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Nagaoka ferromagnetism in doped Hubbard models in optical lattices
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The search for ferromagnetism in the Hubbard model has been a problem of outstanding interest since
Nagaoka’s original proposal in 1966. Recent advances in quantum simulation have today enabled the study
of tunable doped Hubbard models in ultracold atomic systems. Employing large-scale density-matrix renor-
malization group calculations, we establish the existence of high-spin ground states of the Hubbard model
on finite-sized triangular lattices, analyze the microscopic mechanisms behind their origin, and investigate
the interplay between ferromagnetism and other competing orders, such as stripes. These results explain (and
shed light on) the intriguing observations of ferromagnetic correlations in recent optical-lattice experiments.
Additionally, we examine a generalized variant of the Hubbard model, wherein any second electron on a single
lattice site is weakly bound compared to the first one, and demonstrate how this modification can lead to enhanced
ferromagnetism, at intermediate lengthscales, on the nonfrustrated square lattice as well.
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Introduction. The Hubbard model is a paradigmatic model
of modern condensed matter physics that is widely used to
study a variety of strongly correlated systems [1]. It describes
electrons hopping on a lattice with a tunneling amplitude t
and interacting via an onsite potential U . Despite its seeming
simplicity, this model harbors tremendously rich physics [2,3]
and is often believed to underlie a host of materials, including
the high-temperature cuprate superconductors [4].

Over the last decade, ultracold atoms trapped in optical
lattices have emerged as an exceptionally promising and ver-
satile platform for realizing Hubbard models [5,6]. Recently,
a number of such cold-atom experiments [7–11] have demon-
strated the existence of long-range antiferromagnetic order in
two dimensions. Antiferromagnetism arises quite commonly
in the Hubbard model, the magnetic excitations of which are
described by a Heisenberg model of spins at half filling (one
electron per site) [12] or, more generally, by a so-called t-J
model [13] in the doped system. In both cases, the electron-
electron interactions give rise to a superexchange J ∼ −t2/U
[14], which favors antialignment of spins.

Away from half filling, the kinetic term of the model can
actually favor ferromagnetism, which is much rarer in the
phase diagram. In 1966, Nagaoka [15] rigorously proved that
for U/t = ∞, the ground state of the Hubbard model on a
bipartite lattice with a single hole away from half filling is
ferromagnetic [16]. For finite U/t , however, in the thermo-
dynamic limit, the ground state is antiferromagnetic at half
filling in all integer dimensions d > 1 [17]. Since then, a
number of studies have sought to determine if and when
Nagaoka ferromagnetism is obtained for finite U/t [18–20] or
practically relevant dopings [21–25] with varying degrees of
success. In the absence of a conclusive answer, various routes
towards inducing ferromagnetism in modified Hubbard mod-
els have been explored, including the introduction of multiple
orbitals, nearest-neighbor Coulomb repulsion, longer-range

hoppings, or dispersionless (“flat”) bands in the spectrum
[26–28].

In this work, we start by investigating the simple Hubbard
model (without any of the aforementioned modifications) on
a triangular lattice, which can be readily realized in today’s
optical lattice setups. The Hamiltonian is given by

H = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) + U
∑

i

ni↑ni↓, (1)

where ni,σ ≡ c†
i,σ ci,σ denotes the number operator on site

i, ni = ni,↑ + ni,↓ is the total occupation of site i, and we
only consider nearest-neighbor hopping (see Fig. 1). Studying
the phase diagram of this model in the strong-correlation
limit of U 	 t , using large-scale density-matrix renormaliza-
tion group (DMRG) [29] calculations, we discover extended

FIG. 1. Schematic illustration of the Hubbard model and its
extended variant, as described in Eqs. (1) and (2), respectively.
Fermions hop on an optical lattice with an onsite repulsive interaction
U and a tunneling amplitude t . We also consider a generalization of
this model in which the tunneling matrix element is enhanced to t̃ for
a hopping process from a doubly occupied site to an already singly
occupied site. In the limit t̃ = t , the modified Hamiltonian reduces to
that of the regular Hubbard model.
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FIG. 2. (a) Ground states of the Hubbard model (1) on a
triangular lattice for (a) U/t = 4 and (b) U/t = 10, exhibiting
striped and ferromagnetic correlations, respectively. (c) The nearest-
neighbor correlator Ca, plotted here for two width-4 cylinders of
different lengths, shows the realization of the Nagaoka state for
moderate U/t .

regions of ferromagnetic order in finite-sized strips. We char-
acterize its intrinsic connection to geometric frustration and
discuss its competition with other proximate orders, such as
striped phases. Our results thus directly address the recent
experiments by Xu et al. [30] observing ferromagnetism in
a frustrated Fermi-Hubbard magnet and account for the ori-
gins thereof. Additionally, we demonstrate a route towards
inducing ferromagnetism in the square lattice, which is not
geometrically frustrated: this can be achieved in a setup where
the second electron on any site of the lattice is much more
weakly bound than the first and we examine the prospects for
realizing such systems in optical lattices.

Triangular lattice. Our search for elusive ferromagnetism
begins with the triangular lattice motivated by Ref. [31],
which established two conditions for the geometric constraints
required to host Nagaoka ferromagnetism: the underlying lat-
tice should have loops, and different paths of particles or
holes around such loops should interfere constructively. On
the unfrustrated square lattice, the shortest such path is a
cluster of four sites, which leads to a hopping amplitude ∼ t4.
However, it is the nonbipartite triangular lattice which exhibits
the shortest possible loop length of three. Consequently, the
loop-hopping amplitude is proportional to t3 and changes sign
when t does (which is equivalent to exchanging electron and
hole doping), so we expect to find ferromagnetism only for
doping fractions δ > 0.

We probe the ground states of the Hamiltonian (1) on two-
dimensional cylinders of N sites, with dimensions Lx × Ly (in
units of the lattice spacing a) and open (periodic) boundary
conditions along the x̂ (ŷ) direction [32]. Using DMRG with
a bond dimension of up to χ = 4800, we ensure the conver-
gence of our results to a truncation error <10−7 throughout.
Earlier dynamical mean-field theory (DMFT) calculations on
the Hubbard model found the region of ferromagnetism in
parameter space to be maximized for an electron doping
concentration of δ = 0.5 [33]. While DMFT is exact only in
infinite dimensions, we use this filling fraction as a starting
point for the Hubbard model (1) as well (note that this high-
density regime is in distinction to Ref. [34], which illustrated
the formation of local ferromagnetic polarons around a single
doublon). Figure 2 illustrates the ground states thus obtained

for two representative values of U/t , at a doping fraction of
δ = 1/2 above half filling. Here, the spin operator is defined
as Si ≡ c†

iασαβciβ . At U = 10 t , one clearly observes a satu-
rated ferromagnetic ground state, as evidenced by the uniform
real-space spin-density profile plotted in Fig. 2(b) (for the
sector with the largest Sz quantum number in the degen-
erate ground-state subspace). Interestingly, our calculations
uncover a competing ground state, with unidirectional charge
and spin density modulations, for which the maximal allowed
Sz quantum number is zero. An example of this inhomoge-
neous stripe-ordered state [35–37], which breaks translational
and rotational symmetries, is displayed in Fig. 2(a) for U =
4t . Similar stripes have also been experimentally observed
in certain square-lattice cuprates [38,39]. In our case, the
origin of the stripes can be understood from the competition
between the domain walls favored by the antiferromagnetic
exchange and the lack thereof preferred for kinetic delocaliza-
tion. Consider a state with stripes of linear width �. Relative
to the uniform ferromagnet, the increase in the electrons’
kinetic energy will be EK ∼ (δN ) t̃/(�Ly) while the decrease
in interaction energy due to the exchange across the domain
walls is EJ ∼ −JN/�. The contest between these two energy
scales decides between ferromagnetic and stripe orders, with
the former eventually prevailing at large enough U/t (as J ∼
−t2/U ).

Having established the existence of the Nagaoka state,
we now turn to characterizing its extent and stability. A
useful metric to quantify the the ferromagnetic order is the
(normalized) average two-point correlation function Cd =∑

〈i, j〉, ||ri−r j ||=d〈Si · S j〉/Nb, where the sum runs over Nb un-
ordered pairs of sites 〈i, j〉 separated by a distance d . In
particular, Fig. 2(c) shows the nearest-neighbor correlator Ca

as a function of U/t for two different system sizes. To elim-
inate the possibility of strong finite-size effects, we consider
two different cylinders with one being double the length of the
other (results on wider cylinders are documented in the Sup-
plemental Material (SM) [40]). In both cases, we see that the
nearest-neighbor radial correlator Ca attains its maximum pos-
sible value by U/t 
 11 although the onset of ferromagnetic
correlations can already be seen for much lower U/t ∼ 6. We
emphasize that this observed ferromagnetism is truly a many-
body phenomenon of the Nagaoka type, as opposed to Stoner
ferromagnetism, which occurs whenever the (single-particle)
density of states at the Fermi energy D(EF ) > 1/U and should
thus set in for infinitesimal U/t > 0 (as D(EF ) is singular at
this filling; see below).

Two-leg triangular ladders. While our results in the pre-
vious section manifest the presence of the Nagaoka state,
classically, one might suspect this to be an effect of the
geometric frustration, which is deleterious to competing an-
tiferromagnetic orders and leads to their suppression. Such a
reasoning, however, may break down due to subtle quantum
effects; for example, antiferromagnetism can actually be en-
hanced on the triangular lattice by a single hole [41]. Instead,
Nagaoka ferromagnetism on the triangular lattice can be bet-
ter understood as a consequence of geometrical frustration
of the kinetic energy—a strictly quantum-mechanical effect
stemming from constructive interference between different
paths of a doublon propagating in a spin-polarized back-
ground [41]. A quantitative measure of such kinetic energy

L021303-2



NAGAOKA FERROMAGNETISM IN DOPED HUBBARD … PHYSICAL REVIEW A 110, L021303 (2024)

FIG. 3. (a) Ground state obtained on a triangular two-leg ladder for t̃/t = 4, U = 0.5t̃ (drawn using the same conventions as in Fig. 2),
displaying macroscopic long-ranged ferromagnetic correlations. (b) Phase diagram of a Lx = 20 ladder, as chalked out by the net magnetization,
m, showing the extent of the Nagaoka state (FM). (c), (d) The nearest-neighbor correlator Ca for ladders of three different lengths, demonstrating
the development of ferromagnetism as a function of U/t along the cuts (c) t̃/t = 1 (the Hubbard limit) and (d) t̃/t = 4. All calculations
presented here are for an electron doping concentration of δ = 0.5.

frustration is given by f ≡ W/(2z|t |), where W is the band-
width and z is the coordination number [42], with smaller
ratios indicating stronger frustration. The kinetic frustration of
even a single triangular cluster results in lowering f below the
unfrustrated value of f = 1 for the square lattice [33]. For the
triangular-lattice Hubbard model, the noninteracting problem
has a bandwidth of 9t with z = 6, wherefore f = 0.75. The
associated D(E ) can be computed analytically in terms of
a complete elliptic integral of the first kind and exhibits a
van Hove singularity at E = −2t , corresponding to a density
of 1.5 electrons per site. Our earlier choice of δ = 0.5 thus
maximizes D(EF ): a large density of states at the Fermi level
lowers the kinetic cost of filling additional single-particle
electronic states, thereby enabling the large U (that favors spin
alignment) to dominate [43–45].

To probe the dependence of ferromagnetism on f , we now
consider a different geometry, namely, a two-leg triangular
ladder, which has a reduced coordination number compared
to the full lattice. In consistency with the intuition developed
above, here, we do not find a ferromagnetic ground state for
up to U/t = 20. It is therefore only natural to ask if there
are conditions under which ferromagnetism can occur for
moderate values of U/t as well.

To answer this question affirmatively, we turn to a gen-
eralized Hubbard model—inspired by studies of hydrogenic
donors in semiconductors [46–48]—in which the second elec-
tron on any site of the lattice is much more weakly bound than
the first [49–51]. The Hamiltonian is [46,47]

H = −
∑

〈i, j〉,σ
(t (ni, n j )c

†
iσ c jσ + H.c.) + U

∑

i

ni↑ni↓; (2)

the occupation-dependent nearest-neighbor hopping is given
by t (ni, n j ) = t̃ if ni = 1, n j = 2, and t (ni, n j ) = t otherwise.
This enhanced hopping (for electron-doped systems) favors
the formation of a locally ferromagnetic configuration of spins
around the charge, thus yielding a polaronic type of ferromag-
netism in the large-U/t limit [52].

Figure 3(a) sketches the ground state of this Hamiltonian
on a 30-site-long two-leg ladder for t̃/t = 4, U = 0.5t̃ . Even

for this rather small value of U/t , we unambiguously observe
large-scale ferromagnetic order across our entire finite-sized
system, characterized by a saturated net magnetization of
m = 0.25 with a standard deviation of 0.015. Motivated by
this finding, we systematically explore the dependence of fer-
romagnetism on the Hamiltonian’s parameters by constructing
a phase diagram based on the magnetization m [Fig. 3(b)].
We see that increasing t̃/t results in a dramatic reduction in
the minimal U/t needed for the development of ferromagnetic
order. We examine the robustness of this behavior by inspect-
ing the two-point correlator Ca along two cuts through this
phase diagram, for three ladders of varying lengths. For the
Hubbard limit t̃/t = 1 [Fig. 3(c)], we find that the correlations
in the ground state (which is believed to be a Curie-Weiss
metal for low U/t [33]) remain negative till U/t ∼ 40 and
turn weakly ferromagnetic thereafter. On the contrary, for
t̃/t = 4 [Fig. 3(d)], this transition occurs for a nearly twen-
tyfold smaller U/t , irrespective of system size.

Lastly, we note that decreasing (increasing) t̃/t increases
(decreases) the minimum U/t required for a fully polarized
ground state. For instance, in stark contrast to Fig. 3(a), we
do not detect any Nagaoka ferromagnet up to U/t = 50 for
t̃/t = 2 (or, as seen earlier, for the Hubbard model at t̃/t = 1)
on the same two-leg cylinders. This is because ferromag-
netism is driven by the relative kinetic energy gain of a
delocalized electron in a background of aligned spins vis-à-
vis the background being in an antiferromagnetic or random
configuration, and this gain is reduced by a smaller hopping
amplitude.

Square lattice. Our observation of Nagaoka ferromag-
netism on the nonbipartite triangular lattice, which innately
lacks electron-hole symmetry, raises the question of whether
similar electron-hole asymmetry induced by setting t̃ �= t can
aid the formation of ferromagnetic states or domains on even
(bipartite) square arrays.

At half filling, the ground state of the square-lattice
Hubbard model is known to be a Mott insulator with anti-
ferromagnetic Néel order for all values of U/t > 0 due to
the perfect nesting of the noninteracting Fermi surface. As
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FIG. 4. Ground states of the extended Hubbard model (2) at
t̃/t = 4 for (a) U = 6 t̃ and (b) U = 9 t̃ on the square lattice. The
color of each circle conveys the onsite magnetization 〈Sz

i 〉 while its
diameter is proportional to the charge density 〈ni〉. The length of
the arrows is proportional to the amplitude of the spin correlation
〈S0 · Si〉 with respect to the central site, indexed 0 (arrow-free). The
directions of the arrows encode the sign of 〈S0 · Si〉 with arrows
pointing northeast (southwest) indicating positive (negative) corre-
lations. (c), (d) The static spin structure factors corresponding to
the states in (a), (b), respectively. (e) The radially averaged nearest-
neighbor correlator Ca at t̃/t = 4 for three width-4 cylinders of
different lengths, showing the stripe-to-ferromagnet transition. Since
the transition occurs between two different magnetically ordered
symmetry-breaking states, by Landau theory, we expect it to be first
order, as borne out by the sudden jump in Ca.

the doping (either electron or hole) is increased, one expects
a transition to a ferromagnetic ground state for sufficiently
large U/t . Exact diagonalization calculations on small clusters
[46,47] have previously found that high-spin ground states are
obtained at much lower values of U/t for electron doping than
for hole doping. Therefore, we consider the electron-doped
case hereafter (focusing on the optimal doping fraction of δ =
1/12 identified in Ref. [52]) and without loss of generality, set
t̃/t = 4.

At low U/t , we once again find a state with stripe-like
correlations in the spin density (i.e., with local ferromagnetic
order), as exemplified by Fig. 4(a) for a 12 × 4 cylin-
der at U = 6 t̃ . The long-ranged correlations in this state

are reflected in the static structure factor S (q) = ∑
i, j〈Si ·

S j〉 exp[iq · (ri − r j )]/N, shown in Fig. 4(c). S (q) has promi-
nent peaks at (±π/3, 0) indicating a period-6 modulation
of the spin density along the nonperiodic direction, which
accompanies a period-3 modulation of the charge density.
Across a wide range of Lx, we find that the stripes are filled
and commensurate with the doping, accommodating exactly
one excess electron per unit cell of 12 sites. Remarkably, at
larger U = 9 t̃ , we see clear evidence of a global ferromag-
netic ground state, as displayed in Figs. 4(b) and 4(d) in real
and Fourier space, respectively; in this fully polarized state,
the structure factor only exhibits a single peak at q = 0 in the
Brillouin zone.

To study the stripe-ferromagnet quantum phase transition,
we examine the correlator Ca, which is plotted in Fig. 4(e)
as a function of U/t for three different system sizes. The
onset of ferromagnetism is apparent as a sharp increase in
Ca at U/t ∼ 30, wherafter it quickly saturates to a system-
size-independent value [53]. Intuitively, the order parameter
remains pinned to this maximal value over an extended range
of U/t because the gain of band energy due to a single flipped
spin does not exceed the concomitant cost from the onsite
repulsion; hence, we do not observe a partially polarized fer-
romagnetic state.

Discussion and outlook. Despite the prediction of Nagaoka
ferromagnetism more than half a century ago, its actual real-
ization has proved considerably more challenging. This may
partially be attributed to the fragility of the Nagaoka state
itself, which was theorized for an infinite system doped with
exactly one hole at U/t = ∞. In this work, we address a
central question: moving away from such an idealized limit,
can ferromagnetism occur for finite U/t and macroscopic dop-
ings? Using detailed DMRG computations, we reveal robust
ferromagnetism (at least on moderate length scales), analyze
its origins, and explore its intimate connections to the under-
lying lattice geometry. Given that half-filled Hubbard systems
are generically either antiferromagnetic (when on a bipartite
lattice) or paramagnetic, the emergence of ferromagnetism is
indeed a beautiful demonstration of the surprises that strong
correlations may engender.

The rarity of Nagaoka ferromagnetism in conventional
solid-state materials is well documented. For instance, in
many candidate Mott-insulator oxides and chalcogenide
systems, U/t is insufficient to generate ferromagnetism.
Likewise, strong positional disorder present in doped semi-
conductors often localizes mobile carriers and inhibits fer-
romagnetism [47,54]. Optical lattice platforms, on the other
hand, offer clean and tunable alternatives to circumvent these
issues. In such systems, the lattice depth can be varied to
control the tunnelings t, t̃ while the ratio U/t can be tuned via
a Feshbach resonance [55]. In the SM [40], we also discuss
two possible methods to realize extended Hubbard models
akin to Eq. (2), which could pave a new route to obtaining
the Nagaoka state.

Even without any such correlated hoppings, our results for
the case of t̃ = t directly apply to the recent experiments of
Ref. [30], which probe a square-lattice Hubbard model with
a next-nearest-neighbor tunneling of strength t ′. In the limit t
≈ t ′ (when the square lattice is reconstructed to a triangular

L021303-4



NAGAOKA FERROMAGNETISM IN DOPED HUBBARD … PHYSICAL REVIEW A 110, L021303 (2024)

one), Xu et al. [30] observed signatures of ferromagnetic
correlations for U/t ≈ 9 with δ ≈ 0.5. This is in excellent
agreement with our predictions in Fig. 2, thus highlighting the
geometric frustration of the kinetic energy as a mechanism for
the experimentally observed ferromagnetism.

Note added. After the completion of this work, we became
aware of two papers also studying Nagaoka ferromagnetism,
which recently appeared in Refs. [56,57].
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