenever Eq. (D12) vanishes for
some @, Eq. (D11) is at an extremal (maximal) value. The
optimum angle for which one gathers the maximal informa-
tion on the joint mode displacement is parameterized by the
expression

(D12)

tan gy = —s /st (D13)

Inserting the above expression in Eq. (D11), one obtains the
optimum measurement amplitude

Zopt = y/4'n[sin @ sCi —Ccos @ sf]qi

= FATlT + (55)Pgs

AT,
_ . D14
:F\/l 0T 2 meos@) * (D14)

In the absence of correlations we can also define the ef-
fective measurement efficiency at the optimal measurement
quadrature

I (scz‘ + s%)quf _ MM
Ca{nd) N

Interestingly, the above expression depends only on the mea-
sured fraction 7, and on the transmission line collection
efficiency n and in the limit n. — 1 yields 7+ — 1 regardless
of the choice of n,.

As the joint modes dynamics is uncorrelated, and at the
optimal analyzer angle the measured field properties can be
mapped onto the standard framework of continuous position
measurements, we can resort to the standard optomechanics
toolbox. We can use again the causal Wiener filters defined in
Sec. III to write the joint modes’ conditional state covariance
matrix. This can be simply done upon substituting Q — Q.
Iy — 2Fq./\/'i and n — 7+ in Egs. (8) and (9).

Nt = (D15)

In Sec. V we use the resulting expressions to obtain an
analytic expression for the entanglement witness (C10); see
Fig. 5. We conclude that the conditional state accessible by
continuously monitoring the optimal optical field quadrature
[cf. Eq. (D14)] can be used to stabilize an entangled steady
state of motion of the two nanoparticles.

APPENDIX E: ENTANGLEMENT VERIFICATION

So far we have seen that we are able to generate an en-
tangled state by coupling the nanoparticles’ motion via an
optical loop. In this Appendix, we try to answer the following
question: how do we certify this state?

Let’s assume we have generated an entangled state by the
proposed protocol. The state is characterized by a covariance
matrix X, and the entanglement witness is vyin[X]. At a given
time t = 0, which we refer to as the initial time later, we
decoupled the two nanoparticles by opening the loop. In ad-
dition, we start measuring the output fields according to the
scheme shown in Fig. 6(b) (with n,, = 1). Both nanoparticles
are now subjected to a continuous position measurement, the
quantum backaction of which destroys the initial state. Nev-
ertheless, if we record the measurements outcomes, we can
extract from them by appropriate filtering (i.e., retrodiction)
the best estimates of the nanoparticles’ position and momen-
tum at the initial time, which we can then use to calculate
the entanglement witness. These estimates are subjected to
both systematic and statistical errors, respectively due to the
nature of the measurement scheme and to the finite size of the
ensemble of experimental realizations. In this Appendix we
will first show how the dynamics evolves under a continuous
position measurement. Then we will summarize the theory
of retrodiction and how to estimate the system’s degrees of
freedom from the outcomes. Finally, we assess the errors in
the entanglement witness for a typical experimental scenario.

From the initial time on, the nanoparticles dynamics in
the Heisenberg picture is described by the following quantum
Langevin equations:

G =Qpj. P =—Q4q;+/ATX.,  (ED
where j = +, —. We notice that there is no coupling be-

tween the two nanoparticles at this point. Nevertheless we
keep working on the joint mode basis only for simplicity.
These equations can be rewritten more compactly as x =
AX + w, where X = (¢4, p+, g—, p—)" is a state vector, w =
(0, , /4Fqu;r, 0, /4T'¢ X, )T is a force noise vector with auto-
correlation matrix

0 0 0 0
W= (wiHw()T) = 0 2Tq O 8t —1') (E2)
0 0 0
0 0 0 2I,
and the drift matrix
0 Qo 0
—Q 0 0 0
A= ) (E3)
0 0 0 Qo
0 0 —Q 0
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The measurement outcomes are represented by the pho-
tocurrent vector z = (z4, Z— )T, which is connected to the state
vector according to z = C"x + v, where

1 0 00
CcT = /477ch<0 o 1 0) (E4)

describes the measured observables, 7. is the detection effi-
. — . + + =
ciency, and v = (Yirﬁp, Yimp)T, with Yo = /1Y + /1, YE,
is the measurement noise vector with autocorrelation matrix
1/2 0

V= (v@e)v@)T) = ( 0 1,2

)8(t —1). (ES)
We notice that the force noise and the measurement noise are
uncorrelated when we measure the optical phase quadrature.
In the long-time limit, the state approaches a thermal state,
with no information about the initial state, which is decayed
away. To extract some information about the initial state X,
we need to retrodict the state vector based on future outcomes.
We refer to the retrodicted state vector as xg. The uncertainty
of the retrodicted state vector is encoded in the conditional
covariance matrix Vg.

The theory of retrodicted measurements allows us to ex-
tract these two quantities from the measured outcomes and the
known system parameters. In fact, we can write the retrodicted
state vector in terms of the outcomes according to

—dxg = Mgxgdr 4+ [2VERe(C) + oIm(C)]zdr, (E6)

where the modified drift

matrix is

Mg = —A — 20Im(C)Re(CT) — 4VgRe(C)Re(CT) (E7)

—dxg = xg(t — dt) — xg(?),

and o is
0O 1 0 O
o — -1 0 0 O (E8)
0 0 0 1
0O 0 -1 0

The conditional covariance matrix, instead, follows the deter-
ministic Riccati equation

—VE = MgVE + VEMET + W + 4VgRe(C)Re(CT) Vg,
(E9)

where —VE = [Vg(t —dt) — Vg(r)]/dt. For a retrodiction
time longer than 1/(n.I'q), the covariance matrix Vg ap-
proaches its steady-state value V3°. Equation (E6) can be
approximated by a finite difference equation, which can be
used to compute numerically the retrodicted state vector Xg
for a given measurement outcome Z. Here we indicate with
* quantities extracted from finite data rather than theoretical
ones. We can propagate the finite difference equation from
the last acquired point to the initial time # = 0 to estimate the
initial state vector, Xg 0. Then we use this ensemble to calcu-
late the covariance matrix 250 = (Xg.0 ig,())‘ In practice, the
experimenters have at their disposal a finite set of realizations
of the measurement outcomes Z. This introduces a statistical
error in 3 which depends on the ensemble size. In addition,
the retrodicted state vector Xg o contains an additional error
which depends on the measurement scheme. For instance, an

50
(a) 10[ (b) o [u] <
o of ® ) 0
o 10 Wy
t: 5 -10 O 10-10 O 10-10 0 10
£
PN

10 (o] [m] <o
| (c)
1 o 0
0.5

-10 - /
0.01 010 1 10

-0 0 10-10 O 10-10 O 10
Qot Q Q Q

FIG. 7. (a) The solid line traces the time evolution of the state
vector negativity after the optical loop has been severed at t = 0,
for I' =2y and n = 1/2. The dashed line indicates the retrod-
icted negativity for the estimator state. The negativity estimate 2o
confidence level is shaded in gray considering averaging over a
thousand trajectories. [(b), (c)] Snapshots of the symmetric (top
panels) and antisymmetric (bottom panels) joint mode state (blue)
and estimate (aquamarine) vector covariance matrix lo ellipses at
Qot = (0.01, 0.15, 1.0). The fact that the estimated confidence el-
lipses always enclose those of the state vector is a signature of the
inevitable added noise due to the measurement process.

ideal weak continuous position measurement adds half zero-
point unit in both position and momentum. We refer to this
uncertainty as systematic error.

These errors in the covariance matrix propagates in the
final entanglement witness. We now investigate quantitatively
their impact.

The systematic error arises from the conditional covariance
matrix according to ¥z = ¥ + V. This conditional covari-
ance matrix depends on the system parameters (L2, g, 1)
and can be subtracted from the estimated ¥y if they are
known exactly. In practice, the experimenters know them
only within a finite precision. Let’s denote by (ogq, or, op) =
(0.1%, 5%, 5%) the relative errors of these parameters and
assume them uncorrelated from each other. The values we
have assumed are for typical experimental scenario. By propa-
gating these errors, we find that the entanglement witness Dy,
calculated on the matrix Vg has a 2o -confidence level of 7%.

Let’s focus now on the statistical error. To estimate it,
we simulate 10° measurement outcomes Z according to
Egs. (E1)—(ES). We use a stochastic Runge-Kutta algorithm
of order 3/2 with a time step 0 At = 1072, The initial condi-
tions are drawn from a probability distribution function which
equals the Wigner function corresponding to the initially en-
tangled state. We apply the discrete version of Eq. (E6) to
the simulated outcomes in order to obtain an ensemble of
retrodicted state vectors Xz, which we use to construct the
matrix £z. We calculate the uncertainties in the elements
of this matrix by means of a bootstrapping technique. Then
we propagate these uncertainties to the entanglement witness
calculated ¥, calculated on this matrix. Finally, we add
in quadrature the statistical uncertainty of Dmin[Z£] and the
systematic one of D[Vl

In Fig. 7(a) we compare the theoretical entanglement
witness Vpin[X] with the one from the retrodicted measure-
ments, Pnin, at different times. The shaded area marks the
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20 -confidence interval due to both systematic and statistical
errors, as discussed above. We notice that the confidence
interval is below the threshold of 1, which allows us to

successfully certify entanglement. In Figs. 7(b) and 7(c)
we also show covariance ellipse of the state and of its
reconstruction.
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