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Controlling nonequilibrium Bose-Einstein condensation with engineered environments

Francesco Petiziol * and André Eckardt†

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

(Received 9 November 2023; revised 12 March 2024; accepted 29 July 2024; published 23 August 2024)

Out of thermal equilibrium, bosonic quantum systems can undergo Bose condensation away from the
ground state, featuring a macroscopic occupation of an excited state or even of multiple states in the so-
called Bose-selection scenario. In previous work, a theory was developed that predicts in which states a
driven-dissipative ideal Bose gas condenses. Here we address the inverse problem: Given a target state with
desired condensate fractions in certain single-particle states, how can this configuration be achieved by tuning
available control parameters? Which type of experimental setup allows for flexible condensation control? We
solve these problems, on the one hand, by proposing a Bose condenser, experimentally implementable in a
superconducting circuit, where targeted Bose condensation into eigenstates of a chain of resonators is driven
through the coupling to artificial quantum baths, realized via auxiliary two-level systems. On the other hand,
we develop a theory to solve the inverse problem based on linear-programming methods. We further discuss the
engineering of transition points between different Bose condensation configurations, which may find application
in amplification, heat-flow control, and the design of highly structured quantum baths.
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Introduction. Nonequilibrium Bose-Einstein condensation
(BEC) has been widely explored in different platforms [1],
such as photons in dye-filled cavities [2–8], excitons [9–11],
and exciton polaritons [12–19] in (cavity) semiconductor het-
erostructures. Bose-Einstein condensation in these systems
results from the interplay of thermalization with pump and
loss, whose ratio determines the condensate mode. Nonequi-
librium BEC of a different kind is predicted to occur,
however, also at a conserved particle number, when other
mechanisms deprive the ground state of its privileged role.
Examples are open systems subject to time-periodic driv-
ing or to a strong competition between heating and cooling
mechanisms [20–24]. Steady states with multiple condensates
in Bose-selected modes arise here from the nonequilibrium
quantum-jump kinetics. Controlling their (fragmented) con-
densation pattern on demand is an appealing perspective for
the design of, e.g., quantum signal amplifiers, multimode
emitters, structured artificial quantum baths, or heat-transport
regulators. However, while a theory explaining Bose selection
(BS) has been developed [20,21], approaches to systemati-
cally engineer nonequilibrium BS, turning it into a practical
resource, are missing. The key challenges are (i) how to
realize controllable quantum-jump networks in realistic exper-
imental conditions and (ii) how to solve the inverse problem
of finding values of the control knobs yielding a target BS
configuration. In this work we solve both problems by propos-
ing a concrete experimental setup where nonequilibrium BEC
of photons can be controlled in a superconducting circuit us-
ing synthetic reservoirs and by developing methods to reverse
engineer control parameters yielding desired condensation

*Contact author: f.petiziol@tu-berlin.de
†Contact author: eckardt@tu-berlin.de

patterns. We demonstrate the success of this procedure in
simulations with realistic values of experimental parameters
and propose an application in the design of a quantum switch
for heat transport.

Bose selection. Bose selection can occur in a system
of N noninteracting bosons exchanging energy with its en-
vironment, whose dissipative dynamics is described by a
many-body Lindblad master equation (h̄ = 1)

˙̂ρS = −i[ĤS, ρ̂S] +
∑

i j

Ri jD[L̂i j]ρ̂S (1)

for the density operator ρ̂S . Given single-particle eigenstates
|i〉 with energy Ei, Eq. (1) involves the Hamiltonian ĤS =∑

i Ein̂i, dissipators D[L̂i j]ρ̂S = L̂i j ρ̂SL̂†
i j − {L̂†

i j L̂i j, ρ̂S}/2
with rates Ri j for quantum jumps from | j〉 to |i〉, jump
operators L̂i j = ĉ†

i ĉ j , and annihilation and number operators
ĉi and n̂i = ĉ†

i ĉi for a boson in the ith single-particle state.
The rates are assumed to realize a fully connected network,
implying a unique steady state [20], which becomes the
equilibrium state, only when Rji/Ri j = exp[−β(Ei − Ej )],
with inverse temperature β. Although the bosons are
noninteracting, the coupling to the bath(s) makes the problem
interacting, as the dissipator is quartic in the ĉi. The hierarchy
of equations for the m-point correlators tr[ρ̂Sn̂i1 n̂i2 · · · n̂im ],
resulting from this interacting problem, can be truncated
through a mean-field approximation, which yields nonlinear
kinetic equations of motion for the ni = tr(ρ̂Sn̂i ), namely,
ṅi = ∑

j[Ri jn j (1 + ni ) − Rjini(1 + n j )] [20,21] [see the
Supplemental Material (SM) [25] for a brief review]. The
nonlinearity is related to Bose statistics, giving rise to a
dependence of the many-body rate on the occupation of the
state a particle jumps to, known as bosonic enhancement (or
stimulated emission). It is responsible for the emergence
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FIG. 1. (a) Sketch of the BS effect. Selected states acquire a
macroscopic occupation proportional to N , while the occupation of
nonselected states saturates for large N . (b) Network representation
of examples of asymmetry matrices A compatible with BS (proof
in the SM [25]). (c) Sketch of a Bose condenser. A resonator chain
(blue), where BEC occurs in selected eigenmodes, is dispersively
coupled to driven-damped reservoir two-level systems (yellow).

of BS in the steady state, satisfying ṅi = 0, where a
single or multiple selected states acquire a macroscopic
occupation proportional to N in the large-N limit, while
the occupation of all other states saturates [sketch in
Fig. 1(a)]. The set of selected states S (and its complement
S̄) can be predicted by considering a large-N expansion
ni = νiN + ∑∞

α=1 ν
(α)
i /Nα−1. This reveals that condensation

is ruled, in leading order, by the rate-asymmetry matrix
Ai j = Ri j − Rji through the set of (in)equalities [20,21]

AS̄SνS < 0, ASSνS = 0, νS̄ = 0, νS > 0, (2)

which ensure that ni � 0 for all i. The inequalities are un-
derstood elementwise and νX and AXY denote subvectors and
matrix blocks, respectively, with X,Y ∈ {S, S̄}.

By depicting A as a network with edges pointing from
the jth to the ith node if Ri j > Rji, as in Fig. 1(b), physical
intuition about rates Ri j admitting BS can be gained. The
first condition in (2) is satisfied, e.g., if all nonselected states
directly feed selected states, pointing at them in the network.
Selection in a single state |c〉 occurs if and only if Rc j >

Rjc ∀ j [20], thus making |c〉 ground-state-like. For multimode
BS, no state in S must be a global attractor, as imposed by the
second condition, demanding ASS to have a nontrivial kernel
vector νS,i > 0. For three-state selection, this is possible only
for a looplike configuration as in Fig. 1(b) (top) [25,33]. For
larger sets S, more complex network topologies and rate im-
balances are needed, with an example for |S| = 5 in Fig. 1(b)
(bottom), and the resulting condensate fractions depend non-
linearly on ASS [33,34] (and not only on the topology of the
directed network). This highlights the difficulty in engineer-
ing specific condensation patterns, seemingly requiring one
to assemble intricate rate networks edge by edge, which is
beyond experimental reach. We therefore consider the more
realistic scenario, where the rates depend on a number of
control parameters, and show how these parameters can be
optimized for achieving the desired BS pattern.

A superconducting Bose condenser. We propose an exper-
imental implementation given by an array of M microwave
resonators in a superconducting circuit [35–41]. Each res-
onator is dispersively coupled to an ancillary transmon qubit
subject to coherent driving and loss, which implements a
narrowband artificial bath (hereafter described by a spin 1/2)
[Fig. 1(c)]. Owing to the harmonicity of the resonator spec-
trum, the array hosts noninteracting microwave photons [40],

whose condensation we aim to control. The dynamics is de-
scribed by the master equation

d ρ̂

dt
= −i[ĤS + ĤB + ĤSB, ρ̂] +

∑
�

γ�D[σ̂−
� ]ρ̂ (3)

for the density matrix ρ̂ of the combined resonator-spin
system, where γ� is the decay rate of the �th spin and
σ̂ α

� (α = x, y, z,±) are Pauli matrices. The Hamiltonian
ĤS of the bosonic system is given by ĤS = ∑

� ω�â†
� â� −∑

�,�′ J��′ â†
� â�′ = ∑

i Eiĉ
†
i ĉi, where â� and â†

� are the annihi-
lation and creation operators of a photon in the �th resonator,
respectively, which has transition frequency ω�, and J��′ > 0
are the tunneling strengths. We choose the example of ĤS

describing a one-dimensional chain, with J��′ = J for nearest
neighbors � and �′. We include a weak disorder |ω� − ω�′ | ∼
J��′ to break symmetries inducing multiple identical level
spacings in the spectrum. Concretely, we use ω�/J = �/10 +
ε�, where ε� are random numbers uniformly distributed in
[0,1) [25], though the specific values are not important for the
target physics. These values of ω� are also chosen such that the
eigenmodes |i〉 are still delocalized over several lattice sites
for the system sizes considered. These features will be useful
for realizing efficient dissipation engineering. The artificial-
bath Hamiltonian ĤB = ∑

� δ�(σ̂ z
� + r�σ̂

x
� )/2 describes the

transmon spins (in a frame rotating at the driving frequency),
where δ� is the detuning of the drive and r� is the ratio between
its Rabi frequency and δ�. In the dispersive-coupling regime,
the spins are far detuned from the resonators. Resonant ex-
change of excitations is thus strongly unfavored, implying
photon-number conservation as desired (weak particle loss
is discussed later). Other system–artificial-bath couplings as
used, e.g., in Refs. [39,42] would involve particle exchange
instead. Moreover, in the dispersive regime, undesired photon-
photon interactions induced by the coupling to the spins can
also be neglected. The resonator-spin coupling is described
by the Hamiltonian ĤSB = ∑

� χ�â†
� â�σ̂

z
� , provided the mean

number of photons in a resonator does not exceed a crit-
ical value [36,43]. For the parameters used below, tens to
hundreds of photons per site are allowed, sufficient for BS.
Condensation control will be achieved through the coherent
drive and by tuning the value of the dispersive coupling χ�,
in order to leverage the impact of each artificial bath on the
quantum-jump network. Control of χ� is implemented, for
instance, with frequency-tunable transmons, by adapting their
detuning from the resonators [44,45], or ones with tunable
coupling [46,47]. Note that the use of nonlinear (two-level)
elements as the artificial bath, rather than additional cavity
modes [48–51], is crucial: The dispersive coupling to the latter
would only give a mutual state-independent energy shift [36],
rather than the density-density-like coupling in ĤSB.

Engineered quantum-jump rates. Although ĤSB commutes
with the boson number â†

� â� in a single resonator, prevent-
ing particle loss, it has sizable matrix elements between the
non-site-local modes |i〉, giving rise to nonzero off-diagonal
elements of Ri j tunable via the spins. Intuitively, this en-
ables dissipation engineering with the following mechanism.
The coherent-control parameters δ� and r� are adapted such
that the spin’s excitation energy E� = δ�

√
1 + r2

� matches
the energy spacing between states |i〉 and | j〉 in the array.
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The coupling drives a coherent excitation exchange involv-
ing an |i〉 ↔ | j〉 transition, with a matrix element χ

(�)
i j =

r�χ�M (�)
i j /

√
1 + r2

� , where M (�)
i j = 〈i| â†

� â� | j〉, which we com-
pute below. This excitation flip-flop is interrupted by the
strong spin damping, which drags the spin to its drive-
dependent steady state and results in dissipative quantum
jumps in the bosonic chain at rates Ri j and Rji. Here the spin
relaxation time plays a role similar to a short bath correlation
time in the more conventional Born-Markov scenario with a
large bath.

To derive the rates Ri j = ∑
� R(�)

i j of Eq. (1) from Eq. (3),
consider first a single reservoir spin coupled to the �th res-
onator (further technical details on the derivation are given
in the SM [25]). The generalization to multiple reservoirs is
straightforward, as their rates simply sum up. Representing
Eq. (3) in a diagonal basis for the spin, terms corresponding to
nonsecular (off-diagonal) elements of the Kossakowski matrix
of the dissipator are off-resonant and can be neglected in
the rotating-wave approximation (RWA). This is justified pro-
vided the spin level splitting |E�| is much larger than its decay
rate γ�, namely, |E�| � γ� (approximation I). Equation (3)
becomes

˙̂ρ = −i

⎡
⎣∑

i

Ein̂i −
∑
i, j

χ
(�)
i j L̂i j

(
σ̂ z

�

r�

+ σ̂ x
�

)
− E�

2
σ̂ z

� , ρ̂

⎤
⎦

+ γ +
� D[σ̂+

� ]ρ̂ + γ −
� D[σ̂−

� ]ρ̂ + γ z
� D

[
σ̂ z

�

]
ρ̂, (4)

including E� = δ�

√
1 + r2

� and the dressed decay rates
γ +

� = γ� cos(θ�)4, γ −
� = γ� sin(θ�)4, and γ z

� = γ�r2
� /4(1 +

r2
� ), where θ� = arctan(r�)/2 is the spin’s mixing angle.

Considering the case in which E� is (quasi)resonant with
the level spacing Ei j = Ei − Ej > 0 in the system, the in-
teraction terms L̂i j σ̂

+
� and L̂†

i j σ̂
−
� become resonant. Other

interaction terms can be neglected, in the RWA, if Ei j is
much larger than the effective coupling χ

(�)
i j , Ei j � |χ (�)

i j |
(approximation II). Next we trace out the spin, treating it as
an environmental degree of freedom, with χ

(�)
i j representing a

system-bath coupling, and following standard Born-Markov-
secular derivations [52]. This approach is justified, despite
the spin being far from constituting a true bath, provided
the spin relaxes much faster than the timescale of interaction
with the system, |χ (�)

i j | � γ� (approximation III). Then the
spin state is negligibly affected by this interaction and can be
approximated as constant. Moreover, the state of the system
and the artificial bath can be approximated as factorized. The
dynamics of the system is then described by the Markovian
master equation [52] ˙̂ρS = ∫ +∞

0 ds trσ [Ĥ (t ), [Ĥ (t − s), ρ̂S ⊗
ρ̂σ ]], where trσ and ρ̂σ denote the trace over the spin de-
grees of freedom and the spin’s steady state, respectively, and
Ĥ (t ) represents the Hamiltonian of Eq. (4) in the interaction
picture.

Following standard manipulations [52], the Markovian
master equation can be brought into the form of Eq. (1), within
approximations I–III, with rates R(�)

i j = |χ (�)
i j |2S+

� (−Ei j ) and

R(�)
ji = |χ (�)

i j |2S−
� (Ei j ) for δ� > 0. The quantum noise spectra

S±
� (ω) = ∫ ∞

−∞ dt eiωt tr{[σ̂±
� (t )]†σ̂±

� (0)ρ̂σ } are computed from

the spin’s steady state ρ̂σ and the correlation functions.1 Here
the operators σ̂±

� (t ) are interaction-picture representations of
σ̂±

� . The correlation functions are computed in the SM [25]
from the optical Bloch equations for the spin and the quantum
regression theorem [26,52]. We obtain the quantum noise
spectra

S±
� (ω) = γ ∓

�

γ +
� + γ −

�

2��

(ω ± E�)2 + �2
�

, (5)

characterized by a linewidth �� = (γ�/4)[3 − 1/(1 + r2
� )].

For a positive Ei j > 0 and detuning δ� > 0, the rates can be
rewritten as

R(�)
i j = γ −

�

∣∣χ (�)
i j

∣∣2S�(Ei j ), R(�)
ji = γ +

�

∣∣χ (�)
i j

∣∣2S�(Ei j ), (6)

with S�(ω) = 2��/[(ω − |E�|)2 + �2
� ]. For δ� < 0, the rates

have the same form (6), but with γ ±
� exchanged. The driven

spin dynamics determines the quantum-jump ratio R(�)
i j /R(�)

ji =
γ −

� /γ +
� = tan(θ�)4 via the mixing angle θ�. For δ� > 0 and

θ� � 1, the spin dissipator in Eq. (4) drags the spin to its
ground state, favoring the processes L̂i j σ̂

+
� that increase the

system energy but blocking the inverse processes L̂†
i j σ̂

−
� that

lower the energy. The opposite occurs for θ� ≈ π/2. Inter-
mediate values of θ� allow both processes with a finite rate
and are optimal to ensure a sizable matrix element χ

(�)
i j ∝ r�,

while complying with the weak-driving regime desired in
experiments. Summarizing, each artificial bath can be tuned
to increase or decrease the system energy with a controllable
rate ratio and the corresponding rates are enhanced around
the peak of S�(ω). Alternative control scenarios based on a
Floquet modulation of the bosonic system may be possible,
but would make the control more difficult. Indeed, strong driv-
ing alters the shape of the modes |i〉, which become Floquet
states, and gives rise also to sideband quantum jumps (see,
e.g., Refs. [20,24]).

The validity of Eq. (6) requires the hierarchy Ei j � γ� �
|χ (�)

i j | between the system energy gap Ei j , the spin decay

rates γ�, and the transition matrix elements χ
(�)
i j , resulting

from approximations I–III. This hierarchy defines the op-
erating regime of the proposed Bose condenser, which is
easily met in state-of-the-art superconducting devices [39]. In
particular, we envision implementations involving a number
of resonators of the order of 10, each coupled to a super-
conducting qubit, which are close to the setup of recent
experiments [38,39] and suffice for the potential applications
described below. Given that system gaps are of the order of
the tunneling strength J for such system sizes, we may choose
a value J/2π ∼ 30 MHz and decay rates γ� ∼ 1–10 MHz
(realized, e.g., in [39]). The Rabi frequencies |δ�|r� used in our
examples are lower than 1.5J ∼ 2π × 40 MHz in value, thus
meeting standard constraints for microwave drives on trans-
mons. We then obtain |χ (�)

i j | ∼ 10−1J by also restricting χ�

to a maximal value χmax ∼ 0.15J ∼ 2π × 4.5 MHz [35]. In
turn, this yields engineered quantum-jump rates Ri j ∼ 10−2J ,

1For negative detuning, δ� < 0, the derivation of the master equa-
tion is the same as above, only with the role of σ̂−

� and σ̂+
� [and thus

S−
� (ω) and S+

� (ω)] exchanged.

L021701-3



FRANCESCO PETIZIOL AND ANDRÉ ECKARDT PHYSICAL REVIEW A 110, L021701 (2024)

FIG. 2. (a) Single-particle spectrum of the five-site chain. The
arrows with numbers indicate the reservoir spin used to induce
the dissipative transition between the corresponding linked states.
(b) and (d)–(f) Controlled BS in states |0〉, |2〉, and |3〉, namely,
(b) the values of the control parameters χ� and the resulting
asymmetry-matrix network [the arrows and their thickness represent
sgn(Ai j ) and |Ai j |, respectively], (d) the single-particle dynamics, (e)
the steady state as a function of the total particle number N , and
(f) the mean-field dynamics for N = 50 (solid line) and N = 500
(dashed line). Symbols and line types are explained in the text.
(c) Controlled BEC into single modes |1〉 and |2〉, and corresponding
values of χ�.

much stronger than typical photon loss rates for microwave
resonators in circuit QED [36]. Even in case losses are not
compensated for (as we propose below), the system can thus
form a Bose-selected steady state well before serious particle
loss occurs.

Programmable BECs. To convert BS into a control problem
in the Bose condenser, we identify controllable coeffi-
cients z leveraging the different bath contributions as z� =
sign(δ�)(χ�/χmax)2, leading to a decomposition of the total
asymmetry matrix as A = ∑

� z�A(�). We then construct a
recipe to reverse engineer a z giving a target BS pattern ν.
From the conditions (2) we derive a new set of inequalities
for z,

(Bz)S̄ < 0, (Bz)S = 0, (7)

with Bi j ≡ ∑
�∈S A( j)

i� ν�. If a solution z exists, it will stabilize
the targeted steady state with ν by construction. To efficiently
search for solutions of Eqs. (7), we rephrase the inequalities
as constraints in a linear program and solve them using linear-
programming routines [25,33]. This procedure represents a
powerful framework to reverse engineer BS patterns. Let us
exemplify it by considering a five-site chain, possessing the
single-particle spectrum shown in Fig. 2(a). The specific val-
ues of the system parameters are not crucial for the algorithm
proposed to return a successful condensation protocol and
the values used in the following, specified in the SM [25],
are within the experimentally accessible ranges discussed
above. The energies of the reservoir spins are set in resonance
with different energy-level distances in the system such that
the peaks of their spectral density approximate the overall

connectivity sketched in Fig. 2(a), ensuring that every state
is reachable via quantum jumps. The energy-spacing–to–spin
association is chosen by verifying numerically that strong
matrix elements |M (�)

i j | are attained.
We solve Eqs. (7) for the control variables z by targeting

BS into a chosen set of three modes {|0〉 , |2〉 , |3〉}, with target
condensate fractions [νS,0, νS,2, νS,3] = [1/10, 3/10, 6/10],
finding the control values χ� and the asymmetry matrix de-
picted in Fig. 2(b). The latter features the loop structure of
Fig. 1(b) (top) within the set of selected states (red arrows),
needed to sustain BS. To verify the validity of the effective
rates (6) derived, we compare in Fig. 2(d) the single-particle
dynamics given by those rates with the master equation (3),
confirming good agreement. The achievement of the desired
BS pattern in the steady state is shown in Fig. 2(e), where sat-
uration of nonselected states starts for N � 30 and the target
fractions are reproduced faithfully already for N = 100. The
steady-state occupations are computed numerically here with
different methods corresponding to the approximation layers
used in designing the control protocol (recapitulated in [25]),
to confirm their reliability: solution of the asymptotic large-N
theory of Eq. (2) underpinning the algorithm (7) via linear
programming [33] (dashed lines), long-time propagation of
the mean-field kinetic equations (solid lines), and long-time
propagation of the populations of ρ̂S (t ) from Eq. (1) via
a quasiexact Monte Carlo quantum-trajectory-type unravel-
ing [21] (circles, averaged over 103 trajectories). Due to the
bosonic enhancement in the many-body rates, the evolution
converges rapidly to its BS steady state [Fig. 2(f)]. The de-
pletion of nonselected states takes place within a few tens
of tunneling times for N = 50 (solid lines) and faster and
faster as N increases [N = 500 in Fig. 2(f), dashed lines]. By
exploring different connectivities through different energy-
spacing–to–spin associations and solving for z, protocols
giving selection into any triplet of states, with the same occu-
pation fractions as above, are also found [25]. Condensation
in individual states can also be achieved; see Fig. 2(c), which
shows examples with |1〉 and |2〉.

To exemplify controlled selection into more than three
states, we target five modes of a ten-site chain. The reservoir
spins realize rate asymmetries Ai j for which each target mode
is strongly connected to at least two other selected states.
Choosing selected states {|2〉 , |4〉 , |5〉 , |7〉 , |9〉} with equal
occupancy and solving Eqs. (7) for z gives the asymmetry
matrix of Fig. 3(a), where we find a rate structure of the
type of Fig. 1(b) (bottom) within S. The target BS pattern
is successfully attained [Fig. 3(b)]. The examples considered
represent ideal system sizes for potential implementation:
They are sufficient to demonstrate the desired effect while
being close to setups already realized [38,39]. Also, in view
of potential applications as they are discussed below, larger
system sizes do not provide an advantage. For much larger
chain lengths, we expect that inducing fully arbitrary conden-
sation patterns will become increasingly challenging. As the
spectrum becomes denser for increasing length, the transitions
induced by the artificial baths will become less selective.
Moreover, the number of level spacings grows much faster
than the number of control parameters, assuming the use of
one reservoir spin per resonator. Still, the control method pro-
posed here may be used to drive BS into states within a certain
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FIG. 3. (a) Asymmetry matrix for a selection of five modes (blue)
in a ten-site chain; transitions within S are colored red. (b) Achieve-
ment of BS with requested equal occupancy (solid lines represent the
results of mean-field theory and circles the average of 500 quantum
trajectories. (c) BEC pattern vs expectation value 〈σ̂ z

T 〉 of the trigger
spin for N = 102. The gray area indicates the total value of the heat
current − ∑

�∈BX
j (�)
h induced in the energy-extracting artificial baths

(denoted by the set BX ), normalized by its maximum.

energy window of finite width, rather than sharply in individ-
ual states.

We assumed until now negligible particle loss, namely,
that the resonators’ relaxation is much slower than the en-
gineered dissipation. In the SM [25] we analyze the impact
of weak losses and the use of spin reservoirs realizing par-
ticle pumps to counteract them. If the total mean particle
number is kept large, BS is, to a good approximation, solely
dictated by the matrix A, rather than by pump and loss. It
is thus still successfully controlled with the above methods.
This is easily explained by the fact that BS derives from
terms in the mean-field equation that are quadratic in ni,
whereas pump and loss enter linearly. For the same reason,
the BS steady state is attained well before substantial losses
occur. Pump and loss may also be used as additional control
parameters.

A condensate switch. Realizing nonequilibrium phases
which are per se robust, but tuned to be sensitive to few
selected parameters, is a promising resource for, e.g., am-
plification and sensing. We can use the ability to control
BS to design similar conditions in the Bose condenser. The
system can be tuned to a transition point between two (or
more) BS configurations such that the state of an additional
“trigger” system coupled to it determines which condensation
pattern arises. For instance, in the five-site device of Fig. 2(a),
the three-state BS turns into ground-state condensation if the
quantum jump governed by the third reservoir spin is forced
towards the ground state. Consider then a coupling of the

spin’s detuning δ3 to an additional trigger spin T , through
the Hamiltonian Ĥ = δ3(r3σ̂

x
3 + σ̂ z

3 σ̂ z
T ) + ωT σ̂ z

T /2. Enforcing
|E3| ≈ |E20|, the bosonic steady state then depends on the
state of T , through the renormalization of δ3 by 〈σ̂ z

T 〉. De-
pending on whether 〈σ̂ z

T 〉 = ±1, the chain will exhibit either
three-state or ground-state selection, as numerically verified
in Fig. 3(c). A similar device may be used, for instance, as
a switch that activates or deactivates the transport of macro-
scopic energy currents through the system. Indeed, the heat
current j (�)

h generated in the system by the coupling to the �th
artificial bath is given, within the mean-field theory, by j (�)

h =
tr( ˙̂ρSĤS ) ≈ ∑

i j (Ej − Ei )ni(n j + 1)R(�)
ji [20]. The current is

bosonically enhanced (quadratic in the ni) for transitions
between selected states, while it is only linearly enhanced
for transitions between a selected and a nonselected state.
When multiple condensates are present, the system has thus
the ability to absorb and emit much more energy at large
particle numbers. This feature may be of particular interest
for the use of the BS system as a junction ruling quantum
heat transport in a more complex device or as an artificial
bath with a highly structured spectral density. The heat-
current enhancement is shown in Fig. 3(c) for the five-site
Bose condenser (gray shading) as the system passes from a
single-condensate to a three-condensate phase. An interest-
ing perspective in this context is also the classification of
such nonequilibrium phase transitions among BS patterns.
The latter may be distinguished in terms of the topology
of the quantum-jump network, for instance, exploiting the
mathematical similarity between the BS asymmetry-matrix
theory and Lotka-Volterra systems in evolutionary game
theory [53].

Conclusion. We showed how nonequilibrium BEC can
be controlled via the coupling to engineered quantum baths.
We designed a physical setup, implementable, e.g., in
superconducting-circuit architectures, granting a handle on
the condensate location and fragmentation, which can thus be
shaped on demand. These results pave the way to applications
in the control of heat transport, amplification, and quan-
tum bath engineering. Combined with topologically nontrivial
band structures, controlled selection may facilitate edge-mode
detection [54] or realize topological laserlike [55,56] steady
states.
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