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Spontaneous creation of skyrmions in a two-component Bose-Einstein condensate
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We investigate the stability of a vortex ring in a miscible two-component Bose-Einstein condensate confined in
a harmonic potential, where the vortex cores in the two components are initially overlapped. Solving the Gross-
Pitaevskii equation numerically, we find that the overlapped vortex rings in the two components are dynamically
unstable against separation and that they can form linked vortex rings, resulting in a three-dimensional skyrmion.
The parameter range for spontaneous skyrmion generation is determined by the Bogoliubov analysis.
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I. INTRODUCTION

Skyrmions are nontrivial topological structures proposed
in nuclear physics to explain hadrons [1]. Skyrmions have
since transcended their theoretical origins and have been
extended to various physical systems. Numerous theoretical
proposals have facilitated the observation and manipulation of
skyrmions in chiral magnets [2], liquid crystals [3], quantum
Hall systems [4–6], superconductors [7,8], semiconductors
[9], acoustics [10], superfluid 3He [11,12], and Bose-Einstein
condensates (BECs) of ultracold gases [13,14]. The order
parameters with internal degrees of freedom enable the atomic
BECs to support a wide range of topological entities such
as dark solitons [15], quantized vortices [16,17], monopoles
[18–20], and knots [21–23]. The system of a multicomponent
BEC is thus a suitable platform for examining the behavior of
topological spin structures, including skyrmions.

Various studies on skyrmions in multicomponent BECs
have been reported. Two-dimensional (2D) skyrmions have
been realized experimentally using the Raman process
[24] and magnetically induced spin rotations [25]. Three-
dimensional (3D) skyrmions have been successfully created
in a spin-1 BEC using a spin rotation technique [26]. A wide
variety of methods for creating skyrmions in multicomponent
BECs have been proposed, including electromagnetically in-
duced transitions [13], spin manipulation using a structured
magnetic field and laser beams [27–30], spin-orbit interaction
[31,32], annihilation of domain walls [33], Plateau-Rayleigh
instability [34], optical excitation of atoms [35], and a moving
obstacle [36]. The stability and dynamics of skyrmions have
also been investigated extensively [37–49].

In this paper, we show that a 3D skyrmion is generated
spontaneously in a two-component BEC. As an initial state,
we consider a U (1) vortex ring in a miscible two-component
BEC, where quantized vortex rings in the two components are
totally overlapped with each other. These overlapped vortex
rings are shown to be dynamically unstable against separation.
For some parameters, we find that the separated vortices are
linked with each other, resulting in a skyrmion with an integer
winding number.

The remainder of the paper is organized as follows. A
skyrmion in a two-component BEC is introduced in Sec. II.

The dynamics of the system and the spontaneous generation of
skyrmions are demonstrated in Sec. III. The Bogoliubov anal-
ysis to find the parameter range for the skyrmion generation
is described in Sec. IV. An experimental scenario to observe
the formation of a 3D skyrmion is proposed in Sec. V, and
conclusions drawn from this study are offered in Sec. VI.

II. THREE-DIMENSIONAL SKYRMION
IN A TWO-COMPONENT BEC

We consider a two-component BEC at zero temperature,
represented by the macroscopic wave functions �1(r, t ) and
�2(r, t ) within the mean-field approximation. These two-
component wave functions can be expressed as

�(r) =
(

�1(r)

�2(r)

)
=

√
ρ(r)

(
�1(r)
�2(r)

)
, (1)

where ρ(r) = |�1(r)|2 + |�2(r)|2 is the total density and
(�1,�2) satisfies the normalization condition |�1(r)|2 +
|�2(r)|2 = 1. The two complex numbers �1(r) and �2(r)
represent a pseudospin-1/2 state on the SU(2) manifold. In
a two-component BEC, a skyrmion is characterized as a
configuration in which the physical space r is continuously
and topologically mapped onto the SU(2) manifold. In this
mapping, all the points at infinity (|r| → ∞) are mapped onto
the common state (�1,�2); therefore, the structure of this
mapping is mathematically described by the third homotopy
group, π3[SU(2)] = Z [1,14,37,50]. This mapping is classi-
fied by an integer topological invariant known as the winding
number or topological charge, which quantifies its topological
nature.

A skyrmion in an equally mixed two-component BEC can
be constructed by the following expression,

�(r) = 1√
2

e−i f (r)r̂·σ
(

1
1

)

= 1√
2

(
cos f (r) − i(cos θ + sin θe−iφ ) sin f (r)

cos f (r) + i(cos θ − sin θeiφ ) sin f (r)

)
, (2)

where f (r) is a monotonically decreasing function sat-
isfying the boundary condition f (0) = π and f (∞) = 0,
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FIG. 1. Skyrmion state defined in Eq. (2), which consists of
linked vortex rings in two components. (a) Isodensity surface for both
components (|ψ1|2 = |ψ2|2 = 0.1); the color represents the phase at
the surface, where the phase changes by 2π around the tubes. (b) and
(c) Cross-sectional density (main panels) and phase (insets) profiles
for components 1 and 2 on the y = 0 plane, respectively.

σ represents the vector of the Pauli matrices, and r̂ =
(sin θ cos φ, sin θ sin φ, cos θ ) is the unit vector in polar coor-
dinates (r, θ, φ). The rotation matrix in Eq. (2) covers whole
elements of SU(2); hence it corresponds to a mapping of
a 3D unit sphere S3 parametrized by [ f (r), θ, φ] onto the
SU(2) manifold. Figure 1 shows the skyrmion state defined
in Eq. (2). This state contains quantized vortex rings in both
components, which are linked with each other [51], as shown
in Fig. 1.

In general, a two-component state can be written as

�(r) =
√

ρ(r)

(
eiη1(r) cos κ (r)

2

eiη2(r) sin κ (r)
2

)
, (3)

where η and κ are real functions. The winding number W for
a 3D skyrmion is defined as [1,13,14,37,38]

W = 1

8π2

∫
dr

∑
α,β,γ

εαβγ sin κ (r)(∂ακ )(∂βη1)(∂γ η2), (4)

where εαβγ represents the antisymmetric tensor and α, β, and
γ are summed over x, y, and z. As long as the parameters κ ,
η1, and η2 are continuous, the winding number W is an integer.
Equation (2) contains a skyrmion structure with W = 1.

The winding number is invariant under global spin rotation,
which generates topologically equivalent states. Applying
spin rotation eiσyπ/4 to the state in Eq. (2), we obtain the
skyrmion state discussed in Refs. [13,33,36,48], in which
component 1 has a vortex ring and its core is occupied by
component 2 having 2π rotation of the phase along the ring.

III. NUMERICAL SIMULATIONS OF DYNAMICS

We consider a two-component BEC of a dilute atomic gas
with mass m trapped inside an external potential V (r). The dy-
namics of the system at zero temperature under the mean-field
approximation is described by the coupled Gross-Pitaevskii
(GP) equations,

ih̄
∂� j

∂t
=

(
− h̄2

2m
∇2 + V (r) + g j j |� j |2 + g j j′ |� j′ |2

)
� j,

(5)
where ( j, j′) = (1, 2) and (2, 1). Here, � j (r, t ) is normalized
as

∫ |� j |2dr = Nj with Nj being the number of atoms in the
jth component. The coefficient g j j′ = 4π h̄2a j j′/m represents

the interaction parameter with a j j′ being the s-wave scattering
length between the jth and j′th components. In the follow-
ing, we set the number of atoms in both components to be
the same, N1 = N2. The intercomponent interaction parameter
g12 is assumed to be a variable that satisfies miscible con-
dition g11g22 > g2

12 [52]. For simplicity, the intracomponent
interactions are assumed to be identical: g11 = g22 ≡ g > 0.
We also assume that the system is confined in a spherically
symmetric trap given by V (r) = mω2r2/2, where ω is the trap
frequency.

We rescale position r = r̃lh, time t = ω−1τ , and wave func-
tion � j (r, t ) = �̃ j (r̃, τ )N1/2

j /l3/2
h , where lh = [h̄/(mω)]1/2.

Equation (5) then takes a nondimensional form,

i
∂�̃ j

∂τ
=

(
−∇̃2

2
+ Ṽ + g̃|�̃ j |2 + g̃ j j′ |�̃ j |2

)
�̃ j, (6)

where Ṽ = r̃2

2 , g̃ = 4πNj a
lh

, and g̃ j j′ = 4πNj a j j′
lh

are the scaled
potential and scaled interaction coefficients, respectively. In
the following discussion, we omit the tildes from the nondi-
mensional quantities.

We use the split-operator pseudospectral method [53] to in-
tegrate the 3D GP equation numerically to obtain imaginary-
and real-time evolutions. The numerical mesh size is set to
(256)3 with a spatial step size of dx = dy = dz = 0.075, and
the time step is typically dt = 0.001. The numerical box
is sufficiently larger than the condensate, and the periodic
boundary condition imposed by the spectral method does not
affect the results.

We prepare the stationary vortex-ring state [54–56] as an
initial state in which both components have the same wave
function containing a quantized vortex ring. To generate this
state numerically, we first prepare the ground state without
vortices by imaginary-time evolution. We next imprint a cir-
cular vortex ring in both components by multiplying the wave
functions by ei�(r), where

�(r) = tan−1 z

r⊥ − Rr
− tan−1 z

r⊥ + Rr
. (7)

Here, r⊥ =
√

x2 + y2 and Rr is the radius of the vortex ring
to be imprinted in both components. We perform a short
imaginary-time propagation (duration of 0.3) after the phase
�(r) is imprinted on the wave functions to remove the ex-
cess energy of the imprinted vortices. If the value of Rr is
appropriately chosen, the imaginary-time evolution almost
maintains the radii of the vortex rings and the stationary state
is achieved. Figure 2 shows the stationary state with over-
lapped vortex rings, where Rr = 3.5lh is used. In Fig. 2(b),
the two density holes indicate the cross section of the vortex
ring with 2π phase winding. The two components have the
same wave function and the vortex rings in the two compo-
nents are totally overlapped with each other, having the same
radius. A small numerical perturbation is introduced to each
component of the initial state before the real-time evolution to
break the exact numerical symmetry and trigger the dynamical
instability.

Figure 3 shows the real-time evolution starting from the
stationary vortex-ring state in Fig. 2. The overlapped vortex
rings in the two components are dynamically unstable against
separation. This instability is similar to that in two overlapped
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FIG. 2. Initial stationary state with overlapped vortex rings in
component 1 and component 2 obtained by imaginary-time evolu-
tion of the GP equation with g = 5000 and g12 = 0.65g. The two
components have the same density and phase profiles. (a) Isoden-
sity surfaces at one-half the peak density, where the outer spherical
surface is made transparent for visibility. (b) Cross-sectional den-
sity (main panel) and phase (inset) profiles of both components on
the x = 0 plane. We set Rr = 3.5lh for preparing the stationary state.
The size of the box in (a) is (19.2lh )3, with the origin at the center.
The field of view in (b) is 19.2lh × 19.2lh, and the units of density
are Nj/l3

h .

vortices in two components in 2D systems [57,58]. For a
certain range of interaction parameter g12, we find that these
coaxial vortex rings separate and become linked with each
other, which results in the skyrmion. Figures 3(a)–3(c) show
the dynamics of spontaneous generation of a skyrmion for
g12 = 0.65g. The two vortex rings already become linked
immediately after separation (τ 	 40), and the linkage is
maintained for a long time (until τ 	 160). Figure 3(d) shows
the time evolution of the winding number W . Since the density
outside the condensate is zero and the phase is ill defined,
the integral in Eq. (4) is taken only for r < rcutoff = 5lh. The
winding number W increases from 0 to 	1 when the vortex
rings separate and become linked. The fluctuations in the
winding number during 20 � τ � 40 are due to the ill-defined
phases near the separating vortex cores, and those for τ � 40
are due to the cutoff rcutoff . At τ 	 160, the link between
the vortex rings breaks and the winding number returns to
W 	 0 (data not shown). The skyrmion with W = 1 or −1 is
obtained randomly depending on the initial random noise. In
the case of g12 = 0.75g, spontaneous generation of a skyrmion
with double-winding linkages is obtained at τ 	 40, as shown
in Fig. 3(e), which has the winding number W 	 −2. After
τ 	 65, it reduces to the single-winding linkage [Fig. 3(f)],
followed by the leapfrog dynamics at τ 	 90 [Fig. 3(g)]. For
g12 = 0.60g, no skyrmion is generated and only the leapfrog
dynamics is observed (Fig. 4). The results show that the
separated vortex rings are not linked with each other and
that the axial symmetry is retained for a long time. The
winding number W for this case remains zero in the time
evolution.

We performed systematic simulations using the GP equa-
tion for various values of g12 and found that the skyrmion with
|W | 	 1 is generated for 0.62g � g12 � 0.70g. The leapfrog
dynamics of the vortex rings are obtained for g12 � 0.61g. For
0.74g � g12 � 0.77g, we obtain the skyrmion with |W | 	 2
with a short lifetime, followed by the leapfrog dynamics.

IV. BOGOLIUBOV ANALYSIS

We here use the Bogoliubov analysis to investigate the
dynamical stability of the system. We separate the wave func-
tion as

� j (r, τ ) = [ψ j (r⊥, z) + δ� j (r, τ )]e−iμ jτ , (8)

where ψ j is the stationary state, δ� j is the small deviation,
and μ j is the chemical potential. Substituting Eq. (8) into the
GP equation (6) and neglecting the second- and third-order
terms in δ� j , we obtain ( j 
= j′)

i
∂ (δ� j )

∂τ
=

(
−∇2

2
+ V − μ j

)
δ� j

+ g j j
(
2|ψ j |2δ� j + ψ2

j δ�
∗
j

)
+ g j j′ (|ψ j′ |2δ� j + ψ∗

j′ψ jδ� j′ + ψ j′ψ jδ�
∗
j′ ).

(9)

We write the deviation δ� j as

δ� j (r, τ ) = u j (r⊥, z)ei�φe−iλτ + v∗
j (r⊥, z)e−i�φeiλ∗τ , (10)

where an integer � denotes the angular momentum of the
excitation. Substituting Eq. (10) into Eq. (9), we obtain the
Bogoliubov–de Gennes equation ( j 
= j′),[
−1

2

(
∇2

⊥ + ∇2
z − �2

r2
⊥

)
+ V − μ j

]
u j + g j j

(
2|ψ j |2u j + ψ2

j v j
)

+ gj j′ (|ψ j′ |2u jδψ j + ψ∗
j′ψ ju j′ + ψ j′ψ jv j′ ) = λu j,

(11a)[
−1

2

(
∇2

⊥ + ∇2
z − �2

r2
⊥

)
+ V − μ j

]
v j

+ g j j
(
2|ψ j |2v j + ψ∗2

j u j
)

+ g j j′ (|ψ j′ |2v j + ψ j′ψ
∗
j v j′ + ψ∗

j′ψ
∗
j u j′ ) = −λv j . (11b)

Numerically, we obtain the stationary state ψ j (r⊥, z) con-
taining vortices using the imaginary-time evolution of the
GP equation, in a manner similar to Fig. 2, where r⊥ and
z are discretized with the step size dr⊥ = dz = 0.075. We
next refine the stationary state using the Newton-Raphson
method [Fig. 5(a)]. Using this stationary state, we calculate
the eigenvalues and eigenfunctions of Eq. (11) using the
Lanczos method. The existence of at least one eigensolution
with a positive imaginary part (Im λ > 0) indicates dynamic
instability because the corresponding excitation mode exhibits
exponential growth in time.

An example of the eigenfunctions uj and v j for a dy-
namically unstable mode is shown in Figs. 5(b)–5(e). Since
Eq. (11) does not depend on the sign of �, we show only the
results for � � 0. The eigenfunctions u j are localized near the
vortex core [Figs. 5(b) and 5(c)], whereas v j are distributed
[Figs. 5(d) and 5(e)]. They satisfy

∫
dr

∑2
j=1(|u j |2 − |v j |2) =

0. We note that the localized functions satisfy u1 = −u2,
which leads to vortex separation, as discussed below. The
eigenfunctions for other unstable modes have similar shapes.
There is also a dynamically unstable mode in which uj and v j

are exchanged, since (λ, u j, v j ) and (−λ∗, v∗
j , u∗

j ) are conju-
gate solutions.
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FIG. 3. Dynamics of spontaneous skyrmion generation obtained by the GP equation for g = 5000, where the initial state is the overlapped
vortex rings (Fig. 2). Isodensity surfaces for component 1 (yellow or light gray) and component 2 (blue or dark gray) for (a)–(c) g12 = 0.65g
and (e)–(g) g12 = 0.75g. See the Supplemental Material for animations of the dynamics in (a)–(c) and (e)–(g) [59]. (d) and (h) Time evolution
of the winding number W for g12 = 0.65g and g12 = 0.75g, respectively.

The integer � for the unstable mode corresponds to the
winding number W for the generated state, which can be
understood as follows. Suppose that the core of the vortex
ring is located at r⊥ = r0 and z = 0, as shown in Fig. 5(a).
We focus on the region very close to the core of the vortex
ring, where u j are dominant in the excitation. Approximating
that u j are uniform near the vortex core, we can express the
time evolution of the wave function as

ψ j ∝ r⊥ − r0 + iz + Cj (t )ei�φ, (12)

where Cj are proportional to the values of u j at the vortex
core. Without loss of generality, Cj can be taken to be real,
and Eq. (12) becomes

ψ j ∝ r⊥ − (r0 − Cj cos �φ) + i(z + Cj sin �φ). (13)

Thus, the position of the vortex core is displaced by
(−Cj cos �φ,−Cj sin �φ); i.e., the displaced vortex ring winds
� times around the original ring from φ = 0 to 2π , which
corresponds to the winding number W = � for the skyrmion.
Since u1 = −u2 (i.e., C1 = −C2), the vortices in the two com-
ponents separate from each other.

FIG. 4. Leapfrog dynamics obtained by solving the GP equa-
tion for g = 5000 and g12 = 0.60g. (a) τ = 45, (b) τ = 60, and
(c) τ = 90. Isodensity surfaces for both components are shown. See
the Supplemental Material for an animation of the dynamics [59].

Figure 5(f) shows the imaginary part of the excitation
frequency, Im λ, for � = 0, 1, and 2 as a function of g12/g.
The system is dynamically unstable in the entire range shown,
0.55 � g12/g � 0.9, since there are excitation frequencies

FIG. 5. Bogoliubov analysis for g = 5000. (a) Density profile
for the stationary state ψ j . (b)–(e) Density profiles for dynamically
unstable modes u1, u2, v1, and v2, respectively, for g12 = 0.65g and
� = 1. (f) Imaginary part of the Bogoliubov excitation frequency
Im λ for eigenmodes with � = 0, 1, and 2 plotted as a function of
g12/g. The vertical dotted lines indicate g12/g = 0.60, g12/g = 0.65,
and g12/g = 0.75, corresponding to the parameters used in Figs. 3
and 4.

013301-4



SPONTANEOUS CREATION OF SKYRMIONS IN A … PHYSICAL REVIEW A 111, 013301 (2025)

with a positive imaginary part for any values of g12/g. For
g12/g 	 0.6, 0.65, and 0.75, the excitation frequency λ has the
largest imaginary part for � = 0, 1, and 2 [see the plots at the
vertical dotted lines in Fig. 5(f)]. This result is consistent with
the dynamics in Figs. 3 and 4, where the generated states have
winding numbers |W | = 0, 1, and 2 for g12/g 	 0.6, 0.65,
and 0.75, respectively. Although Im λ also becomes nonzero
for the modes of � � 3, the values of Im λ for � � 3 are
always smaller than those for � � 2. We have confirmed that
the results are almost unchanged when the spatial step size is
doubled, which indicates that the numerical error due to the
spatial resolution is unimportant.

V. EXPERIMENTAL PROPOSAL

We consider a two-component BEC of 87Rb atoms con-
fined in an isotropic harmonic potential V = mω2(x2 + y2 +
z2)/2 with a trap frequency ω = 2π × 100 Hz. In this case,
the units of length and time are lh = 1.08 µm and ω−1 = 1.59
ms, respectively. In Secs. III and IV, for simplicity, we as-
sumed g11 = g22, which can be realized by, e.g., using the
hyperfine states |F, mF 〉 = |1, 1〉 and |1,−1〉 for the two com-
ponents. The s-wave scattering lengths for these states are
a11 = a22 = 100.4a0 [60,61], where a0 is the Bohr radius. The
interaction parameter g = 5000 corresponds to N1 = N2 	
8 × 104.

The initial state in which the two components contain the
overlapped vortex rings (Fig. 2) can be prepared as follows.
First, a single-component BEC is created and a stationary
vortex ring is produced in the BEC. The vortex ring can be
created using the phase imprinting technique, which gives a
spatially dependent phase to the wave function by laser beams
or a magnetic field [13,62]. A stirring external potential can
also produce a vortex ring in the BEC [63]. Next, one-half of

one component is transferred to the other component through
the Rabi oscillation using a π/2 pulse, which results in the
overlapped vortex rings in the two-component BEC.

We have numerically confirmed through the GP simula-
tions that similar results can be obtained for the hyperfine
states |1, 1〉 and |1, 0〉 of 87Rb atoms, where the intracompo-
nent scattering lengths a11 = 100.4a0 and a22 = 100.86a0 are
different. In the numerical simulation, we prepared a station-
ary vortex-ring state for a BEC of the |1, 1〉 state and then
one-half of the atoms were transferred to the |1, 0〉 state. We
then carried out the real-time evolution in a manner similar to
Fig. 3. We found that the skyrmion is generated for 0.77g11 �
g12 � 0.79g11.

VI. CONCLUSIONS

We have shown that a 3D skyrmion is spontaneously gener-
ated in a two-component miscible BEC trapped in a harmonic
potential, in which the intercomponent interaction g12 is con-
trolled. For a certain range of the intercomponent interaction
parameter, the initially overlapped vortex rings exhibit dy-
namical instability and separate into two linked vortex rings
(Fig. 3). We carried out the Bogoliubov analysis and numer-
ically obtained the dynamically unstable spectrum (Fig. 5).
This phenomenon can be realized in a realistic experimental
system using, e.g., a two-component BEC with a feasible
number of atoms (∼105 atoms of 87Rb).
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