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Global phase diagram of the cluster-XY spin chain with dissipation
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We study the ground-state phase diagram of a non-Hermitian cluster-XY spin chain in the language of
free fermions. By calculating the second derivative of ground-state energy density and various types of order
parameters, we establish the global ground-state phase diagram of the model, exhibiting rich quantum phases
and corresponding phase transitions. Specifically, the results reveal that the non-Hermitian cluster-XY model
contains five different phases and two critical regions, i.e., ferromagnetic (FM), antiferromagnetic (AFM),
symmetry-protected topological (SPT), paramagnetic (PM), Luttinger liquid-like phase, as well as critical
regions I and II. The order parameters and critical behaviors are investigated and the correctness of the theory is

confirmed.
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I. INTRODUCTION

With the ever-evolving ultracold atomic technology, optical
lattice-based quantum simulation of ultracold atomic system
has made rapid progress [1-8]. Due to high controllability
and purity, ultracold atomic systems are widely used to simu-
late phase transitions in condensed matter systems [3,9—-16].
Recently, due to its unique symmetry-protected topological
(SPT) phase, the cluster spin model based on ultracold atoms
in triangular lattices has received extensive attention [17-21].
A striking feature of this system is the coexistence of three-
spin and two-spin couplings, and the competition between
which will give rise to an exotic continuous quantum phase
transition (QPT). In concrete terms, a phase transition from
the SPT cluster phase to the symmetry-breaking phase occurs
in the system [22-32]. In the past few years, a series of mod-
els containing such continuous phase transitions have been
studied, such as the cluster-Ising model, cluster-XY model,
and so on. The relevant ground-state phase diagrams have
also been obtained one by one [23-27,29,33,34]. Furthermore,
some topological properties of the cluster spin model have
been found, such as symmetry-protected edge modes at the
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gapped cluster SPT state and symmetry-enriched or topologi-
cal nontrivial quantum critical points (QCPs) [28-32,35].

However, dissipation of the system is inevitable in almost
all experimental platforms, be it a condensed matter platform
or an artificial quantum simulation system [36—40], or trapped
ions [41-43]. Therefore, dissipation is a factor that must be
taken into account. It is also for this reason that many re-
cent studies discussed dissipative non-Hermitian systems. In
addition to the experimental requirements, considering that
dissipative non-Hermitian systems also have some unique
properties that cannot be found in traditional Hermitian sys-
tems, for instance, the non-Hermitian skin effect [38,44—46],
non-Hermitian chiral properties [47-49], exception points
[50-52], spawning rings [53], mobility edge [54,55], and so
on. Recently, non-Hermitian physics has witnessed continu-
ous progress and significant theoretical milestones [54,56—65]
including the hot topic of non-Hermitian topology [66—73]
and the nature of non-Hermitian exception points [S0-52].

So far, although both SPT and non-Hermitian studies have
come under the spotlight, few efforts explored the properties
of non-Hermitian SPT systems by combining the two. This
work is devoted to the ground-state properties and phase tran-
sitions of the dissipative cluster-XY model. We will construct
a non-Hermitian cluster-XY model by introducing a complex
field. Then, by the second derivative of the ground-state en-
ergy density, we show the non-Hermitian phase diagram.

The rest of this paper is organized as follows. In Sec. II,
we introduce the model and study the corresponding ground

©2025 American Physical Society
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FIG. 1. Graphic demonstration of the cluster-XY model with
dissipation, where A, and A, are the Ising exchange strength in the
x and y directions, respectively. J is the strength of cluster term. I is
the dissipation strength. Throughout, we set J = 1.

states by the analytical calculations. Then, we overview the
phase diagram in Sec. IV. We calculate the energy gap and
various types of order parameters in Sec. V to identify differ-
ent phases. In Sec. VI, we investigate the phase transitions and
critical behaviors. We summarize this paper in Sec. VII.

II. MODEL AND ANALYTICAL SOLUTION

We start with a dissipative cluster-XY model represented
by an effective Hamiltonian with a complex field (see Ap-
pendix A for details). The corresponding Hamiltonian reads

N N

_ X 7 _x X _x
Heip = J§ 01070711 + A § :Ul Oit1
=1 =1

N ir N
+ Ay E o]0}, — E o}, (1)
-1 I=1

where of (o = x,y,z) is the Pauli matrix of the /th spin.
U= [(1, 8] denotes the loss or gain effect, which can be
conveniently realized in optical systems and optical lattice ul-
tracold atomic systems [72,74,75]. Without loss of generality,
we take J = 1 as the unit of energy in the following calcula-
tion. Experimentally, there are three controllable parameters,
namely, the spin exchange strengths A, A, and the dissipation
strength I" (see Fig. 1).
One can transform Eq. (1) into fermionic representation by
conducting a Jordan-Wigner transformation, which is defined
as

of =1-2ca, )
oﬁ = l—[(l — ZCj.cj)cl, 3)
j<l

where c;'(cl) is the creation (annihilation) operator at site /.
Then, one can perform the Fourier transform

Z e Hey. 4)

7m/4

Then, we obtain

H =" [ylcjc’
k

o +eker) +alefer + ¢l e — D1, (5)

where Vi = —sin(2k) — (A, — Ay) sin(k) and ok =
—c0s(2k) + (Ay + Ay) cos(k) — %. By using the Bogoliubov
transformation

Ve = ik + vk, e = uee) + vic—g. (6)

Eventually, we get the diagonalized Hamiltonian
1
H=ijAk(w - §>, (7)

where

=2,/y; + 2. ()

In this work, we define the ground state as the state with the
minimum real part of A;. The ground state of Eq. (1) is

1G) = —= [ [l — vecfe, 110 ©)

f k>0

where N = [],.(lux|*> + |vg|?) is the normalization constant,

—u—+/ Vit

Uup = C
2
vy = 1.

, U = yk , and C is a constant to satisfy uk +

III. OBSERVABLES AND METHODS

A. Ground-state energy density and its second-order derivative

According to Eq. (8), the ground-state energy density can
be defined as

1 1 [
=— Y Ar=— | [y +z22dk, 10
e NZk: k nfo Vi + 7 (10)

and we can easily obtain the second derivative of ¢y with

. 2
respect to Ay, i.e., —%.

B. Energy gap

In Hermitian cases, the minimum value of Ay is defined as
the energy gap, which is usually labeled as A, i.e.,

A:mkinAk. (11)

The place where the energy gap closes (A = 0) is usually
the critical point of the phase transition. In non-Hermitian
cases, however, since the value of A is complex, the gap of
the corresponding emergent phases is complex. Therefore, for
the non-Hermitian case, we must examine both the real and
imaginary parts of the energy gap, which are labeled as Re[A],
Im[A], respectively.

C. Order parameters

To identify each phase, we calculate the spin correlation
function and string order parameter, which are two key quan-
tities to study the cluster spin model [22]. The spin correlation
function is defined as

Ry(r) = (of0f"), (12)
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where r = j — I, @« = x, y, z. Then, one can obtain

R.(r) = <(Cj - c;) l_[ (1 =2} cn)c] + c,)>

Jj<m<l

= (BjAj+1Bj41 ... Ai-1Bi_1A), (13)

Ry(r) = (=1)(A;Bjr1Ajs1 ... BiAiiBy),  (14)

WhereAj = C;r- +Cj,Bj =cj
for Aj and B, i.e
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— c;. There are pair contractions
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where r = [ — j [76]. Since both R, (r) and R, (r) contain a lot
of operators, it is useful to write them in terms of the Pfaffian
of a skew-symmetric matrix [77,78], i.e.,

0 G S G S - G,
0 DO Ql Dl Qr—l
0 G S Gr_
R.(r) =Pf 0 Do - Qra|, (18)
0 G
0
0 D 01 Dy O D,
0 G S Gy Sr—1
0 D O D,
Ry(r) = (=1)"'Pf 0 Go -+ S
0 D
0
(19)

The string order parameter can be calculated in the same
way as the spin correlation function. Then, we have

O = lim (—1)’<6f‘02y<| | U,f)dry+lof+2>. (20)
r—00
k=3

o

Similarly, by using A; = c; +c¢jand B; =c¢; —c;,

obtain

0" = lim (BleA3B3A4B4 ..
r—00

we can

-ArBrAr+1Ar+2>- (21)
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FIG. 2. The phase diagrams characterized by the real part of the
second derivative of ground-state energy density
(b)I' =2.0,(c) ' =4.0,and (d) I" = 8.0.

— L4 for (@) I =0,

Similarly, O* can be converted to a Pfaffian of a skew-
symmetric matrix, i.e.,

0 8 G & G S - Gy
0O G S Gy & - G,

0 Dy O D Or1

0 G S G

O'(r)=Pf 0 Dy -+ O
0 (0]
0

(22)

It is worth noting that r should be as large as possible in the
numerical calculation to approach the thermodynamic limit.

The string order parameter 0" tends to be a constant in the
nontrivial cluster SPT phase, and decays exponentially in FM,
AFM, and PM phases [79-82]. The spin correlation functions
|R:(r)| and |R,(r)| tend to be a fixed nonzero constant in the
AFM phase along x or y direction, while they decay exponen-
tially to zero in the disordered PM phase.

IV. PHASE DIAGRAM

The schematic phase diagram is provided in Fig. 2.

Let’s briefly outline the corresponding phase diagram and
summarize the main findings.

Under the condition of I' = 0, the model is reduced to
the nondissipative case, i.e., the standard cluster-XY model,
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TABLE 1. The energy gap and long-distance behaviors of order parameters in different phases and critical regions.

A |0%] R IRy
SPT real constant 0 0
PM real exponential decay exponential decay exponential decay
FM, (AFMy) real exponential decay constant exponential decay
FM, (AFM,) real exponential decay exponential decay constant
Critical region I 0 power-law decay oscillating decay as r ¢ exponential decay

Critical region II
Luttinger liquid-like phase

imaginary
imaginary

exponential decay
power-law decay

power-law decay
oscillating decay as r~

power-law decay

oscillating decay as ¢

a

whose phase diagram is shown in Fig. 2(a). However, the in-
troduction of dissipation will bring about great changes in the
phase diagram of the system. Specifically, when dissipation
strength I" is weak, the SPT region will gradually shrink and
two types of critical regions will appear in the system, namely,
region I and region II [see Fig. 2(b)]. With a further increase in
dissipation strength I', the SPT region will completely disap-
pear [see Fig. 2(c)], and a new type of phase III, the Luttinger
liquid-like phase, will emerge from the system. Specifically,
the SPT phase vanishes completely under the condition of
I' =4 (see Appendix B for details). After that, the region
corresponding to phase III will increase with the ever-growing
I" [see Figs. 2(c) and 2(d)].

The details of these emergent phases are briefly outlined
below.

(1) In critical region I, both the real part and imaginary part
of the energy gap are zero. As the distance r increases, the
string order parameter |0 (r)| shows a power-law decay, the
spin correlation function |R,| decays exponentially, and |R,|
presents an oscillating decay as r~“ (a is a constant).

(2) In critical region II, the energy gap is a purely imagi-
nary number. With the distance r increasing, the string order
parameter |O*(r)| decays exponentially, the spin correlation
function |R;|, |R,| features power-law decay.

(3) In the Luttinger liquid-like phase, the energy gap is a
pure imaginary number. As the distance r increases, the string
order parameter |O* (r)| shows a power-law decay and the spin
correlation function |Ry|, |R,| presents an oscillating decline
asr .

The corresponding properties of different phases are sum-
marized in the following Table I. The phase transitions both
from the critical region I to AFMy and from the Luttinger
liquid-like phase to critical region II are first-order phase tran-
sitions. Furthermore, min | A| is an effective tool for detecting
the continuous phase transition in the non-Hermitian cluster-
XY model. In the following sections, we will prove each of
the above conclusions.

V. EMERGENT GAPLESS PHASES WITH DISSIPATION

Now, we explore the possible phases that appear in the
phase diagram. Under the condition of I' =0, the model
is a standard cluster-XY model. By adjusting the parame-
ters Ay, Ay, the model contains four different phases, i.e.,
ferromagnetic (FM), antiferromagnetic (AFM), symmetry-
protected topological (SPT), and paramagnetic (PM) [83].
However, when I' # 0, new phases emerge [see Fig. 2].

To investigate the energy gap in each phases, we plot the
real (top row) and imaginary (bottom row) parts of the energy
gap in Fig. 3. Under the condition of I' = 0, the Re[A] of
different phase are all nonzero. The regions I, II, and III
emerge and expand with an increasing I', and Re[A] of these
three emergent phases are zero [see Figs. 3(bl) to 3(dl)].
The imaginary part, Im[A], is zero in region I, whereas it
is nonzero in regions II and III. This is to say, the region I
is a gapless phase, whereas both regions II and III are the
imaginary-gapped phases [see Figs. 3(b2) to 3(d2)].

Now, we exhibit a detailed analysis of the long-distance
behaviors of order parameters.

First, we set A, = 0. Under the condition of I" = 0, one can
find that, when A, > 1, the string order parameter |0*| tends
to be zero and the spin correlation function |Ry| tends to be a
constant, which means the corresponding region is the AFM,
phase [see Figs. 4(al) and 4(a2)]. When A, = 0, the string
order parameter |O"| tends to a constant and |R,| tends to be
zero, which means the corresponding region is the cluster SPT
phase under such a circumstance.

Under the condition of I' = 2.0, the order parameters’
long-range behaviors become very different. For the case of
Ay = 2, the string order parameter |O*(r)| shows an exponen-
tial decay to be zero, whereas the spin correlation function
[R,(r)| remains constant, indicating that the system resides in
the AFM, phase [see Figs. 4(bl) and 4(b2)]. In the middle
region (A, = 0), the string order parameter |O"*(7)| or the
spin correlation function |R,(r)| becomes constant or tends
to zero in the long-distance limit, confirming that this region
is in the cluster SPT phase [see Figs. 4(b1) and 4(b2)]. How-
ever, |O*(r)| shows a power-law decay when A, = 0.8 [see
Fig. 4(b1)], suggesting the presence of a quasi-long-range
string order in region I. Then, as depicted in Fig. 4(b2),
one can observe that |R,(r)| features the power-law decay,
implying the existence of quasi-long-range AFMy order in
region IL.

Under the condition of I" = 8.0, as shown in the Fig. 4(c1),
in region III (A, =0), the string order parameter |O*(r)
shows a power-law decay as r increases, suggesting the ex-
istence of a quasi-long-range string order. In addition, one
can observe that the spin correlation function |R,| presents an
oscillating decline as ¥~ in region III [see Fig. 4(c2)].

Second, we set A, = 0. When I' = 0, as can be seen in
Figs. 5(al) and 5(a2), when A, > 1, the string order parameter
|O*] or the spin correlation function |R,| tends to be zero
or remains a constant value, confirming that the region is in
the AFM, phase. As depicted in Fig. 5(bl), the string order
parameter |O*(r)| also shows a power-law decay in region
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FIG. 3. The phase diagrams characterized by the real (top row) and imaginary (bottom row) parts of the energy gap for I' = 0, 2.0, 4.0, 8.0.

I (A, = 0.8). Interestingly, in region I, |R.(r)| presents an
oscillating decline as the distance 7 increases [see Fig. 5(b2)],
which is consistent with its behavior at the SPT-PM phase
transition point when I' = 0 [see Fig. 7(a)]. So region I is a
critical region which emerges from the SPT-PM phase transi-
tion line with an increasing dissipative strength I'.

When I' = 8, according to Fig. 5(c2), one can observe that
|R.(r)| shows the power-law decay in the critical region II,
which is consistent with its behavior at the AFM,—AFM,
phase transition point when I' = 0 [see Fig. 7(b)]. So one

can consider that region II is a critical region emerging from
AFM,—AFMy phase transition line with an increasing dissi-
pative strength I'. More discussion about the critical regions
is in Appendix C. As depicted in the inset of Fig. 5(c2), the
spin correlation function |R,| presents an oscillating decline
as r~% in region III. Combining the long-distance behaviors
of |0*| and |Ry| shown in Figs. 4(cl) and 4(c2), we define
that the region III is a Luttinger liquid-like phase. In addition,
we also investigate the long-distance behaviors of correlation
functions in PM phase (see Appendix D for details).

@)r=0 MO L =20 | (c1)T =80 ——,=0
—v—Ay =2
= )\ — 5 -19f 5 29 +)‘y:
g —A—AZ=2 %_20_\ S
Q ——X, =4 = ! -—q’ll" .
- 4.0 4.5
Inr K 4.0 Inr 45
X
0 —
1
@2)r=20 () B RN T | ——— ) P |
— —— Ay =
S:"’”'\ —— X, =4
S 5
o 7 iR
8 46l . w, [F——
40 45
0 A”*l ------ln-r S
0 50 100 0 50 100 0 50 100
r T r

FIG. 4. The long-distance behaviors of string order parameter |O*| and spin correlation function |R,| for (al), (a2) ' =0, (bl), (b2)
I' = 2.0, as well as (cl), (c2) I' = 8.0. These insets show that the order parameters exhibit the power-law decay as r increases. Specifically,
the inset which contains black square in (c2) shows that spin correlation function |R,| presents an oscillating decline as r~%7°*3. Throughout,

Ay =0.
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L‘. — 40} W
o \
Al S
5 4043 \
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FIG. 5. The long-distance behaviors of string order parameter |O*| and spin correlation function |R,| for (al), (a2) I' =0, (bl), (b2)
I' = 2.0, as well as (cl), (c2) I' = 8.0. These insets show that the order parameters exhibit the power-law decay as r increases. Specifically,
the inset which contains the black square in (c2) shows that spin correlation function |R,| presents an oscillating decline satisfying r~%7°73

Throughout, A, = 0.

We summarize the corresponding properties of the energy
gap and correlation functions of different phases and critical
regions in Table I.

However, we set A, =0, r = 1000, and study the dis-
tribution of the order parameters under different dissipative
strengths. In the Hermitian case [see Fig. 6(a)], when A, > 1
(Ay < 1), |R,| is nonzero, indicating that the system resides

in the AFM,(FMy) phase in such a parameter region. When
—1 < Ay < 1, |O%] is nonzero, suggesting that the region is in
the cluster SPT phase. Then we investigate the non-Hermitian
case. As depicted in Fig. 6(b), when I' = 2.0, one can observe
that |Ry| is a constant in critical region I and |O*| is a constant
in critical region I. As dissipative strength I" increases from
2.0 to 4.0, the SPT phase narrows, while critical region I,

® I'=2.0

U

(l . L .

FIG. 6. The numerical results of string order parameter |0"|, spin correlation function |R,| with respect to A, for (a) I" = 0, (b) I' = 2.0, (c)
' =4.0,and (d) I' = 8.0. The red, yellow, and green shadings correspond to critical regions I, II, and Luttinger liquid-like phase, respectively.

Throughout, A, = 0, r = 1000.
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FIG. 7. The long-distance behaviors of string order parameter |O*| and spin correlation function [R,[, |R,| for (a) A, = 0.1, A, = —0.9512

and (b) A, = 3.0, A, = 3.3030. Throughout, I' = 0.

critical region II, and the Luttinger liquid-like phase expand
[see Figs. 6(b) and 6(c)]. When I" increases to 4.0, the region
of the SPT phase disappears completely [see Fig. 6(c)]. As
the dissipative strength I further increases, the critical region
IT and Luttinger liquid-like phase continuously expand [see
Fig. 6(d)]. Additionally, we investigate the distribution of the
order parameters under different dissipative strengths when
Ay = 0 (see Appendix E for details).

VI. PHASE TRANSITIONS AND CRITICAL BEHAVIORS

After delineating all the quantum phases in the phase dia-
gram, we shift our focus to the more intriguing QPTs between
these phases. In this section, we are ready to investigate phase
transitions and critical behaviors.

By means of the second derivative of ¢ calculations, one
can observe that the second derivative of the ground-state

. 2 .. .
energy density —% becomes sharper at critical points [see

Fig. 2]. When I # 0, some new phase transition lines emerge
[see Fig. 2]. One can observe that critical region I and critical
region II emerge from the transition line of the SPT-PM and
AFM,-AFM; phase in the Hermitian case. So to explain the
properties of critical region I and critical region II, we in-
vestigate the properties of correlation functions at the critical
points of SPT-PM and AFM,-AFM; transitions when I' = 0.

The numerical results are depicted in Fig. 7. As shown in
Fig. 7(a), the string order parameter |O*| shows a power-law
decay, the spin correlation function |R,| shows oscillating

0.8
()T = 2.0

[

_SO 4
Rg V-7 Critical region I AFM,

\/\J\f\/\J\/\/\/‘\../”’\.J\/\/\fl
0.0 :

0.95 1.00
Az

1.05

Q:a 0.2 | Luttinger liquid-

decay as r~“, and |Ry| decays exponentially at the critical
point of the SPT-PM transitions. These long-distance behav-
iors of the correlation functions are the same as those in
critical region I. The inset shows that the slope of curves in
the In-In plot is —1/2, implying that the critical exponent n
of SPT-PM transitions is 1/2 [see Fig. 7(a)]. Then, one can
observe that the spin correlation function |R,|, |R,| shows
power-law decay and the string order parameter |O*| exhibits
an exponential decay at the critical point of the AFMy-AFMy
transitions [see Fig. 7(b)]. These long-distance behaviors of
the correlation functions are consistent with the properties of
the correlation functions in the critical region II. The inset
shows that the slope of the curves in the In-In plot is —1/2,
implying that the critical exponent 1 of the AFMy-AFM;
transitions is 1/2.

However, to determine whether the phase transition is a
first-order phase transition, we study the scaling behaviors of
the order parameters at the QCPs. The numerical results are
presented in Fig. 8. One can observe that the jump in the spin
correlation function |R,| at critical region I-AFMjy transitions
and another jump at the Luttinger liquid-like phase-critical
region II transitions, which indicate that the transitions of both
critical region I-AFMy and the Luttinger liquid-like phase-
critical region II are first-order phase transitions [see Fig. 8].
Combining with the previous numerical results of the en-
ergy gap [see Fig. 3], we can discover that the points where
Re[A] = 0 and the points where Im[A] = 0 do not corre-
spond to phase transition points completely. Interestingly, one

(b)T = 8.0
rwwwwmw

0.4

} Critical region 11
|
0.0 waraanns. AN,
0.95 1.00

Az

like phase

1.05

FIG. 8. The spin correlation function |R,| with respect to A, for (a) I' = 2.0 and (b) I' = 8.0. Throughout, A, = 0, r = 1000.
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FIG. 9. The phase diagrams characterized by min |A,| for (a)
'=0,(b)I'=2.0,(c)I"=4.0,and (d) I" = 8.0.

can discover that the points of min |A;| = O correspond to the
continuous phase transitions in our system [see Fig. 9].

VII. SUMMARY

In summary, we investigate the effect of dissipation on the
phase diagram of the cluster-XY model. By means of the sec-
ond derivative of the ground-state energy density calculation,
we can observe that the introduction of established field can
destroy the SPT phase and emerge with three novel phases. By
calculating the energy gap and order parameters, we obtain
the properties of different phases and the critical behaviors
at the points of the phase transitions. In critical region I,
the string order parameter |0*| exhibits power-law decay, the
spin correlation function [R,| decays exponentially, and |R,|
presents an oscillating decay as »~“, which are consistent with
the critical behaviors of SPT-PM transitions. Different from
critical region I, the string order parameter |O*(r)| decays
exponentially, the spin correlation function |R,|, |R,| features
power-law decay in critical region II, which are consistent
with the critical behaviors of the AFM;—AFMy transitions.
In the Luttinger liquid-like phase, the string order parameter
|O*(r)| satisfies power-law decay and the spin correlation
function |R,|, |Ry| presents oscillating decay as r~“. Along
with the emergent phases, the transitions of the critical region
I-AFMy and Luttinger liquid-like phase-critical region II are
first-order phase transitions. Interestingly, continuous phase
transitions occur with min |A| = 0. Our series of theoretical
work (Ref. [27] and this paper) will be a constant push to the
ever-deepening research on novel phases and phase transitions
in cluster spin system.
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APPENDIX A: EFFECTIVE NON-HERMITIAN
HAMILTONIAN

In this section, we provide the calculation details about
the non-Hermitian Hamiltonian in Eq. (1). The non-Hermitian
Hamiltonian in Eq. (1) can be realized in the quantum tra-
jectory approach [84—88]. Let us consider a Markovian open
quantum system, which is generally described by the Lindblad
master equation [89,90]

d N A | R

—p=—i[H, ] LipL] — ~(L]L;, p}), (Al

b =il p]+;(m, 2{,zp}> (A1)
where p is the density operator, A is the Hamiltonian that de-
scribes the coherent dynamics, and L;’s are the jump operators

that describe the coupling to the external environment. This
master equation can be written as

d N N A
A A apt APt
Ep—zmmapmy+2}mu (A2)
with the effective non-Hermitian Hamiltonian
T R U
Her = H — 5 > L. (A3)

1

The term £, ,?)IA,;L indicates each quantum trajectory subject to
stochastic loss events. The term —% ), ﬁ;ﬁl is the dissipation
term ﬁdissipa[ion. Under continuous monitoring and postse-
lection of the null measurement outcome (no-click limit),
the dissipative dynamics is described by the effective non-
Hermitian Hamiltonian H.. Here we choose the Hamiltonian
H and the jump operators £, to be

N N N
H=-J Z 011070741 + Ax Z 070741+ Ay Z 0} 041>
=1 =1 =1

(A4)
L =To;. (A5)

So the effective Hamiltonian can be written as
(A6)

A ~ il u
Her = H — ? XI:UI s
where o = [(1) 8].

APPENDIX B: DETAILS ABOUT THE PHASE DIAGRAM
UNDER DIFFERENT DISSIPATION STRENGTH I

In this section, we provide the phase diagrams under dif-
ferent dissipation strength I.
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FIG. 10. The phase diagrams characterized by the real part of
92
the second derivative of ground-state energy density —2% for (a)

832
=380b)I'=39,(c)'=4.1,and (d) " =4.2.

As shown in Figs. 10(a) and 10(b), the results reveal that
the area of the SPT phase located in the center of the phase
diagram is very small. Comparing with the cases of I' = 2.0
[see Fig. 2(b)], we can observe that the SPT region will
gradually shrink with a further increase in dissipation strength
I'. Under the condition of I' = 4.1, 4.2, we can observe that
the SPT phase disappears [see Figs. 10(c) and 10(d)]. So the
results reveal that the SPT phase vanishes completely under
the condition of I" = 4.

APPENDIX C: MORE DISCUSSION ABOUT
THE CRITICAL REGIONS

According to Figs. 2(a) and 2(b), we can find that with an
increasing I, critical regions I and II emerge from the SPT-PM
and AFM,-AFM; phase transition lines. Our results reveal
that the long distance behavior of the correlation function in
critical regions I and II is consistent with its behavior at the
SPT-PM, AFM,-AFM, phase transition lines, respectively.
That is because the dissipation induces a critical phase, which
behaves in the same way as the original phase transition point.
Analogous to the quantum critical region at finite temperature
[91], coupling of the system to the bath also leads to the
emergence of the critical region. In our case, the coupling of
the system to dissipation similarly induces the critical region,
where the behaviors of the order parameter on the original
phase transition lines control the behaviors of the order pa-
rameter in the critical region.

Furthermore, one can understand this phenomenon by
comparing it with a finite-temperature quantum critical

(b)T =20
—— 07|
T |RZ|
+ |Ry|
(T =80
L
50 100 0 50 100
r T

FIG. 11. The long-distance behaviors of string order parameter
|O*| and spin correlation function [R.|, |R,| for (a) ' =0, (b) I' =
2.0,(c)I' =4.0, and (d) I' = 8.0. Throughout, A, = =3, A, = 3.

problem, where the zero-temperature quantum critical point
extends to a critical region that shares the same critical be-
haviors. In both cases, the system is coupled to a huge bath,
which leads to a quantum-critical-point-controlled quantum
critical region. The authors of Ref. [60] also revealed that the
critical behavior of the non-Hermitian system was similar to
the critical point of phase transition in Hermitian system. All
in all, this is a very interesting problem that we plan to further
explore in our future work.

APPENDIX D: DETAILS ABOUT CORRELATION
FUNCTIONS IN PM PHASE

In this Appendix, we provide the properties of correlation
functions in the PM phase. As shown in Fig. 11, the results
reveal that the string order parameter |0*| and the spin correla-
tion function |R,|, |R,| decay exponentially with the distance
r increasing in the PM phase.

—_—

=

4-4 2 0 2 4
T Afl}

FIG. 12. The numerical results of string order parameter |O*|,
spin correlation function |R,| with respect to A, for (a) I' =0, (b)
I'=2.0,(c) ' =4.0, and (d) I' = 8.0. The red, yellow, green shad-
ings correspond to critical region I, II, Luttinger liquid-like phase,
respectively. Throughout, A, = 0, r = 1000.
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APPENDIX E: DISTRIBUTION OF ORDER
PARAMETERS VERSUS A,

In this section, we present additional data on the distri-
bution of the order parameters of |O¥|, |R,| versus A, when
Ay = 0. In the Hermitian case (I' = 0), when A, > 1 (A, <
1), |R,| is nonzero, indicating that the system resides in the
AFM,, (FM;) phase in such a parameter region [see Fig. 12(a)].
When —1 < A, < 1, |0%| is nonzero, suggesting that the re-
gion is in the cluster SPT phase [see Fig. 12(a)].

Then, we investigate the non-Hermitian case. Under the
condition of I = 2, as shown in Fig. 12(b), in critical region
I, |O¥] is nonzero. As the dissipation intensity increases, the
range of each phase changes. When the dissipation intensity
increases to I' = 4 [see Fig. 12(c)], the SPT phase disappears
completely, which is in agreement with the behavior in the
phase diagram [see Fig. 2(c)]. Under the condition of I' = 8.0,
it can be seen that the spin correlation function |R,| is a limited
value in the critical region II [see Fig. 12(d)].
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