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Analyzing the sensitivity of an atom interferometer with a phase-modulation readout scheme
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The sensitivity of an interferometer depends on its readout scheme. However, little attention has been paid to
the readout schemes of atom interferometers from the viewpoint of their sensitivity. The difference in sensitivity
between readout schemes or their optimization has not been considered in the literature. Herein we analytically
calculate the sensitivities of an atom interferometer with typical readout schemes by applying the two-photon
formalism, which was developed for optical interferometers to deal with quantum noise. Our calculations reveal
that by using sinusoidal phase modulation, the sensitivity can surpass that obtained by the conventional phase
sweeping scheme. The superiority of this phase modulation scheme for both cold and thermal atomic beams is
demonstrated. In addition, we show that the phase modulation scheme is advantageous for atom-flux fluctuation
and resists atom-flux drift. This study performs a general analysis of the sensitivity of atom interferometers and
identifies an advantageous readout scheme.
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I. INTRODUCTION

Light-pulse atom interferometers [1–4] have attracted con-
siderable attention as highly sensitive quantum sensors. They
utilize the interactions between atoms and light, such as stim-
ulated Raman transitions or Bragg diffraction, which function
as beam splitters or mirrors for atomic beams. Through a
sequence of light pulses, a Mach-Zehnder atom interferom-
eter is formed. Light-pulse atom interferometers have been
used to measure acceleration [5–7], rotation rate [8–11], grav-
ity [12–14], and gravity gradients [15,16]. Moreover, they
can be applied to fundamental physics because of their high
precision. For example, they can be used to test the weak
equivalence principle [17–20] and detect gravitational waves
[21–24].

In particular, atom interferometers with continuous atomic
beams are advantageous because of their high data rates and
bandwidths. In addition, the aliasing noise can be reduced by
using continuous atomic beams [25]. Historically, after the
development of atom interferometers that use thermal atomic
beams [2,9,26] (that in [9] is transversely laser cooled), pulsed
cold atomic sources were invented [4], and continuous cold
atomic beams have been demonstrated recently [27–30]. A
thermal atomic beam is taken out of an effusive atomic oven.
The vapor of the atoms continuously flows out of the hole in
the oven, allowing for the continuous emission of a thermal
atomic beam. In this paper, a thermal atomic beam refers
to an atomic beam without longitudinal laser cooling; for
example, an atomic beam emitted from an oven and subjected
to transversal cooling is also called a thermal atomic beam.
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On the other hand, (longitudinally) laser-cooled atomic beams
offer longer interrogation times because they have slower lon-
gitudinal velocities than thermal atomic beams. Consequently,
their sensitivities improve as the scale factors increase with
the interrogation time. In addition, their interference fringes
show greater contrast and broader dynamic ranges owing to
their narrower velocity widths. In pulsed cold atomic beams,
every cycle needs trapping and cooling times; thus, obtaining
high data rates is challenging [10,31]. However, with the
recent progress in experimental techniques, continuous cold
atomic beams can be incorporated into atom interferometers
[27–29]. In addition, the use of thermal atomic beams con-
tinues to be active. Thermal atomic beams are advantageous
for sensitivity in that they can achieve much higher flux. Fur-
thermore, an operation to extend the dynamic range has been
invented [32], whose narrowness was a weak point of thermal
atomic beams. In light of these circumstances, hereafter, we
focus on atom interferometers that use continuous atomic
beams.

The choice of the readout scheme plays a pivotal role
in optimizing the sensitivity of an atom interferometer; the
readout scheme defines how the phase signal is derived from
the interferometer output. Sensitivity refers to the noise level
converted into a phase-equivalent quantity because phase sig-
nals that are buried in noise cannot be detected. The design
sensitivity of an atom interferometer is determined by the
shot noise, and the effect of the shot noise on the sensitivity
depends on the readout scheme. Shot noise, also called quan-
tum projection noise [33], is caused by quantum fluctuation in
counting the number of atoms. Because shot noise arises from
its quantum nature, it cannot be suppressed without a quantum
manipulation of the state of atoms [34]. In atom interferom-
eters with continuous atomic beams, shot noise limits their
sensitivity after other technical noises are well suppressed.
Therefore, reducing the effect of shot noise is a central issue in
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atom interferometers. The readout scheme must be optimized
to minimize the effects of the shot noise.

However, little attention has been paid to the readout
schemes of atom interferometers from the viewpoint of their
sensitivity. In previous studies [8,29], the shot-noise level was
calculated based on the fact that the counted number of atoms
fluctuated with

√
Fτ , where F is the average flux and τ is the

integration time. In the calculation, the atom interferometer
was assumed to be set to the midfringe of the interference.
Thus, the output fluctuation was

√
Fτ/2, the susceptibility of

the interferometer from the phase to the output was F/2, and
the resulting phase-equivalent power spectral density (PSD)
of the shot noise was 4/F . Nevertheless, the phase signal of
an atom interferometer is often extracted by linearly sweeping
the phase of the matter wave of an atomic beam [8,29]. In this
readout scheme, the phase difference between the two paths
in the interferometer evolves in proportion to time. Conse-
quently, the output of the interferometer oscillates, and the
original phase difference can be extracted by a lock-in mea-
surement of the output. Although this phase sweep scheme
has been widely used, the difference between the sensitivity
for the phase sweep scheme and that for the static midfringe
readout scheme was unknown. Therefore, the readout scheme
has not been optimized for improving the sensitivity of the
atom interferometer.

In this paper, we analyze the sensitivity of an atom interfer-
ometer by applying the two-photon formalism [35–37], which
was developed to calculate quantum noise in optical interfer-
ometers. We establish a framework to calculate the sensitivity
of an atom interferometer that can handle general readout
schemes, including the phase sweep scheme. Furthermore,
we propose using sinusoidal phase modulation for a readout
scheme to improve the sensitivity of an atom interferometer.
Our noise analysis reveals that the phase modulation scheme
is superior to the phase sweep scheme in terms of sensitivity
if a suitable modulation index and fringe point are selected.
We also demonstrate the calculation of atomic beams with
broad velocity widths. The sensitivity of the phase modulation
scheme is found to surpass that of the phase sweep scheme,
even when the velocity width of an atomic beam is broad. In
addition, our calculation can also deal with atom-flux fluctu-
ations, and we discuss the effect of the atom-flux fluctuations
on sensitivity.

II. NOISE ANALYSIS WITH PHASE MODULATION

A. General framework

We consider a typical atom interferometer of the Mach-
Zehnder type, as shown in Fig. 1. Three pairs of laser beams
are applied as beam splitters for the atomic beam. Let the
reflectivity (diffraction efficiency for the atomic beam) and
transmissivity of each laser beam be denoted by ri and ti, re-
spectively, and the subscript i = 1, 2, 3 denote the index of the
laser beam. The laser beams also work as phase modulators;
however, we will describe this aspect separately for clarity.
We consider that the phase modulation is differential for two
paths, and the atomic beams accept the phase ±θ (t ) at the
modulators. We note that if the interaction with the laser beam

Atomic
beam

1 2 3

Phase
shifter

Laser beam C port

D port

FIG. 1. Schematic of an atom interferometer for noise analysis.
The atomic beam constitutes a Mach-Zehnder interferometer. Three
pairs of laser beams interact with the atomic beam and function
as beam splitters. The phase of the atomic beam in each path is
differentially modulated. In practice, the laser beams also work as the
phase shifters, which are described separately for clarity. The flux of
the atomic beam is measured at the output ports.

is used as the phase modulators, the period of modulation must
be sufficiently larger than the interaction time.

To analyze quantum shot noise in an interferometer, it is
necessary to treat the atomic beam within the framework of
quantum field theory. In focusing on the quantum fluctuations
in counting the number of atoms, the inner degrees of freedom
of the atom can be considered separately. In addition, the
interactions between atoms can be ignored because, in most
atom interferometers, the atoms are not densely packed. In
this situation, the field of the atomic beam can be considered
to be a scalar field and the field operator is described by

ψ̂ (z, t ) =
∫ ∞

0
(âωeikz−iωt + â†

ωe−ikz+iωt )
dω

2π
, (1)

where âω and â†
ω are the annihilation and creation opera-

tors for the mode of the angular frequency ω, respectively,
and k is the wave number of the matter wave; the angular
frequency and wave number follow the Einstein–de Broglie
relation for the matter wave. Let the propagation direction of
the atomic beam be along the z axis. In our calculation model,
we assume that the transverse momentum width of the atomic
beam is sufficiently small and can be ignored. Accordingly,
the spatial dependence in the transverse direction is omitted
in Eq. (1). The annihilation and creation operators satisfy
[âω, â†

ω′ ] = 2πδ(ω − ω′) and the commutation relations of the
other combinations are zero. Because an atomic beam field
with an atomic beam flux F has a large steady-state amplitude
of

√
2F , calculations are facilitated by using the quadrature

basis around the angular frequency of the matter wave of
the atomic beam. Thus, the field operator can be rewritten as
[35,36]

ψ̂ (t ) = [
√

2F + â1(t )] cos ω0t + â2(t ) sin ω0t, (2)

where ω0 denotes the angular frequency of the matter wave,
â1(t ) denotes the amplitude quadrature, and â2(t ) denotes the
phase quadrature. We describe the quadratures of the fluctu-
ations as vectors â = (â1 â2)� and denote the carrier field
as A = (

√
2F 0)�. As shown in Fig. 1, we also define the

incoming quantum vacuum field from the other input port as
b̂ = (b̂1 b̂2)�, the output fields containing fluctuations as ĉ
and d̂, and the modulated output carrier fields as C and D.

By introducing phase modulation, we obtain the output
of the fluctuation in the form of P(t ) · â + Q(t ) · b̂ after
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calculating the input-output relation of the interferometer. The
modulation to the carrier is represented by the coefficients
P(t ) and Q(t ). Then it was shown in the context of optical
systems [38] that the PSD of the fluctuation S is expressed by

S = 1

T

∫ T

0
D2(t )[‖P(t )‖2 + ‖Q(t )‖2]dt, (3)

where D(t ) is the demodulation function, T is the period of
the demodulation function, and ‖ · ‖ is the norm of the vector.
This PSD is calculated based on the fact that the PSD of
the vacuum-field fluctuation, such as â or b̂, is 1. During the
derivation of Eq. (3), we only assume that the fluctuation â
in the atomic beam is as large as that in the vacuum field.
In other words, our assumption is conventional, in that the
counted number of atoms fluctuates with the square root of
the average number.

For our system, we can calculate the input-output relation
of the fields as

ĉ = [r1r2r3R(θ (t )) + t1r2t3R(−θ (t ))]â

+ [t1r2r3R(θ (t )) − r1r2t3R(−θ (t ))]b̂, (4)

d̂ = [r1r2t3R(θ (t )) − t1r2r3R(−θ (t ))]â

+ [t1r2t3R(θ (t )) + r1r2r3R(−θ (t ))]b̂, (5)

where we define the rotation matrix as

R(x) =
(

cos x − sin x
sin x cos x

)
. (6)

In a later section, we discuss the case in which the atomic
beam has a broad velocity distribution. Here we begin with the
case in which the atomic beam has a fixed velocity. Then the
reflectivities and transmissivities are constant for all atoms;
thus, let us assume r1 = t1 = r3 = t3 = 1/

√
2 and r2 = 1. We

note that the atomic beam velocity is different from the phase
velocity of the matter wave and it affects shot noise only via
reflectivities and transmissivities. Because the output ports C
and D are symmetric and result in equivalent noise calcula-
tions, we focus on port C. Then the input-output relation is
simplified as

ĉ =
(

cos θ (t ) 0
0 cos θ (t )

)
â +

(
0 − sin θ (t )

sin θ (t ) 0

)
b̂.

(7)

The modulated carrier at the output port C can be calculated
as

C = cos θ (t )

(√
2F
0

)
. (8)

Therefore, the shot noise in the output flux δF̂ shot = C · ĉ is
expressed as

δF̂ shot =
√

2F
2

({1 + cos[2θ (t )]}â1 − sin[2θ (t )]b̂2), (9)

while the second-order terms of the fluctuations are ignored.
Equation (9) implies that

P(t ) =
(√

2F{1 + cos[2θ (t )]}/2
0

)
, (10)

Q(t ) =
(

0
−√

2F sin[2θ (t )]/2

)
(11)

for our model. Thus, the PSD of shot noise is calculated using
Eq. (3) as follows:

Sshot
F = F

2

1

T

∫ T

0
D2(t )({1 + cos[2θ (t )]}2 + sin[2θ (t )]2)dt .

(12)

To evaluate the sensitivity, the PSD of the shot noise is
converted into the PSD of the phase-equivalent shot noise
as Sshot

φ = Sshot
F /χ2, where χ is the susceptibility of the in-

terferometer. The susceptibility is defined by the conversion
coefficient from the phase difference φs in the atomic beams
between the two paths in the interferometer to the output
signal. The phase φs can be incorporated in the above cal-
culations as the offset in the modulation phase. Therefore, the
output flux Fout including φs (�1) is expressed by

Fout = 1

2
‖C‖2 = F

2
{1 + cos[2θ (t )] + φs sin[2θ (t )]}. (13)

As the derivative with respect to the phase difference is
dFout
dφs

= {F sin[2θ (t )]}/2, its demodulated signal is χ . We do
not consider the sign of susceptibility χ in the calculation of
sensitivity; thus, we will use its absolute value.

B. Phase sweep scheme and phase modulation scheme

Before considering specific forms of modulation, we con-
firm that our general expression for shot noise in Eq. (12)
is consistent with the shot-noise levels assumed in previous
studies [8,29]. For the midfringe readout scheme without
modulation, we can describe that θ (t ) = π/4, D(t ) = 1, and
χ = F/2. Thus, from Eq. (12), the phase-equivalent shot
noise is calculated as 4/F , which is consistent with the values
of previous studies. In practice, the phase sweep scheme has
often been used in experiments with atom interferometers.
In the phase sweep method, θ (t ) = ωst and D(t ) = sin 2ωst ,
where ωs is the angular frequency of the sweep. The calcu-
lated PSD of the shot noise is 8/F , and a shot noise level of
4/F is no longer achieved with the phase sweep scheme.

To improve the sensitivity, we propose the use of sinu-
soidal modulation instead of the phase sweep scheme. In other
words, we introduce phase modulation θ (t ) = φm sin ωmt and
demodulation D(t ) = sin ωmt , where ωm is the modulation
angular frequency and φm is the modulation index. For phase
modulation, the susceptibility of the interferometer is max-
imal at the dark and bright fringes. For the output port C,
the default fringe is bright and the dark fringe can be chosen
by adding a phase offset as θ (t ) = φm sin ωmt + π/2. The
calculated susceptibilities and PSDs of phase-equivalent shot
noise are summarized in Table I and plotted in Fig. 2(a),
where Jn(x) is the Bessel function of the first kind. The best
sensitivity is obtained using the phase modulation scheme at
the dark fringe with a sufficiently small modulation index, as
Sshot

φ = 3/F . At the bright fringe, the sensitivity exceeds that
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TABLE I. Analytical expressions of the susceptibilities and power spectral densities of phase-equivalent shot noise and classical atom-flux
fluctuation.

Readout scheme Susceptibility Shot noise Atom-flux fluctuation

Phase modulation F
2

J1(2φm)
2

F
1 − J0(2φm) + J2(2φm)

[J1(2φm)]2

2ε

F
1 − J0(2φm) + J2(2φm) − 1

4 [1 − J0(4φm) + J2(4φm)]

[J1(2φm)]2at the dark fringe

Phase modulation F
2

J1(2φm)
2

F
1 + J0(2φm) − J2(2φm)

[J1(2φm)]2

2ε

F
1 + J0(2φm) − J2(2φm) − 1

4 [1 − J0(4φm) + J2(4φm)]

[J1(2φm)]2at the bright fringe

Phase sweep
F
4

4 × 2

F
5

2
× 2ε

F

of the phase sweep scheme and is optimal with φm � 0.43π ;
however, it does not reach that of the dark fringe. Although,
in general, a small modulation index is preferable for the
dark fringe, it should be noted that a small modulation index
makes the interferometer more sensitive to other noises on
the output port. A small modulation index leads to small

FIG. 2. Power spectral density of phase-equivalent shot noise
and atom-flux fluctuation according to the modulation index. In this
plot, a fixed velocity is assumed for all atoms. For the phase modu-
lation scheme, the noises are calculated at both the dark and bright
fringes. As the phase sweep scheme does not have the parameter of
a modulation index, its plot is shown by a flat line.

susceptibility. Thus, the phase signal is small at the output
port, though the shot noise is also small. Consequently, the
sensitivity will deteriorate when the signal is buried by other
noises. Therefore, the modulation index should be sufficient
so that the modulation is not covered by other noises.

While we can intuitively expect the different results be-
tween the dark and bright fringes where the modulation index
is small, the whole behavior is elucidated by the analytical
calculations. In comparing the dark and bright fringes, the
susceptibility is the same. On the other hand, if the mod-
ulation index is small, the bright fringe has a large carrier,
which introduces extra noise. Consequently, the sensitivity is
poor for the bright fringe. However, the behavior has been
unpredictable where the modulation index is large because
infinite sidebands, represented by an infinite series of Bessel
functions, contribute to the signal and noise. The analytical
calculations clarify the whole behavior, and the calculated
results shown in Table I can be expressed in the form where
the infinite series is reduced.

Our calculation can also be applied to classical atom-flux
fluctuation by setting â2 = b̂1 = b̂2 = 0 because there is no
vacuum fluctuation classically. As the level of the atom-flux
fluctuation is arbitrary, i.e., dependent on the quality of the
atomic beam, let us suppose that the power of the atom-flux
fluctuation is ε times greater than that of the vacuum fluctua-
tion (â1 → √

εâ1). The results for the atom-flux fluctuations
are listed in Table I and plotted in Fig. 2(b). Notably, the
atom-flux fluctuation can be canceled completely in the phase
modulation scheme at the dark fringe.

C. Atomic beam with a finite velocity width

In general, an atomic beam is not always ideally cooled, or
even cooled. Therefore, we consider an atom interferometer
using an atomic beam with a finite velocity width. Atoms
with different velocities exhibit different interaction times
with light. Consequently, the reflectivities and transmissivi-
ties of the interactions vary and depend on velocity v; thus,
r1 = r3 = r(v), t1 = t3 =

√
1 − r2(v), r2 = r′(v), and t2 =√

1 − r′2(v). Let us assume that the three pairs of laser beams
are adjusted to a certain velocity v0 to achieve r(v0) = 1/

√
2

and r′(v0) = 1. As the interaction time is inversely propor-
tional to the velocity and the atoms undergo Rabi oscillations,
the reflectivities are written as r(v) = sin[(π/4)(v0/v)] and
r′(v) = sin[(π/2)(v0/v)]. It is straightforward to calculate the
PSD of the shot noise SF (v) and susceptibility χ (v). See
Tables II and III in Appendix A for the analytical expressions
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FIG. 3. Power spectral density of phase-equivalent shot noise
and atom-flux fluctuation in the case of a thermal atomic beam.

of the results, which include the case of atom-flux fluctua-
tion. In the calculations, the fields that leak at the second
laser beam are also taken into account because t2 is not zero.
Because it is difficult to spatially isolate the leakage fields,
they are observed at the output port simultaneously after the
third interaction with the laser beam, which causes additional
noise. Note that, in contrast to the fixed velocity case, the
results differ between ports C and D, as can be inferred from
Eqs. (4) and (5). The difference arises when the reflectivity
and transmissivity are different. The atomic beam at port C
results from the interference of the atomic beams either both
reflected or both transmitted by the first and the third laser
beams. In contrast, the atomic beam at port D arises from the
interference between the atomic beams transmitted once and
reflected once by the first and third laser beams. Consequently,
if the reflectivity and transmissivity cannot be set to 1/

√
2 for

all atoms, differences will arise between ports C and D. Thus,
the calculations for both ports are presented herein. Finally,
we obtain the PSD of the phase-equivalent shot noise Sshot

φ as

Sshot
φ =

∫ ∞
0 p(v)Sshot

F (v)dv[ ∫ ∞
0 p(v)χ (v)dv

]2 , (14)

where p(v) is the velocity distribution of the atoms.

As an essential example, we present the calculated results
for a thermal atomic beam. A thermal atomic beam is intro-
duced from the atomic vapor in the oven through a small hole
and it propagates without any laser cooling. Assuming that the
vapor is in thermal equilibrium, the velocity distribution of the
thermal atomic beam is described by [39]

p(v) = 2

(
m

2kBT

)2

v3 exp

(
− mv2

2kBT

)
, (15)

where kB is the Boltzmann constant, T is the temperature,
and m is the mass of the atom. Here we assume that the
laser beams are tuned for the atoms with the most probable
speed, specifically, v0 = √

3kBT/m. The results are presented
in Fig. 3. Notably, the results are independent of the tem-
perature and mass of the atoms. For a thermal atomic beam,
the contrast in the interference is reduced because of the finite
velocity width. Consequently, in regions where the modula-
tion index is small and the susceptibility is also small, the
effect of noise from background atoms that do not contribute
to interference increases. Therefore, the sensitivity is poor
when the modulation index is small. For the dark fringe, the
modulation index is optimal at approximately 0.2π . For shot
noise, the PSD values under the phase modulation scheme
are up to 0.65 times smaller (−1.9 dB) than those under the
phase sweep scheme for both ports C and D. These sensi-
tivities can be obtained at either the dark or bright fringes
by selecting a suitable modulation index. In contrast, dark
fringes are favorable in the case of atom-flux fluctuations. The
PSD value under the phase modulation scheme is 0.41 times
smaller (−3.9 dB) at port C and 0.49 times smaller (−3.1 dB)
at port D than that under the phase sweep scheme. In any case,
the phase modulation scheme is advantageous with optimal
modulation indices.

A thermal atomic beam is an example of an atomic beam
with a wide velocity distribution. For realistic laser-cooled
atomic beams, we note that the atomic beams produced by
state-of-the-art laser cooling techniques have sufficiently nar-
row velocity widths that can be adequately modeled using
our calculation without considering the velocity width. See
Appendix B for an example of a laser-cooled atomic beam
with the recently reported experimental parameters.

III. DISCUSSION

A. Resistance to the atom-flux drift

In the previous sections we considered atom interferometer
sensitivities, which included the effect of stationary noise. Be-
cause the stability of measurement for an atom interferometer
is also crucial in practical applications, we discuss ways to
mitigate the effect of atom-flux drift for both readout schemes.
Although we focus on atom-flux drift, our discussion below
applies to any drift that scales the overall intensity of the
interferometer output. When the atom-flux drift scales the out-
put, the output deviation is indistinguishable from the phase
signal. However, in general, the normalization of the output
suppresses the effect of atom-flux drift.

In the phase sweep scheme, dual-phase lock-in detec-
tion can suppress the effect of the drift without sacrificing
sensitivity. The output signal oscillates at twice the sweep fre-
quency in the phase sweep scheme. Thus, dual-phase lock-in
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TABLE II. Analytical expressions of the susceptibilities and power spectral densities of shot noise for an arbitrary atomic beam velocity.

Readout scheme Susceptibility Shot noise

C port

Phase modulation at the dark fringe 2r2(1 − r2)r′2J1(2φm)F F{r′2 − 2r2(1 − r2)(−1 + 2r′2)
+2r2(1 − r2)r′2[2J2(2φm) − J1(2φm)/φm]}

Phase modulation at the bright fringe 2r2(1 − r2)r′2J1(2φm)F F{r′2 − 2r2(1 − r2)(−1 + 2r′2)
−2r2(1 − r2)r′2[2J2(2φm) − J1(2φm)/φm]}

Phase sweep r2(1 − r2)r′2F F [2r2 − 2r4 + (1 − 2r2)2r′2]

D port

Phase modulation at the dark fringe 2r2(1 − r2)r′2J1(2φm)F F{1 − r′2 + 2r2(1 − r2)(−1 + 2r′2)
−2r2(1 − r2)r′2[J1(2φm)/φm − 2J2(2φm)]}

Phase modulation at the bright fringe 2r2(1 − r2)r′2J1(2φm)F F{1 − r′2 + 2r2(1 − r2)(−1 + 2r′2)
+2r2(1 − r2)r′2[J1(2φm)/φm − 2J2(2φm)]}

Phase sweep r2(1 − r2)r′2F F [1 − 2r2 + 2r4 − (1 − 2r2)2r′2]

detection can determine the phase by taking the ratio
of the two orthogonal quadrature components instead of
demodulating using a single demodulation function. By taking
this ratio, the overall factor of the output does not influence
the determined phase; therefore, the effect of atom-flux drift is
avoided. We note that the sensitivity is independent of whether
demodulation is achieved by a single demodulation function
or by using dual-phase lock-in detection.

The effect of atom-flux drift can also be removed in the
phase modulation scheme using a signal demodulated at twice
the modulation frequency, as proposed for fiber-optic gyro-
scopes [40]. The phase difference in the interferometer φs can
be expressed as

φs = tan−1

(
J2(φm)

J1(φm)

s1

s2

)
, (16)

where s1 and s2 are the amplitudes of the first- and second-
harmonic components in the output, respectively, which are
extracted via demodulation at ωm and 2ωm. As in the phase
sweep scheme, the overall scale change in the output due to
the atom-flux drift is negated in the fractions of s1 and s2.
Therefore, in terms of stability, both the phase sweep and
phase modulation schemes can resist atom-flux drift.

B. Phase modulation and demodulation with a square wave

We have studied a phase modulation readout scheme with
a sinusoidal function. Here we note the possibility of further
improving the sensitivity by optimizing the waveforms of the
modulation and demodulation functions. In a certain case, it is
known that optical interferometers with square-wave modula-
tion and demodulation have higher sensitivity [41]. However,

TABLE III. Analytical expressions of the power spectral densities of atom-flux fluctuation for an arbitrary atomic beam velocity.

Readout scheme Atom-flux fluctuation

C port

Phase modulation at the dark fringe
εF (4r4(1 − r2)2 + 4r2(1 − 2r2)2(1 − r2)r′2 + (1 − 8r2 + 26r4 − 36r6 + 18r8)r′4

−r2(1 − r2)r′2{[r′2 − 2r2(1 − r2)(−1 + 2r′2)][4J1(2φm)/φm − 8J2(2φm)]
+r2(1 − r2)r′2[−J1(4φm)/φm + 4J2(4φm)]})

Phase modulation at the bright fringe
εF (4r4(1 − r2)2 + 4r2(1 − 2r2)2(1 − r2)r′2 + (1 − 8r2 + 26r4 − 36r6 + 18r8)r′4

−r2(1 − r2)r′2{−[r′2 − 2r2(1 − r2)(−1 + 2r′2)][4J1(2φm)/φm − 8J2(2φm)]
+r2(1 − r2)r′2[−J1(4φm)/φm + 4J2(4φm)]})

Phase sweep εF [4r4(1 − r2)2 + 4r2(1 − 2r2)2(1 − r2)r′2 + (1 − 8r2 + 25r4 − 34r6 + 17r8)r′4]

D port

Phase modulation at the dark fringe
εF ([1 − 2r2 + 2r4]2 − 2(1 − 2r2)2(1 − 2r2 + 2r4)r′2 + (1 − 8r2 + 26r4 − 36r6 + 18r8)r′4

−r2(1 − r2)r′2{−[−1 + r′2 − 2r2(1 − r2)(−1 + 2r′2)][4J1(2φm)/φm − 8J2(2φm)]
+r2(1 − r2)r′2[−J1(4φm)/φm + 4J2(4φm)]})

Phase modulation at the bright fringe
εF ([1 − 2r2 + 2r4]2 − 2(1 − 2r2)2(1 − 2r2 + 2r4)r′2 + (1 − 8r2 + 26r4 − 36r6 + 18r8)r′4

−r2(1 − r2)r′2{[−1 + r′2 − 2r2(1 − r2)(−1 + 2r′2)][4J1(2φm)/φm − 8J2(2φm)]
+r2(1 − r2)r′2[−J1(4φm)/φm + 4J2(4φm)]})

Phase sweep εF [(1 − 2r2 + 2r4)2 − 2(1 − 2r2)2(1 − 2r2 + 2r4)r′2 + (1 − 8r2 + 25r4 − 34r6 + 17r8)r′4]
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only the case of a dark fringe with a sufficiently small mod-
ulation index has been discussed previously [38,42]. In this
case, the combination of square-wave modulation and square-
wave demodulation resulted in a better shot-noise level, which
is 2/3 the level of the PSD for sinusoidal modulation and
demodulation.

However, unlike optical interferometers, atomic beams can
only be modulated relatively slowly. This is because of the
longer interaction time between the atomic beam and the
modulating laser beam. This imposes a limitation on the
modulation waveform; square-wave modulation cannot be
ideally realized because a square wave includes harmonics.
On the other hand, greater flexibility is allowed for the demod-
ulation waveform. In a sinusoidal phase modulation scheme
with square-wave demodulation, the shot noise can be 8/π2 �
0.81 times lower than that obtained with sinusoidal demodu-
lation. In contrast, a PSD of the phase-equivalent shot noise
of π2/F is obtained in the phase sweep scheme with square-
wave demodulation. This value is larger than the sinusoidal
modulation value of 8/F . The sensitivity of the phase sweep
scheme cannot be optimized using square-wave demodula-
tion. As implied in this case, the general optimization of the
demodulation function is not trivial, particularly for thermal
atomic beams. Therefore, it is worthwhile to further explore
the optimization of the demodulation function for future work.

IV. CONCLUSION

We have calculated the sensitivity of atom interferome-
ters with nonstationary carrier fields and with this analysis
we have elucidated the usefulness of phase modulation in
a readout scheme. Despite the considerable interest in atom
interferometers with continuous atomic beams as highly sen-
sitive sensors, their sensitivities for each readout scheme were
not fully understood. In this work we performed an analysis
to reveal the differences in sensitivities of different readout
schemes. We identified that the conventionally assumed sen-
sitivity cannot be achieved with the phase sweep scheme,
although it is widely used. We proposed the use of a phase
modulation scheme to obtain higher sensitivity and demon-
strated that the phase modulation scheme with the optimal
modulation index is superior to the phase sweep and midfringe
schemes in terms of sensitivity, even when the atomic beam
has a finite velocity width. Furthermore, we found that the
phase modulation scheme also has advantages over atom-flux
fluctuation and provides a means to resist atom-flux drift.

Our work will help in the future design of atom interfer-
ometers. Using our analysis, the sensitivities of conventional
and new readout schemes can be calculated and compared
to select a suitable readout scheme. While we have focused
on sinusoidal waveform modulation, it merits further study
to examine more general forms of readout schemes, such as
square-wave demodulation. It would also be worthwhile to
explore a colored-noise spectrum to address noise sources
other than white noises examined in this work.
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APPENDIX A: ANALYTICAL EXPRESSIONS OF OUR
CALCULATION FOR AN ARBITRARY

ATOMIC BEAM VELOCITY

In Sec. II C we calculated the susceptibilities and PSDs of
shot noise and atom-flux fluctuation for an arbitrary atomic
beam velocity. Here we provide the calculated analytical ex-
pressions in Tables II and III.

APPENDIX B: SENSITIVITY FOR A COOLED
ATOMIC BEAM

We calculate the sensitivity for a laser-cooled atomic beam
using realistic parameters to determine the effect of a finite
velocity width. We refer to recently reported experimental re-
sults [29] for a feasible velocity width with up-to-date cooling
technology. The longitudinal temperature of the 87Rb beam
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was 15 µK and the mean velocity was 10.75 m/s. We assume
a Gaussian velocity distribution. The sensitivities calculated
using these parameters are presented in Fig. 4. The sensitivity
for the laser-cooled atomic beam overlaps with that of the

zero-velocity width in almost all regions. Therefore, we con-
clude that our calculation, which does not consider velocity
width, is a good model for atomic beams laser cooled using
recent cooling techniques.

[1] M. Kasevich and S. Chu, Atomic interferometry using stimu-
lated Raman transitions, Phys. Rev. Lett. 67, 181 (1991).

[2] F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, Op-
tical Ramsey spectroscopy in a rotating frame: Sagnac effect in
a matter-wave interferometer, Phys. Rev. Lett. 67, 177 (1991).

[3] M. Kasevich and S. Chu, Measurement of the gravitational
acceleration of an atom with a light-pulse atom interferometer,
Appl. Phys. B 54, 321 (1992).

[4] R. Geiger, A. Landragin, S. Merlet, and F. Pereira Dos Santos,
High-accuracy inertial measurements with cold-atom sensors,
AVS Quantum Sci. 2, 024702 (2020).

[5] H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, High
data-rate atom interferometer for measuring acceleration, Appl.
Phys. Lett. 100, 011106 (2012).

[6] J. Lautier, L. Volodimer, T. Hardin, S. Merlet, M. Lours, F.
Pereira Dos Santos, and A. Landragin, Hybridizing matter-wave
and classical accelerometers, Appl. Phys. Lett. 105, 144102
(2014).

[7] P. Cheiney, L. Fouché, S. Templier, F. Napolitano, B. Battelier,
P. Bouyer, and B. Barrett, Navigation-compatible hybrid quan-
tum accelerometer using a Kalman filter, Phys. Rev. Appl. 10,
034030 (2018).

[8] T. L. Gustavson, A. Landragin, and M. A. Kasevich, Rotation
sensing with a dual atom-interferometer Sagnac gyroscope,
Class. Quantum Grav. 17, 2385 (2000).

[9] D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, Long-term
stability of an area-reversible atom-interferometer Sagnac gy-
roscope, Phys. Rev. Lett. 97, 240801 (2006).

[10] D. Savoie, M. Altorio, B. Fang, L. A. Sidorenkov, R.
Geiger, and A. Landragin, Interleaved atom interferometry for
high sensitivity inertial measurements, Sci. Adv. 4, eaau7948
(2018).

[11] C. Avinadav, D. Yankelev, M. Shuker, O. Firstenberg, and
N. Davidson, Rotation sensing with improved stability using
point-source atom interferometry, Phys. Rev. A 102, 013326
(2020).

[12] A. Peters, K. Y. Chung, and S. Chu, High-precision gravity
measurements using atom interferometry, Metrologia 38, 25
(2001).

[13] Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and
A. Bresson, Compact cold atom gravimeter for field applica-
tions, Appl. Phys. Lett. 102, 144107 (2013).

[14] X. Wu, Z. Pagel, B. S. Malek, T. H. Nguyen, F. Zi, D. S.
Scheirer, and H. Müller, Gravity surveys using a mobile atom
interferometer, Sci. Adv. 5, eaax0800 (2019).

[15] M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and
M. A. Kasevich, Measurement of the earth’s gravity gradient
with an atom interferometer-based gravity gradiometer, Phys.
Rev. Lett. 81, 971 (1998).

[16] G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C.
Mahadeswaraswamy, and M. A. Kasevich, Testing gravity with
cold-atom interferometers, Phys. Rev. A 91, 033629 (2015).

[17] S. Fray, C. A. Diez, T. W. Hänsch, and M. Weitz, Atomic inter-
ferometer with amplitude gratings of light and its applications
to atom based tests of the equivalence principle, Phys. Rev. Lett.
93, 240404 (2004).

[18] M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and
G. M. Tino, Test of Einstein equivalence principle for 0-spin
and half-integer-spin atoms: Search for spin-gravity coupling
effects, Phys. Rev. Lett. 113, 023005 (2014).

[19] L. Zhou et al., Test of equivalence principle at 10−8 level by
a dual-species double-diffraction Raman atom interferometer,
Phys. Rev. Lett. 115, 013004 (2015).

[20] G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M.
Prevedelli, M. Zych, C. Brukner, and G. M. Tino, Quantum
test of the equivalence principle for atoms in superpositions of
internal energy eigenstates, Nat. Commun. 8, 15529 (2017).

[21] G. M. Tino and F. Vetrano, Atom interferometers for gravita-
tional wave detection: A look at a ‘simple’ configuration, Gen.
Relat. Gravit. 43, 2037 (2011).

[22] S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich,
and S. Rajendran, Gravitational wave detection with atom in-
terferometry, Phys. Lett. B 678, 37 (2009).

[23] B. Canuel et al., Exploring gravity with the MIGA large scale
atom interferometer, Sci. Rep. 8, 14064 (2018).

[24] M. Abe et al., Matter-wave atomic gradiometer interferometric
sensor (MAGIS-100), Quantum Sci. Technol. 6, 044003 (2021).

[25] A. Joyet, G. D. Domenico, and P. Thomann, Theoretical
analysis of aliasing noises in cold atom Mach-Zehnder inter-
ferometers, Eur. Phys. J. D 66, 61 (2012).

[26] A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A.
Rubenstein, and D. E. Pritchard, Rotation sensing with an atom
interferometer, Phys. Rev. Lett. 78, 760 (1997).

[27] H. Xue, Y. Feng, S. Chen, X. Wang, X. Yan, Z. Jiang, and Z.
Zhou, A continuous cold atomic beam interferometer, J. Appl.
Phys. 117, 094901 (2015).

[28] J. M. Kwolek, C. T. Fancher, M. Bashkansky, and A. T. Black,
Three-dimensional cooling of an atom-beam source for high-
contrast atom interferometry, Phys. Rev. Appl. 13, 044057
(2020).

[29] J. M. Kwolek and A. T. Black, Continuous sub-Doppler-cooled
atomic beam interferometer for inertial sensing, Phys. Rev.
Appl. 17, 024061 (2022).

[30] Z.-X. Meng, P.-Q. Yan, S.-Z. Wang, X.-J. Li, and Y.-Y. Feng,
Closed-loop dual-atom-interferometer inertial sensor with con-
tinuous cold atomic beams, Phys. Rev. Appl. 21, 034050
(2024).

[31] A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann,
Dual-axis high-data-rate atom interferometer via cold ensemble
exchange, Phys. Rev. Appl. 2, 054012 (2014).

[32] T. Sato, N. Nishimura, N. Kaku, S. Otabe, T. Kawasaki, T.
Hosoya, and M. Kozuma, Closed-loop measurement in atom
interferometer gyroscope with velocity-dependent phase disper-
sion compensation, arXiv:2407.05696.

013302-8

https://doi.org/10.1103/PhysRevLett.67.181
https://doi.org/10.1103/PhysRevLett.67.177
https://doi.org/10.1007/BF00325375
https://doi.org/10.1116/5.0009093
https://doi.org/10.1063/1.3673845
https://doi.org/10.1063/1.4897358
https://doi.org/10.1103/PhysRevApplied.10.034030
https://doi.org/10.1088/0264-9381/17/12/311
https://doi.org/10.1103/PhysRevLett.97.240801
https://doi.org/10.1126/sciadv.aau7948
https://doi.org/10.1103/PhysRevA.102.013326
https://doi.org/10.1088/0026-1394/38/1/4
https://doi.org/10.1063/1.4801756
https://doi.org/10.1126/sciadv.aax0800
https://doi.org/10.1103/PhysRevLett.81.971
https://doi.org/10.1103/PhysRevA.91.033629
https://doi.org/10.1103/PhysRevLett.93.240404
https://doi.org/10.1103/PhysRevLett.113.023005
https://doi.org/10.1103/PhysRevLett.115.013004
https://doi.org/10.1038/ncomms15529
https://doi.org/10.1007/s10714-010-1139-5
https://doi.org/10.1016/j.physletb.2009.06.011
https://doi.org/10.1038/s41598-018-32165-z
https://doi.org/10.1088/2058-9565/abf719
https://doi.org/10.1140/epjd/e2012-20401-6
https://doi.org/10.1103/PhysRevLett.78.760
https://doi.org/10.1063/1.4913711
https://doi.org/10.1103/PhysRevApplied.13.044057
https://doi.org/10.1103/PhysRevApplied.17.024061
https://doi.org/10.1103/PhysRevApplied.21.034050
https://doi.org/10.1103/PhysRevApplied.2.054012
https://arxiv.org/abs/2407.05696


ANALYZING THE SENSITIVITY OF AN ATOM … PHYSICAL REVIEW A 111, 013302 (2025)

[33] W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan,
D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland,
Quantum projection noise: Population fluctuations in two-level
systems, Phys. Rev. A 47, 3554 (1993).

[34] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and
M. A. Kasevich, Squeezed states in a Bose-Einstein condensate,
Science 291, 2386 (2001).

[35] C. M. Caves and B. L. Schumaker, New formalism for two-
photon quantum optics. I. Quadrature phases and squeezed
states, Phys. Rev. A 31, 3068 (1985).

[36] B. L. Schumaker and C. M. Caves, New formalism for
two-photon quantum optics. II. Mathematical foundation and
compact notation, Phys. Rev. A 31, 3093 (1985).

[37] T. Corbitt, Y. Chen, and N. Mavalvala, Mathematical framework
for simulation of quantum fields in complex interferometers us-
ing the two-photon formalism, Phys. Rev. A 72, 013818 (2005).

[38] A. Buonanno, Y. Chen, and N. Mavalvala, Quantum noise
in laser interferometer gravitational wave detectors with
a heterodyne readout scheme, Phys. Rev. D 67, 122005
(2003).

[39] N. F. Ramsey, Molecular Beams (Oxford University Press,
Oxford, 1986), Sec. II.3.2.

[40] K. Böhm, P. Marten, E. Weidel, and K. Petermann, Direct
rotation-rate detection with a fibre-optic gyro by using digital
data processing, Electron. Lett. 19, 997 (1983).

[41] M. Miranda, N. Takei, Y. Miyazawa, and M. Kozuma, Multi-
harmonic modulation in a fiber-optic gyroscope, Sensors 23,
4442 (2023).

[42] K. Somiya, New photodetection method using unbalanced
sidebands for squeezed quantum noise in gravita-
tional wave interferometer, Phys. Rev. D 67, 122001
(2003).

013302-9

https://doi.org/10.1103/PhysRevA.47.3554
https://doi.org/10.1126/science.1058149
https://doi.org/10.1103/PhysRevA.31.3068
https://doi.org/10.1103/PhysRevA.31.3093
https://doi.org/10.1103/PhysRevA.72.013818
https://doi.org/10.1103/PhysRevD.67.122005
https://doi.org/10.1049/el:19830677
https://doi.org/10.3390/s23094442
https://doi.org/10.1103/PhysRevD.67.122001

