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We study quantum droplets emerging in a quasi-one-dimensional asymmetric mixture of two atomic species
with different intracomponent coupling constants. We find that such mixtures support a rich variety of multipole
quantum droplets, where the macroscopic wave function of one component changes its sign and features a dis-
tinctive multipole structure, while the wave function of another component does not have zeros. Such multipole
droplets have no counterparts in the reduced single-component model frequently used to describe symmetric
one-dimensional mixtures. We study transformations of multipole states upon variation of the chemical potential
of each component and demonstrate that quantum droplets can split into separated fundamental states, transform
into flattop multipoles, or into a multipole component coupled to a flattop state with several humps on it, akin to
antidark solitons. Multipole quantum droplets described here are stable in a large part of their existence domain.
Our findings essentially broaden the family of quantum droplet states emerging in the beyond-mean-field regime
and open the way for observation of such heterostructured states in Bose-Bose mixtures.
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Introduction. Quantum droplets (QDs) in Bose-Bose
mixtures emerge due to the balance between mean-field in-
teractions and the Lee-Huang-Yang (LHY) correction [1] to
the mean-field energy [2]. An important peculiarity of QDs
stems from different roles played by the LHY correction
in settings of different dimensionality. For example, in the
three-dimensional (3D) case LHY correction provides the
repulsive effect and stabilizes the atomic mixture against
the mean-field collapse, while in effectively one-dimensional
(1D) mixtures [3–5] the LHY correction corresponds to ef-
fective attraction, compensating the intraspecies repulsion
and enabling the formation of self-bound states even in free
space [3]. Competition between mean-field and LHY non-
linearities leads to very unusual shape transformations and
stability properties of QDs. Experimentally, QDs have been
observed in dipolar Bose-Einstein condensates [6–11], as
well as in Bose-Bose mixtures consisting of atoms in dif-
ferent hyperfine states, which are characterized by unequal
coupling constants [12–15], and in heteronuclear Bose-
Bose mixtures characterized by different atomic masses in
two species [16,17]. Current progress in experiments with
QDs and their theoretical treatment is described in recent
reviews [18,19].

Theoretical description of Bose-Bose mixtures frequently
assumes a symmetric mixture of two species with equal
atomic masses and intracomponent coupling constants allow-
ing to derive a reduced single-component model, where both
species are described by the same Gross-Pitaevskii-like equa-
tion [3,20–26]. At the same time, this assumption drastically
limits the set of available nonlinear states. For this reason, the
exploration of new types of QDs in essentially two-component
and asymmetric mixtures becomes particularly important, as
this situation is most frequently encountered in experiments.
Besides simple transformation of shapes of QD components
encountered in asymmetric mixtures [27], it was found that

asymmetry can lead to instabilities and new types of states
[28–31] that do not appear in the scalar case. The variety of
stable QDs is particularly rich in multidimensional settings,
where LHY correction can stabilize not only fundamental
[12–17] but also excited states, such as vortical and rotat-
ing QDs [32–38]. External trapping potentials [24,39,40] and
periodic lattices [41–51] further enrich the structure and evo-
lution regimes of QDs.

Surprisingly, when it comes to 1D QDs, only the sim-
plest fundamental (i.e., nodeless) asymmetric states have been
reported so far in settings without lattices or other types
of confining potentials. In this Letter, we show that the
family of 1D QDs in asymmetric mixtures in free space
is in fact much richer and includes stable multipole states
which do not have counterparts in the one-component sys-
tem. In particular, we present the families of dipole and
tripole QDs, identify the ranges of their existence and sta-
bility on the plane of chemical potentials of both species,
and demonstrate that such QDs exhibit rich shape trans-
formations within their existence domains, ranging from
transformation of multipole QDs into several separated
fundamental states, to flattop multipoles, or multipoles cou-
pled with humps on a localized flattop plateau, resembling
antidark states.

Model. We study an asymmetric quasi-1D Bose-Bose mix-
ture, where both species have equal atomic masses, but
different intraspecies coupling constants. This situation cor-
responds, for example, to experiments with a mixture of
39K atoms in different hyperfine states [12–15]. Evolution of
dimensionless wave functions ψ1,2(x, t ) is governed by the
system [3,30,52]

i
∂ψ1,2

∂t
= −1

2

∂2ψ1,2
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where n1,2 = |ψ1,2|2 and the energy density reads

E (n1, n2) =
(
g1/2

1 n1 − g1/2
2 n2

)2

2
− 2

3π
(g1n1 + g2n2)3/2

+ δ(g1g2)1/2

(g1 + g2)2

(
g1/2

1 n2 + g1/2
2 n1

)2
. (2)

Dimensionless coefficients g1,2 > 0 characterize intraspecies
interactions in each component, coefficient g12 < 0 defines
interspecies interactions, and δ = g12 + (g1g2)1/2. In exper-
iments δ is positive and small. In our simulations we use
[30] g1 = 0.639, g2 = 2.269, and g12 = −1 that corresponds
to δ ≈ 0.204.

We search for asymmetric stationary states with generi-
cally different chemical potentials and spatial profiles ψ1,2 =
e−iμ1,2t u1,2(x), where the functions u1,2 are real-valued and
localized, i.e., u1,2 → 0 as x → ±∞. The system (1) is known
to support fundamental (or monopole) droplets, where both
functions u1,2(x) are nodeless [27]. In contrast, here we in-
troduce multipole droplets, where one of the functions u1,2(x)
can have zeros. Specifically, we focus on dipole and tripole
solutions, in which the first component u1 has one or two ze-
ros, respectively, while the second component u2 is nodeless.
Such solutions can be obtained from Eq. (1) using Newton’s
method with a suitable initial guess, which is necessary for

FIG. 1. The nearly triangular area illustrates the existence do-
main for dipole and tripole QDs on the plane of chemical potentials
(μ1, μ2). The right boundary of the triangle corresponds to the cutoff
value μ2 = μco

2 of the single-component solution (0, ψ2 ). At the
upper boundary of the triangle dipole and tripole solutions undergo
fold bifurcation, and at the lower boundary they transform into flat-
top multipoles. Enumerated circles correspond to specific solutions
whose profiles are shown in Figs. 3 and 4. The diagram displays two
stability boundaries, with dipole and tripole QDs being stable below
the corresponding boundary. In this and subsequent figures all plotted
quantities are dimensionless.

numerical iterations to converge to a multipole state and not
to a ground-state monopole one. We used initial guesses
in the form of a superposition of two or three (for dipoles
and tripoles, respectively) well-separated sech-shaped profiles
which were taken with the same sign in the second component
and with alternating signs in the first component.

Classification of solutions. First, we briefly describe the
most important properties of a single-component model,
which can be formally obtained from (1) by setting the wave
function of the first species to zero, i.e., u1 ≡ 0. Then, the
problem reduces to a single equation for u2(x) that has only
monopole single-component solutions existing for chemical
potential μ2 in the interval μco

2 < μ2 < 0, where the cutoff
(co) value is given by

μco
2 := ∂E

(
0, nco

2

)
/∂n2, (3)

and the limiting density nco
2 can be determined from the

condition

∂E
(
0, nco

2

)
/∂n2 = E

(
0, nco

2

)
/nco

2 . (4)

It is well known [3,20] that as μ2 approaches μco
2 from

the right, the solution u2(x) develops the flattop shape,
while max(n2) → nco

2 . Irrespective of the number of con-
densed atoms, the density n2(x) does not exceed nco

2 . As
a result, the droplet drastically broadens, and the number
of atoms diverges as μ2 approaches the cutoff value from
the right: limμ2→μco

2 +0 N2 = ∞, where by definition N1,2 =∫ ∞
−∞ |ψ1,2|2dx. When μ2 → 0, the norm N2 vanishes. For the

FIG. 2. Number of particles in the first (upper panel) and second
(lower panel) component vs μ2 for fixed μ1. Only dipole solutions
are shown in this figure. Solid and dashed fragments correspond
to stable and unstable solutions, respectively. Enumerated circles
correspond to solutions marked in the existence diagram in Fig. 1
and plotted in Figs. 3 and 4. Red, brown, and pink lines correspond
to μ1 = −0.068, μ1 = −0.39, and μ1 = −0.49, respectively.
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FIG. 3. Profiles u1,2(x) of two components of dipole and tripole QDs that transform into a single-component state (0, u2) at the right
boundary of the triangular existence area. Red and blue lines correspond to the first and second components. Each row corresponds to the fixed
value of μ1 (see horizontal dashed lines in Fig. 1), while panels are enumerated in accordance with circles in the existence diagram in Fig. 1.
Notice that solution 3 is situated after the fold bifurcation; see corresponding solution in Fig. 2.

one-component system one gets

uco
2 = 2g3/2

2 /(3πG2) and μco
2 = −2g3

2/(9π2G2), (5)

where G2 = g2 + 2δg3/2
1 g1/2

2 /(g1 + g2)2. For coupling con-
stants adopted in our study, Eqs. (5) yield μco

2 ≈ −0.114 and
uco

2 ≈ 0.315. Remarkably, multipole two-component states
described below exist with chemical potentials situated to the
left of the region of existence of single-component states.
Next, we proceed to the main part of our study devoted to
two-component mixtures with u1,2 �≡ 0. In Fig. 1 we illustrate
the domain of existence of dipole and tripole solutions on
the plane (μ1, μ2), while in Fig. 2 we plot representative

dependencies of numbers of particles N1 and N2 on the chem-
ical potential of the second species μ2 for several fixed μ1

values. Representative profiles of multipole QDs correspond-
ing to the dots in Fig. 1 are displayed in Figs. 3 and 4.

Multipole states exist within the bounded domain on
the (μ1, μ2) plane that has a nearly triangular shape (see
Fig. 1). The right side of the triangle approximately coin-
cides with the μ2 = μco

2 value corresponding to the cutoff for
single-component condensate introduced above in Eq. (5). We
classify the found solutions in two groups which differ by their
behavior near the right boundary of the existence area. As
μ2 approaches μco

2 from the left, solutions of the first group
transform into the single-component states (0, u2) briefly

FIG. 4. Profiles u1,2(x) of dipole and tripole QDs that transform into a multipole state in one component coupled to the antidark state in
other component at the right boundary of the triangular existence area. Red and blue lines correspond to the first and second components,
respectively. Each row corresponds to the fixed value of μ1, and panels are enumerated in accordance with circles in the existence diagram in
Fig. 1.
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FIG. 5. Instability increments vs chemical potential of the first
component μ1 for dipole and tripole solutions at μ2 = −0.2 and
μ2 = −0.4. Horizontal spans of plotted curves are limited by the
existence intervals of corresponding solutions (and additionally high-
lighted with vertical dashed lines). Apart from relatively strong
instability, tripole QDs also feature narrow bands of weak instabil-
ities, with increments below 10−3. These weak instabilities are not
shown in the existence diagram in Fig. 1.

described above. Respectively, close to the right boundary
of the existence area each solution of this type represents a
localized nodeless state in the second component coupled to
a small-amplitude multipole state in the first component; see
examples shown in Fig. 3 (specifically, solutions with num-
bers 1 and 4). Each solution of this type can be continued by
decreasing μ2, while keeping μ1 fixed. This is accompanied
by the increase of the amplitude of the first component, which
eventually becomes comparable with the second component
(see solutions 2 and 5 in Fig. 3). When μ2 reaches the left
side of the triangular existence area, a fold bifurcation takes
place, i.e., the solution family makes a U-turn and continues
toward increasing values of μ2. A representative example of
this fold bifurcation is presented in Fig. 2 (see the red curves
corresponding to μ1 = −0.068). After the fold bifurcation,
with the increase of μ2 such states gradually transform into
well-separated sets of two (for dipoles) or three (for tripoles)
fundamental QDs (see solutions with numbers 3 in Fig. 3 and
the corresponding point in Fig. 2).

The second group of solutions (illustrated in Fig. 4)
features different behavior near the right boundary of the
existence domain. Such states transform into a structure that
comprises two (for dipoles) or three (for tripoles) out-of-phase
well-separated humps in the first component coupled to two
(or three) in-phase humps situated on the flattop pedestal in
the second component, akin to antidark states. Examples of
such states are shown in Fig. 4 as solutions 7, 10, and 13.
As μ2 approaches the right boundary of the existence area,
the distance between the out-of-phase (in-phase) humps in the
first (second) component increases. Therefore, the number of
particles diverges in the second component, but remains finite
and nonzero in the first component. The difference between
solutions from the first and second groups of solutions is best
visible in the N1(μ2) dependencies plotted in upper panel of

Fig. 2. For solutions of the first group the number of particles
N1 vanishes at μ2 → μco

2 [see point 1 in Fig. 2(a)], while for
solutions of the second group N1 remains nonzero [points 10
and 13 in Fig. 2(a)]. As μ2 decreases, the behavior of QDs
from the second group can be different depending on the value
of chemical potential μ1 of the first component. If the branch
of solutions reaches the left upper boundary of the triangle
(see solutions 9 and 12 in Figs. 1 and 4), then fold bifurcation
takes place, by analogy with states from the first group. In
contrast, if μ1 is such that the family of states reaches the
lower left border of the triangle, then both components de-
velop flattop shapes, while a multipole structure is maintained
(see dipole and tripole solutions 15 in Figs. 1 and 4). We note
that the boundaries of the existence domain on the (μ1, μ2)
plane for dipole and tripole QDs are identical.

Boundaries of the existence area in Fig. 1 show a different
response to the change of intraspecies coupling coefficient g12

(and, respectively, to the change of auxiliary coefficient δ).
Changing g12 in the range from −1.05 to −0.95 (resp., 0.15 �
δ � 0.25), we found that the boundary corresponding to fold
bifurcations does not change appreciably, while the boundary
corresponding to the flattop shape in both components does
change: for smaller values of δ the flattop regime is achieved
at smaller negative values of μ1 and μ2, i.e., the existence area
broadens, and vice versa, the increase of δ makes the existence
domain narrower.

Stability. To examine the stability of multipole droplets,
we use linear stability analysis and systematic dynamical
simulations. For linear stability, we take perturbed station-
ary solution ψ1,2 = e−iμ1,2t [u1,2(x) + η1,2(x, t )], where η1,2

are small perturbations. With representation η1,2(x, t ) =
[P1,2(x) + Q1,2(x)]eλt + [P∗

1,2(x) − Q∗
1,2(x)]eλ∗t , the standard

linearization procedure leads to the eigenvalue problem

iλP1,2 =
[
−1

2

d2

dx2
− μ1,2 + ∂E

∂n1,2

]
Q1,2, (6)

iλQ1,2 =
[
−1

2

d2

dx2
− μ1,2 + ∂E

∂n1,2
+ 2u2

1,2
∂2E

∂n2
1,2

]
P1,2

+ 2u1u2
∂2E

∂n1∂n2
P2,1, (7)

where partial derivatives of E (n1, n2) are evaluated at n1,2 =
u2

1,2(x). This problem has been solved numerically. For a
given QD, the instability corresponds to perturbation with λ

having a positive real part. Otherwise, i.e., if Re(λ) � 0 for
all perturbations, then the solution is stable.

In spite of their complex internal structure, dipole and
tripole states are stable in a wide subset of their existence
domain. Simplified schematics illustrating the main bound-
aries between stable and unstable solutions are presented in
Fig. 1: most of solutions of each type are stable below the
corresponding line (blue for dipole QDs and gray for tripole
QDs). In Fig. 1 we do not depict some narrow instability areas,
where the instability increment is rather small (of order 10−3

or below), because it is challenging to detect the borders of
all such narrow domains. Representative plots of instability
increments vs chemical potential μ1 are shown in Fig. 5. We
have in addition found that the instability becomes strongly
inhibited or even disappears completely for solutions situated
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FIG. 6. [(a), (b)] Dynamics of unstable and stable dipole QDs which correspond to solutions with numbers 9 and 15 in Figs. 1 and 4.
[(c), (d)] Dynamics of unstable and stable tripole QDs which correspond to solutions with numbers 4 and 10 in Figs. 1, 3, and 4. First and
second rows display amplitude of the first [|ψ1(x, t )|] and second [|ψ2(x, t )|] components, respectively.

close to the right boundary of the existence domain. Corre-
spondingly, solutions 1 and 7 are stable, whereas solution
4 features only a “mild” dynamical instability, when time-
dependent solutions tend to maintain the internal structure for
at least one of components, as opposed to strongly unstable
states, which completely lose their structure upon evolution.
The difference between “strong” and “mild” instabilities is
readily visible from examples of unstable dynamics presented
in Fig. 6: a strongly unstable dipole presented in Fig. 6(a)
dynamically transforms into a moving fundamental QD, while
a weakly unstable tripole illustrated in Fig. 6(c) preserves the
shape of the second flattop component and displays quasiperi-
odic oscillations in the first component. Regarding stable
solutions, illustrated in Figs. 6(b) and 6(d), initially introduced
random perturbations lead only to small-amplitude oscilla-
tions around stationary shapes.

The stability domain for tripoles is narrower than for
dipoles, as shown in Fig. 1. In addition, for tripoles there
exists a secondary instability band of finite width situated
along the lower boundary of the triangular existence domain.
Instability increments in this band are approximately one

FIG. 7. Two examples of monopole (bold lines) and dipole (thin
lines) QDs that share equal numbers of atoms in each species of
the mixture. Numbers of atoms in the first (N1) and second (N2)
species and energies of monopole (Em) and dipole (Ed ) solutions are
indicated in the plots. Red and blue lines correspond to profiles of
the first (u1) and second (u2) components.

order of magnitude smaller than those in the strong instability
domain. For simplicity of presentation, we do not show this
additional instability area in Fig. 1; however, these instabilities
are visible in Fig. 5, where instability increments are plotted
as functions of chemical potential μ1 for two fixed values of
μ2. At the lower-left boundary of the existence area (which
corresponds to the flattop regime), tripole solutions become
stable again.

Comparison with monopole solutions. For completeness
we briefly discuss monopole, i.e., nodeless, QDs that exist in
the mixture with the adopted values of coupling constants. In
contrast to multipole QDs, monopole solutions do not undergo
fold bifurcations indicated in Fig. 1. Hence, for monopoles
the corresponding boundary is absent in Fig. 1, and the do-
main of their existence on the plane (μ1, μ2) is broader.
Computing the energy of steady states E = ∫ ∞

−∞[(∂xu1)2/2 +
(∂xu2)2/2 + E (u2

1, u2
2)]dx for several representative solutions

(two of which are presented in Fig. 7), we observe that for a
mixture with fixed numbers of atoms in each species inequal-
ities Em < Ed < Et hold, where subscripts m, d , and t stay,
respectively, for monopole, dipole, and tripole QDs. Hence, in
the energy space monopole and multipole solutions represent
ground and excited states, respectively.

Conclusion. We presented a previously unexplored class
of multipole quantum droplets in quasi-1D asymmetric Bose-
Bose mixtures. Such multipole solutions have no counterparts
in the scalar model for a symmetric system and undergo un-
usual shape transformations within their existence domain. A
particularly interesting class of solutions consists of multiple
out-of-phase humps in one component coupled to the antidark
state in another component. Despite their complex shapes,
higher-order excited states are stable in a considerable part
of their existence domain.
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