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Combining quantum and Bayesian principles leads to optimality in metrology, but the optimization equa-
tions involved are often hard to solve. This Letter mitigates this problem with a class of measurement strategies
for quantities isomorphic to location parameters, which are shown to admit a closed-form optimization. The
resulting framework admits any parameter range, prior information, or state, and the associated estimators apply
to finite samples. As an example, the metrology of relative weights is formulated from first principles and shown
to require hyperbolic errors. The primary advantage of this approach lies in its simplifying power: it reduces the
search for good strategies to identifying which symmetry leaves a state of maximum ignorance invariant. This
will facilitate the application of quantum metrology to fundamental physics, where symmetries play a key role.
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Introduction. Quantum metrology is often thought of as in-
separable from phase estimation [1]. This has led to numerous
insights in the foundations of physics, including a π -corrected
Heisenberg limit [2], clarification of the role of entanglement
in quantum-enhanced measurements [3–6], the construction
of phase observables [7], and the enhancement of gravitational
wave detection via squeezed light [8–10]. Yet, modern quan-
tum technologies [11–13] are inspiring metrology problems
that transcend phase estimation.

Two examples are quantum thermometry [14–17] and rate
estimation in dissipative processes [18,19]. Since temperature
and rate set energy and time scales [20,21], respectively, scale
invariance becomes essential for consistent estimation, and
this reveals a metrological framework for scales that is inde-
pendent of phase estimation [22]. This strongly suggests that
different parameter types require different metrologies.

Far from a mere formality, this idea is proving crucial
in the presence of finite information [23–26]. The applica-
tion of scale estimation to a thermometry experiment on 41K
atoms confined in an optical tweezer at microkelvin temper-
atures [27], for instance, has demonstrated how individual
measurements can be made substantially more informative
by enforcing the correct invariance via Bayesian principles
[28,29].

We have circular invariance for phases [30–33], translation
invariance for locations [34], and scale invariance for scales
[22]. But not every parameter falls under such categories. This
is the case, e.g., of relative weights, that is, any η ∈ (0, 1)
quantifying the relative importance of any two objects as η and
1 − η. Examples include probability of success [20], blend pa-
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rameters in mixed states [35], photon loss in an interferometer
[36], and the Schmidt parameter characterizing the class of
two-qubit pure states and their entanglement [37].

A simple, yet effective way of discovering new metrolo-
gies is to exploit the class of parameters that can be mapped
into locations. If � is such a parameter, and its value is
completely unknown, there will exist a function f : θ → f (θ )
such that our initial state of knowledge is invariant under
transformations

f (θ ) �→ f (θ ′) = f (θ ) + c, (1)

for arbitrary c and where θ and θ ′ denote different but equally
valid hypotheses about �. Such hypotheses are related by a
transformation θ ′ = g(θ ) that is determined by the physics at
hand, and we say that f maps � into a location because Eq. (1)
is a translation of f (θ ) [28]. Good measurement strategies can
then be found by optimizing the family of quadratic errors

D f [θ̃y(x), θ ] = { f [θ̃y(x)] − f (θ )}2 (2)

on average, where x and y = (y1, y2, . . . ) denote a measure-
ment outcome and control parameters, respectively, and the
map θ̃y: x → θ̃y(x) processes x into an estimate for �. Since
the form of f depends on the transformation g, and this
varies for different parameter types, imposing the symmetry
(1) leads to different metrologies in different scenarios. For
example, f (z) = z transforms Eq. (2) into the square error
[θ̃y(x) − θ ]2 used for locations, while f (z) = log(z/z0), with
constant z0, renders the logarithmic error log2[θ̃y(x)/θ ] used
for scales [22]. In general, Eqs. (1) and (2) cover a vast
collection of parameter types largely unexplored.

This Letter reports an optimal framework for the quantum
metrology of such location-isomorphic parameters. Owing to
its symmetry-informed nature, this approach provides closed-
form rules to calculate, for given state and function f , optimal
estimators and probability-operator measurements (POMs).
Since they are Bayesian, these rules are global, i.e., valid
for a hypothesis range θ ∈ [θmin, θmax] as wide or as nar-
row as required (including the local regime θmax/θmin ≈

2469-9926/2024/110(3)/L030401(6) L030401-1 Published by the American Physical Society

https://orcid.org/0000-0002-8193-8273
https://ror.org/00ks66431
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.L030401&domain=pdf&date_stamp=2024-09-03
https://doi.org/10.1103/PhysRevA.110.L030401
https://creativecommons.org/licenses/by/4.0/


JESÚS RUBIO PHYSICAL REVIEW A 110, L030401 (2024)

1 [1]). Moreover, the calculation of the associated mini-
mum errors is exact, thus bypassing the hierarchies of error
bounds typically employed in metrology [38–42] (includ-
ing the celebrated Cramér-Rao bounds that cannot always
be applied [43]). This generalizes Personick’s pioneering
work [34]—an early demonstration of the fruitful marriage
between quantum detection and Bayesian inference [44]. Per-
sonick’s discovery of a quantum minimum square error has
been refined [44,45], extended [22,41,46–48], and applied
[24,49–62] over half a century. But, aside from scale esti-
mation [22], his reasoning has seemingly been restricted to
location metrology.

To demonstrate the power of this framework, a metrology
of weights is derived from first principles. The symmetry (1)
is shown to arise in this case from Möbius transformations,
leading to a hyperbolic error and estimators based on the
logistic function. Their application to the estimation of a blend
parameter in a mixed state reveals a maximum precision gain
of 75% relative to the prior uncertainty. This illustrates the key
advantage of symmetry-informed estimation: if � is location
isomorphic, finding the best estimator and POM amounts to
identifying the symmetry (1) and performing a single calcula-
tion of the optimal strategy using the rules reported here.

Elements of quantum metrology. We wish to estimate �.
A finite hypothesis range θ ∈ [θmin, θmax] is often available in
practice, and other kinds of prior knowledge can be accounted
for using principles such as maximum entropy [28,63]. If, on
the other hand, we start from minimal assumptions including
the type of parameter � is—a scale, a weight, etc.—and its
general support, then we are maximally ignorant about its
value [20]. A prior probability p(θ ) is used to encode any
available (or the absence of) initial information.

The hypothesis θ is next encoded in a state ρy(θ ), which
is often characterized by some control parameters y. Exam-
ples include preparation and readout times in magnetic-field
sensing [64], and expansion time in release-recapture ther-
mometry [27]. A POM My(x) is performed on this state, and
the outcome x is used to update the information in p(θ ). This
procedure provides the desired estimate θ̃y ± �θ̃y, where �θ̃y

denotes an outcome-dependent error.
A central problem in this context is finding estimators and

POMs leading to the least error. The next section provides an
exact, analytical solution to this for quadratic errors [Eq. (2)].

Optimal strategy for quadratic errors. We start by integrat-
ing Eq. (2) weighted over θ and x as

Tr

{∫
dxMy(x)Wf [θ̃y(x)]

}
:= ε̄y, f ,MQE, (3)

where

Wf [θ̃y(x)] =
∫

dθ p(θ )ρy(θ ){ f [θ̃y(x)] − f (θ )}2. (4)

We average over the hypothesis θ because � is unknown;
this makes the error globally valid, i.e., for any parameter
range. Similarly, we average over the outcome x because the
search for optimal POMs takes place prior to recording a spe-
cific measurement outcome. Equation (3) is a mean quadratic
error.

To find the optimal strategy minimizing this error, it is
useful to rewrite it as

εy, f ,MQE = ζ f + Tr(ρy, f ,0Ay, f ,2 − 2ρy, f ,1Ay, f ,1), (5)

where

ζ f =
∫

dθ p(θ ) f (θ )2, (6a)

ρy, f ,l =
∫

dθ p(θ )ρy(θ ) f (θ )l , (6b)

Ay, f ,l =
∫

dxMy(x) f [θ̃y(x)]l . (6c)

By virtue of Jensen’s inequality, Ay, f ,2 − A2
y, f ,1 � 0,

Eq. (5) is lower bounded as

εy, f ,MQE � ζ f + Tr
(
ρy, f ,0A2

y, f ,1 − 2ρy, f ,1Ay, f ,1
)
. (7)

But projective measurements—i.e., My(x)My(x′) → δ(x −
x′)My(x′)—saturate Jensen’s inequality. Therefore, we can as-
sume equality in Eq. (7) and restrict the search to projective
strategies without loss of optimality [45].

Using variational calculus, and following the formally
analogous derivation in Refs. [22,34], such an equality is
found to achieve its minimum at

Ay, f ,1 = Sy, f , (8)

where Sy, f solves the Lyapunov equation

Sy, f ρy, f ,0 + ρy, f ,0Sy, f = 2ρy, f ,1. (9)

Crucially, Sy, f contains all the information about the optimal
strategy, as follows. Given the eigendecomposition

Sy, f =
∫

dsPy, f (s)s, (10)

where Py, f (s)Py, f (s′) → δ(s − s′)Py, f (s′), and recalling the
definition in Eq. (6c), Eq. (8) implies

θ̃y(x) �→ f −1(s) := ϑ̃y, f (s), (11a)

My(x) �→ Py, f (s) :− My, f (s). (11b)

The optimal estimator is thus found by transforming the
spectrum of Sy, f via the inverse f map [Eq. (11a)], while
the optimal measurement consists in projecting onto the
eigenspace of Sy, f [Eq. (11b)].

Inserting Eq. (8) into Eq. (7) further renders the associated
minimum error

ε̄y, f ,min = ε̄p, f − Gy, f (12)

as the difference between the initial uncertainty ε̄p, f , given by
the prior variance of f , and the average precision gain

Gy, f = Tr
(
ρy, f ,0S2

y, f

) − Tr(ρy, f ,0Sy, f )2. (13)

Equation (12) is useful, in addition, to assess the relative
performance of suboptimal—but perhaps more practical—
strategies via the trivial uncertainty relation ε̄y, f ,MQE �
ε̄y, f ,min.

Equations (9), (11), and (12) are the main result of this
Letter. They generalize Personick’s framework [34] (as well
as scale estimation [22]) and provide the optimal quantum
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strategy for any location-isomorphic parameter. This is next
illustrated for weight parameters.

Weight estimation. Consider a set with two generic ele-
ments, e0 and e1, carrying weights η and 1 − η, respectively.
Suppose η is unknown. To construct a quantum metrology for
η, we first need a notion of maximum ignorance.

Let θ ∈ (0, 1) be a hypothesis about η. If we ask how
likely it is that one would choose e0 over e1, our proba-
bility for this is p(e0) = θ . If a new piece of information
I is provided—I denotes a proposition—p(e0) can be up-
dated to p(e0|I ) via Bayes’s theorem. But p(e0|I ) = θ ′
can also be used as a hypothesis for η. This induces a
Möbius transformation

θ ′ = γ θ

1 − θ + γ θ
(14)

between hypotheses, with γ = p(I|e0)/p(I|e1). By rewriting
it as θ ′/(1 − θ ′) = γ θ/(1 − θ ), we see that it amounts to
rescaling the “odds.” But this rescaling does not inform the
value of η. We then say that our initial state of knowledge is
invariant under odds transformations (14). This motivates the
formal constraint p(θ )dθ = p(θ ′)dθ ′ on the prior probability,
which renders the functional equation

(1 − θ + γ θ )2 p(θ ) = γ p

(
γ θ

1 − θ + γ θ

)
. (15)

Its solution, p(θ ) ∝ 1/[θ (1 − θ )], is sometimes referred to as
Haldane’s prior [65]. This derivation was suggested by Jaynes
[20] for a probability of success, and it has here been extended
to any weight parameter.

Having found an ignorance prior for weights, an ap-
propriate error can be derived. Setting ϕ = c1artanh(2θ −
1) + c2, with arbitrary c1 and c2, maps our weight estima-
tion problem into that of finding a location with hypothesis
ϕ ∈ (−∞,∞). Namely, p(θ )dθ = p(ϕ)dϕ implies p(θ ) ∝
1/[θ (1 − θ )] �→ p(ϕ) ∝ 1, where p(ϕ) ∝ 1 represents max-
imum ignorance about locations [20]. The deviation of ϕ̃

from ϕ is quantified by the k distance Dk (ϕ̃, ϕ) = |ϕ̃ − ϕ|k;
consequently,

Dk (ϕ̃, ϕ) �→ Dk (θ̃ , θ ) =
∣∣∣∣∣c1artanh

(
θ̃ − θ

θ̃ + θ − 2θ̃ θ

)∣∣∣∣∣
k

. (16)

Equation (16) is symmetric, Dk (θ̃ , θ ) = Dk (θ, θ̃ ); invariant
under Eq. (14), Dk (θ̃ ′, θ ′) = Dk (θ̃ , θ ); it vanishes at θ̃ = θ ;
and it grows (decreases) monotonically from (towards) that
point. It is thus a bona fide error for weights. Once identified
under minimal assumptions, it can be combined with prior
probabilities other than Haldane’s [66].

We next apply symmetry-informed estimation. Let c1 =
2 without loss of generality, and k = 2 for the error to be
quadratic. This turns Eq. (3) into a mean hyperbolic error
with f (z) = 2 artanh(2z − 1). Applying this f map to Eq. (14)
reveals the translation symmetry f (θ ′) = f (θ ) + c, with c =
log(γ ). Weight parameters are thus location isomorphic. This
implies that the best estimation strategy can be found by
solving Eq. (9), for which Eq. (6b) takes the form

ρy,l = 2l
∫

dθ p(θ )ρy(θ ) artanh(2θ − 1)l . (17)

Upon computing the eigendecomposition (10), the optimal
strategy is given as

ϑ̃y(s) = 1

2
+ 1

2
tanh

( s

2

)
, (18a)

My(s) = Py(s), (18b)

where the optimal estimator is the logistic function. Equa-
tions (16) and (18) are the second result of this Letter—a
quantum metrology for optimal weight estimation. Its appli-
cation is next illustrated.

Estimation of a blend parameter. Consider the mixture

ρŷ(η) = η|0〉〈0| + (1 − η)τŷ, (19)

where η is the relative weight of the first component
and τŷ = (σ0 + ŷ · σ )/2. Here, σ = (σ1, σ2, σ3) are the Pauli
matrices, σ3|0〉 = |0〉, σ0 is the identity matrix, and ŷ is
a unit vector with azimuthal angle 0 � α < 2π and po-
lar angle 0 < β � π . We shall now address the optimal
estimation of η.

If only the hypothesis range θ ∈ (a, 1 − a) is known a
priori, the initial state of information is captured by the
normalized Haldane prior p(θ ) = 1/[κθ (1 − θ )], with κ =
4artanh(1 − 2a). Using this and Eq. (19), Eq. (17) renders
the operators ρŷ,0 = (|0〉〈0| + τŷ)/2 and ρŷ,1 = χ (|0〉〈0| −
τŷ), where

χ = − log[a(1 − a)]

4
+ Li2(a) − Li2(1 − a)

κ
(20)

and Li2(z) denotes the dilogarithm. The optimization equa-
tion (9) can then be solved by inspection upon noticing that
τ 2

ŷ = τŷ. This leads to

Sŷ = 2χ (|0〉〈0| − τŷ), (21)

whose eigendecomposition reveals the optimal strategy

ϑ̃ŷ(s±) = 1

2
+ 1

2
tanh

( s±
2

)
, (22a)

Mŷ(s) = δ(s − s+)|s+〉〈s+| + δ(s − s−)|s−〉〈s−|. (22b)

Here, s± = ±2χsin(β/2) and

|s±〉 = cos(β/2)|0〉 + [sin(β/2) ∓ 1]eiα|1〉√
2[sin(β/2) ∓ 1]

. (23)

Furthermore, the associated mean hyperbolic error is ε̄β,min =
κ2/12 − 4χ2sin2(β/2).

To assess the relative precision gain, we compare ε̄β,min

to the prior error ε̄p = κ2/12 using εβ = |ε̄β,min − ε̄p|/ε̄p =
48χ2sin2(β/2)/κ2. For fixed polar angle, the maximum gain
is achieved in the limit of maximum ignorance: lima→0 εβ =
3 sin2(β/2)/4 � 3/4. Equations (22) can hence improve on
a completely uninformed scenario as much as 75%. On the
other hand, precision gains become smaller as the local regime
is approached, here realized when a ≈ 1/2 and for which
εβ ≈ sin2(β/2)(2a − 1)2/3. This is because, the better the
prior knowledge is, the harder it becomes for a measurement
to improve on it. Note that precision gains become negligible
when β 
 1; indeed, Eq. (19) would lose its dependency on
η should β be allowed to vanish.

These precision gains can be exploited in practice by opti-
mizing individual shots in a finite sequence of them. Imagine,
for example, a protocol rendering the measurement outcomes
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FIG. 1. Mean hyperbolic errors for the estimation of η in Eq. (19)
using local measurements, i.e., given by the eigenstates of the sym-
metric logarithmic derivative Lŷ(η0) [1,44]. Here, η0 represents an
initial guess at η, assumed to lie in the range [0.01,0.99], and ŷ
is a unit vector with azimuthal angle α and polar angle β. The
latter is fixed as β = π/2. Three azimuthal angles are chosen: α1 =
0 (dot-dashed line), α2 = π/4 (short-dashed line), and α3 = π/2
(long-dashed line). The prior error and the global minimum as per
weight estimation correspond to the dotted and solid lines, respec-
tively. Aside from the error for α1 at η0 = 1/2, which saturates
the minimum, every other configuration is suboptimal. Worse, no
information is sometimes retrieved, as illustrated by the errors for α2

and α3 when η0 → 0 and η0 = 1/2, respectively. This contrasts with
symmetry-informed estimation, which readily identifies Eq. (23) as
the globally optimal POM.

s = (s1, . . . , sμ), where si = s±. Following Refs. [16,22], the
rule to simultaneously processing s into an optimal blend
parameter estimate can be written as

2ϑ̃ŷ(s) = 1 + tanh

[∫
dθ p(θ |s, ŷ) artanh(2θ − 1)

]
, (24)

where p(θ |s, ŷ) ∝ p(θ )
∏μ

i=1 p(si|θ, ŷ) is Bayes’s theorem,
and p(si|θ, ŷ) = 〈s±|ρŷ(θ )|s±〉. This a priori optimized ap-
proach has already been proven useful in Mach-Zehnder
interferometry [24], qubit sensing networks [47], and
the aforementioned thermometry experiment on cold 41K
atoms [27].

It is instructive to further compare the performance of
the optimal projectors (23) with that of projecting onto
the eigenspace of symmetric logarithmic derivatives (SLDs)
Lŷ(η0), as is done in local estimation [1,37]. Here, η0 is an
initial “hint” at η needed because the SLD is parameter de-
pendent [the SLD is the solution to Lŷ(z)ρŷ(z) + ρŷ(z)Lŷ(z) =
2∂zρŷ(z)]. Figure 1 shows the numerical mean hyperbolic
error, as a function of η0, for the estimator (22a) and three
SLD POMs labeled by their azimuthal angle as α1 = 0 (dot-
dashed line), α2 = π/4 (short-dashed line), and α3 = π/2
(long-dashed line). For all of them, β = π/2 and a = 0.01.
The prior error (ε̄p, f , dotted line) and the global minimum
(ε̄β,min, solid line) are also shown. As can be seen, the POM
α1 saturates ε̄β,min at η0 = 1/2, but it is increasingly less
informative as η0 → 0, 1. The POMs α2 and α3 are always
suboptimal and uninformative for η0 → 0 and η0 = 1/2, re-
spectively, since the correspondent errors evaluate to ε̄p, f .
Local estimation cannot thus always identify universally opti-
mal measurements.

In summary, using symmetries in metrology can reduce
the search for good strategies to finding the form of f and
performing a single calculation of the kind in Eqs. (22).
Metrological tasks such as identifying fundamental precision

TABLE I. Symmetry-informed metrologies. Phase estimation
applies to circular parameters (second column). For quantities
isomorphic to location parameters, the prescription in the third col-
umn, together with Eqs. (9), (11), and (12), identifies the optimal
strategies. It also unifies the metrologies of locations [ f (z) = z],
scales [ f (z) = log(z/z0), with constant z0], and weights [ f (z) =
2 artanh(2z − 1)], and it gives the theoretical support needed to dis-
cover new metrologies under minimal assumptions. Note that m ∈ Z
and c ∈ R.

Minimal assumptions

Parameter Phase Location isomorphic
Support 0 � θ < 2π −∞ < f (θ ) < ∞

Metrological formulation

Invariance θ ′ = θ + 2mπ f (θ ′) = f (θ ) + c
Ignorance prior p(θ ) = 1/2π p(θ ) ∝ df (θ )/dθ

Error 4 sin2[(θ̃ − θ )/2] [ f (θ̃ ) − f (θ )]2

limits and informing the design of experimental protocols
follow straightforwardly. This is the final result.

Concluding remarks. Symmetry-informed estimation is put
forward as a universally optimal framework for location-
isomorphic metrology. Equations (9), (11), and (12) enable
the direct calculation of the best estimator and POM, to-
gether with the corresponding minimum error. Having made
minimal assumptions, these apply to any parameter range,
prior information, or state, including multiple copies [40].
Furthermore, fixed-POM estimators such as Eq. (24) indi-
cate that the notion of location-isomorphic parameters is also
relevant for classical measurements. Despite its single-shot
formulation, this framework is straightforward to use in prac-
tice, either by repeating an a priory optimized strategy, as
in Eq. (24), or using adaptive schemes [17,67] where each
shot is optimized by maximizing the precision gain (13).
In general, this will reduce the number of runs needed to
achieve a good precision in experiments measuring location-
isomorphic parameters, thus enabling a better resource
allocation.

Combining this framework with phase estimation (Table I)
offers an unprecedented extension of the class of exactly solv-
able problems in Bayesian metrology. This covers ubiquitous
quantities such as phases, locations, scales, and weights, but
also any other parameter type for which invariance of our
initial state of knowledge under Eq. (1) holds. This may
include, e.g., correlation coefficients ranging from −1 to 1,
or if invariance under reparametrizations of some statistical
model is desired [using information geometry, this leads to
f (z) = ∫ z dtF (t )1/2, where F is the Fisher information [68]].
Moreover, this capacity to accommodate physical symmetries
enables the rigorous application of quantum metrology to
fundamental problems such as the detection of dark matter
[69,70]. Overall, symmetry-informed estimation is not unlike
the use of symmetries to derive the correct Euler-Lagrange
equations in theoretical mechanics.
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