
PHYSICAL REVIEW A 110, L021302 (2024)
Letter

Relaxation in dipolar spin ladders: From pair production to false-vacuum decay
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Ultracold dipolar particles pinned in optical lattices or tweezers provide an excellent platform for the study
of the intriguing equilibration dynamics of spin models with dipolar exchange. Starting with an initial state
in which spins of opposite orientation are prepared in each of the legs of a ladder lattice, we show that spin
relaxation displays an unexpected dependence on interleg distance and dipole orientation. This dependence,
stemming from the interplay between intra- and interleg interactions, results in three distinct relaxation regimes:
(i) ergodic, characterized by the fast relaxation towards equilibrium of correlated pairs of excitations generated at
exponentially fast rates from the initial state; (ii) metastable, in which the state is quasilocalized in the initial state
and only decays in exceedingly long timescales, resembling false-vacuum decay; and, surprisingly, (iii) partially
relaxed, with coexisting fast partial relaxation and partial quasilocalization. The realization of this intriguing
dynamics is at hand in current state-of-the-art experiments in dipolar gases.

DOI: 10.1103/PhysRevA.110.L021302

Introduction. Quantum simulators using ultracold gases
in optical potentials have dramatically improved our under-
standing of many-body quantum dynamics, as highlighted by
recent experiments on many-body localization [1–3], quantum
scars [4], or Hilbert-space fragmentation [5,6]. Up to recently,
nearest-neighbor spin interactions only resulted from rela-
tively weak superexchange processes [7–17]. This is changing
due to rapid progress in the realization of dipole-mediated
spin interactions in various physical systems, including mag-
netic atoms [18–24], Rydberg atoms [25–28], and polar
molecules [29–31]. In parallel, the development of optical
tweezers [32–35] and quantum gas microscopes for polar
molecules [36] opens fascinating perspectives for unveiling
the intriguing dynamics of dipolar spin models resulting from
the long-range anisotropic dipole-dipole interactions.

Exploring nonequilibrium dynamics in dipolar spin models
is further facilitated by the capability to controllably pre-
pare layered arrays with nontrivial initial spin distributions
[17,37–40]. For polar molecules this was demonstrated in re-
cent experiments where each layer was initialized in opposite
spin states (encoded in rotational levels) [41]. This case is
particularly interesting since dipolar exchange results in the
correlated creation of spin excitations in each layer [42,43],
resembling pair creation from vacuum fluctuations, or para-
metric amplification and two-mode squeezing in quantum
optics [44,45].

Although in contrast to integrable [46] and many-body
localized systems [47] nonintegrable ones are expected to
eventually thermalize [48], they may do so after a possibly
long transient prethermalization stage, which has been the
focus of major attention [48–50]. Long-lived metastable states
also appear in so-called false-vacuum decay, a phenomena
first investigated in the context of quantum field theories
with applications in cosmology and theory of fundamental

interactions [51], which has been predicted in quantum spin
chains [52,53] and has been recently observed in ferromag-
netic superfluids [54]. Ladder lattices provide a convenient
system to study relaxation dynamics [37,38,40,55,56], as they
are theoretically tractable, while still displaying interesting
physics.

In this Letter, we show that experimentally feasible lad-
ders of spin-1/2 pinned dipoles [Fig. 1(a)] present a highly
nontrivial relaxation dynamics, characterized by an anoma-
lously long-lived prethermal stage. We illustrate this for the
particular experimentally relevant case in which the spins in
each leg are initialized in opposite orientations, which may
be subsequently admixed by interchain dipolar exchanges. We
focus on whether and how the initial pattern relaxes towards
an equilibrium state characterized by an average zero mag-
netization in both legs. It might be expected that relaxation
is fastest when the interleg dipolar exchange is maximal, i.e.,
for dipoles oriented perpendicular to the ladder axis [θ = 0
in Fig. 1(a)], and that increasing the interchain separation
� only trivially enlarges the timescale of relaxation, without
modifying its qualitative nature.

Interestingly, none of these a priori reasonable expecta-
tions are correct, illustrating the highly nontrivial nature of
the dynamics of dipolar spins. We show that spin relaxation
is maximally favored at the dipole orientation for which there
is no spin exchange along the legs. Moreover, increasing �

does not only enlarge the relaxation timescale, but changes
qualitatively the long-time evolution, leading to three dis-
tinct relaxation regimes. The ergodic regime, at low �, is
characterized by an exponential creation of correlated pairs
of spin excitations at short times, followed by a fast relax-
ation towards equilibrium. At large �, the system is in a
highly metastable, quasilocalized regime, remaining in the
initial state and only relaxing in an exceedingly long timescale
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FIG. 1. (a) Sketch of the ladder model. Spins in each leg are
initially prepared with opposite orientations (red and blue balls).
(b) Instability rate � for a ladder of L = 1001 rungs, as a function of
the orientation θ and the separation �. The colored region indicates
where at least one momentum mode is unstable. The dashed curve is
the effective instability threshold for L = 11. (c) Imbalance evolution
for θ = 0 and � = 2, 2.5, and 6 (a = 1); dashed, dash-dotted, and
dotted red curves depict the Bogoliubov predictions for each case,
respectively.

resembling false-vacuum decay [51–54]. Remarkably, at in-
termediate �, the system is in a partially relaxed regime,
with coexisting partial equilibration and very long-lived par-
tial quasilocalization. Moreover, the three relaxation regimes
present as well a markedly different evolution of the entangle-
ment entropy [57]. The observation of these dynamics is well
within reach of present experiments.

Model. We consider two parallel spin-1/2 chains of L sites,
denoted as A and B. The chains are characterized by a lattice
spacing a, set to a = 1 below, and are separated by a distance
� [Fig. 1(a)]. We assume � > a. Due to resonant electric
dipole-dipole interactions, at zero electric field the spins un-
dergo both intraleg and interleg exchange interactions. The
system is then described by the following Hamiltonian:

Ĥ =
∑

α=A,B

∑
i> j

V αα
i j (ŝ+

iα ŝ−
jα + ŝ−

iα ŝ+
jα )

+
∑
i, j

V AB
i j (ŝ+

iAŝ−
jB + ŝ−

iAŝ+
jB), (1)

with ŝα
i = σ̂ α

i /2 being the spin operators in terms of the Pauli
matrices σ̂

x,y,z
i that act on the spin at site i. We focus our

attention below on exchange couplings of the form

V αα′
i j = J∣∣rα

i − rα′
j

∣∣3

⎛
⎝1 − 3

[
êd · (

rα
i − rα′

j

)]2

∣∣rα
i − rα′

j

∣∣2

⎞
⎠, (2)

where J is the spin-exchange rate (proportional to the dipole
moment squared); êd = êz cos θ + êx sin θ characterizes the
dipole orientation, fixed by an external magnetic field; and rα

i
is the position of site i of chain α. Motivated by recent works
on polar molecules in bilayers [41], we consider all spins in

A (B) initially in spin ↑ (↓). Below, we study the stability of
elementary spin excitations on top of the initial pattern, which
characterizes short timescales, and then address whether and
how the system reaches equilibrium in longer times.

Stability analysis. At short times, deviations from the ini-
tial condition are best analyzed using the Holstein-Primakoff
transformation ŝz

A,i = 1/2 − â†
i âi, ŝ+

A,i = âi, ŝz
B,i = −1/2 +

b̂†
i b̂i, and ŝ−

B,i = b̂i, which maps the initial spin pattern to a
vacuum of spin excitations [58]. The hard-core boson operator
â†

i (b̂†
i ) creates a spin excitation at site i in leg A (B). For

low density of spin excitations, the hard-core nature can be
neglected, and the Hamiltonian may be re-expressed in quasi-
momentum space as

Ĥ =
∑

k

[εk (â†
k âk + b̂†

kb̂k ) + �kâ†
k b̂†

−k + �∗
k b̂−kâk], (3)

where âk = 1√
L

∑
j e−ik j â j and b̂k = 1√

L

∑
j e−ik j b̂ j . Neglect-

ing the hard-core constraint fails at longer times. Nevertheless,
Eq. (3) provides valuable insights. Interchain dipolar coupling
results in the correlated creation of pairs of spin excitations
of opposite momentum in each leg, with a momentum-
dependent rate �k = J

∑
j V AB

0 j e−ik j , whereas intrachain in-
teraction leads to an effective band dispersion for the motion
of spin excitations along the legs, εk = J

∑
j �=0 V αα

0 j e−ik j =
J (1 − 3 sin2 θ )

∑
j �=0 e−ik j/| j|3. The Hamiltonian (3) can

be diagonalized by means of a Bogoliubov transforma-
tion [57], yielding the eigenenergies ξk =

√
ε2

k − |�k|2. Real
ξk values lead to oscillatory dynamics nA

k (t ) = nB
−k (t ) =

(|�k|/ξk )2 sin2(ξkt ). Crucially, ξk may become imaginary for
certain momenta kc, resulting in the dynamical instability
of the spin pattern, triggering (at short times) the exponen-
tial growth of correlated spin excitations in both legs [43],
nA

kc
(t ) = nB

−kc
(t ) ∝ (|�kc |/|ξkc |)2e2�kc t , with �kc = Im[ξkc ] be-

ing the growth rate of mode kc. We define the instability rate
as � = maxkc �kc . Figure 1(b) shows � as a function of � and
θ for two different values of L.

The momentum-dependent interplay between intraleg dis-
persion and interleg pair creation is crucial for the stability
of the initial spin pattern and, as shown below, also for the
long-time evolution. Bogoliubov instability for a given quasi-
momentum k demands |εk| < |�k|. Note that, whereas |�k|
decreases with the interchain separation �, the bandwidth
associated with the intrachain dispersion εk is independent of
�. As a result, except in the vicinity of the magic angle θM =
arcsin(1/

√
3) discussed below, only k 	 k0 	 0.46π , such

that εk0 = 0, contribute to the instability for large-enough �.
However, for a finite chain with L sites, the quasimomentum
takes only discrete values {k j}. Therefore, for system sizes
where k0 cannot be reached, an effective threshold �c(θ, L)
emerges [Fig. 1(b)], such that for � > �c, |εk j | > |�k j | for
all k j , and hence the initial spin pattern is Bogoliubov stable.
The situation is very different for θ 	 θM , since εk = 0 for all
k, and hence ξk is imaginary for all quasimomenta. Instability
is hence strongly enhanced, being maximal for k = 0, with
� 	 4J

3�2 .
To put this into the context of false-vacuum decay, we

see that the initial state is classically fully static, and the
Bogoliubov analysis demonstrates it is quadratically stable
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FIG. 2. (a) Ratio P(L/2)/Peq(L/2) at a time V̄ t = 50 as a function of θ and �. In the ergodic (E ) regime (dark blue), 1 − δ <

P(L/2)/Peq(L/2) < 1; in the the partially relaxed (P) regime (light blue), δ < P(L/2)/Peq(L/2) < 1 − δ; and in the quasilocalized (L) regime
(white), 0 < P(L/2)/Peq(L/2) < δ. We consider δ = 0.05, but other reasonably small values of δ do not significantly alter the results. The
dashed red curve corresponds to the Bogoliubov instability threshold. (b)–(e) Distribution of spin excitations P(NA) at four points in panel (a),
indicated by markers. (f)–(i) Evolution towards thermalization of P(NA) for � = 2 and θ = 0. Brown solid curves indicate the equilibrium
distribution (4). Dashed curves depict a rescaled Gaussian characterizing the partially relaxed regime. All plots are obtained using Chebyshev
evolution for ladders with 11 rungs.

(for large layer separations), i.e., a local energy minimum
within the mean-field analysis. Eventual relaxation therefore
requires creation of spin excitations via quantum fluctuations.
This is then directly analogous to quantum tunneling through
a mean-field energy barrier leading to decay of a metastable
false vacuum.

Magnetization imbalance and spin distribution. The stabil-
ity analysis cannot describe the relaxation dynamics beyond
the initial stages. We focus at this point on the long-time
evolution, and in particular on whether the system behaves
ergodically, reaching equilibrium. To this aim, we employ a
Chebyshev expansion [57,59], which provides a numerically
exact evolution for arbitrarily long times [60]. Due to its nu-
merical complexity, we restrict to chains with L = 11 rungs.
In order to characterize the relaxation dynamics, we monitor
the imbalance η = mA − mB, where mσ=A,B = 1

L

∑L
i=1〈ŝz

iσ 〉 is
the magnetization of chain A (B). The imbalance is maximal,
η = 1, for the initial condition and reaches η = 0 when the up
and down spins are evenly admixed between the two chains.
Note that η = 1 − 2nA, with nA = NA/L being the density of
spin excitations in chain A (NA = ∑

i〈â†
i âi〉).

A more detailed probe of the relaxation dynamics is pro-
vided by the full counting statistics P(Nσ=A,B) of the number
of spin excitations within each chain. Due to energy conser-
vation (〈Ĥ〉 = 0 at any time), and the fact that spin-exchange
preserves mA + mB = 0, we expect that, if ergodicity is
reached, all states with a given number of excitations NA along
chain A and NB = NA excitations along chain B are equally
probable, irrespective of how the excitations are spatially dis-
tributed. The probability that chain A has NA spin excitations,
i.e., magnetization mA = 1/2 − NA/L, would hence be [57]

Peq(NA) =
( L

NA

)2

(2L
L

) 	 2√
πL

e−4(NA−L/2)2/L. (4)

Relaxation dynamics. In order to compare the spin dy-
namics for different � values, we gauge out the trivial
stretching of the timescale of the dynamics associated
with a growing �, by introducing the averaged interleg

interaction V̄ = |(1/L)
∑

i, j V AB
i j | 	 2J

�2 cos2 θ and consider-
ing long times, V̄ t � 1 [61]. Figure 1(c) shows the evolution
of the imbalance for θ = 0 and different � values. For short
times, numerical results are in very good agreement with
the Bogoliubov prediction (red curves). At longer times, the
hard-core nature of the spin excitations, neglected in the Bo-
goliubov analysis, becomes relevant. For � = 2, for which
the system is Bogoliubov unstable, homogenization is quickly
reached. For � = 2.5 and 6, the initial pattern is Bogoliubov
stable, but beyond-Bogoliubov physics eventually results in
relaxation, although with an exceedingly long-lived memory
of the initial condition.

The long-time evolution reveals three distinct relaxation
regimes, illustrated in Figs. 2(a)–2(e) for V̄ t = 50. In the
ergodic regime, at low-enough �, the system relaxes into
a fully balanced distribution (η = 0), and P(NA) reaches
Peq(NA) [Fig. 2(b)]. Figure 2(a) shows P(L/2)/Peq(L/2) as
a function of θ and �; P(L/2)/Peq(L/2) 	 1 in the ergodic
regime (dark blue region). As shown in Figs. 2(f)–2(i) for
θ = 0 and � = 2, P(NA) rapidly approaches equilibrium, in
a time of a few tens of h̄/J , well within experimental reach.
As expected from Bogoliubov analysis, short-time relaxation
is characterized by the exponential creation of correlated pairs
of spin excitations, and hence by an exponentially decreasing
P(NA) [Fig. 2(g)], and the formation of a thermofield double
state [62,63]. Eventually, further creation of excitations is
arrested by their hard-core nature, and P(NA) transitions from
an exponential to the Gaussian Peq(NA) already at Jt/h̄ 	 50
[Fig. 2(i)].

The long-time behavior presents similar qualitative fea-
tures as the instability rate of Fig. 1(b). The enhanced Bogoli-
ubov instability for θ 	 θM translates into ergodic dynamics
even for large �. Moreover, as expected from the stability
analysis, for large-enough � the system enters the quasilo-
calized regime, in which the spin distribution remains fully
imbalanced, with η 	 1 and P(NA = 0) 	 1 [Fig. 2(e)]. This
regime is hence characterized by P(L/2)/Peq(L/2) 	 0 [white
region in Fig. 2(a)]. We have checked that this remains so up to
an eventual relaxation at exponentially long times, resembling
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FIG. 3. (a) Ratio P(L/2)/Peq(L/2) as a function of � for θ = 0 at two different evolution times. The dashed red line corresponds to the
Bogoliubov stability threshold. Colored regions indicate the ergodic (E ), partially relaxed (P), and quasilocalized (L) regimes characterizing
the long-time evolution. (b) and (c) Imbalance η after a time Jt/h̄ = 50 as a function of θ and � for a fully filled lattice and for sparse (25%)
random filling, respectively. For all plots, we employ Chebyshev evolution for 11 rungs, except in panel (c), where we average over 100
realizations of 11 randomly placed spins in each leg of a 44-rung ladder.

the case of a metastable false vacuum [51]. However, over
extremely long timescales ∝ 105Jt/h̄, the spin distribution
within the quasilocalized regime relaxes towards Peq.

Interestingly, at intermediate � values, the system en-
ters a partially relaxed regime. P(NA) acquires a peculiar
bimodal distribution [Figs. 2(c) and 2(d)]. Part of the distri-
bution reaches a Gaussian dependence around NA = L/2, as
expected from ergodic evolution, whereas the rest remains
peaked at NA = 0, as in the quasilocalized regime. As a result,
0 < P(L/2)/Peq(L/2) < 1 [light blue area in Fig. 2(a)]. The
bimodal distribution is maintained for very long evolution
times [57], well over any present or foreseeable experimental
lifetimes, indicating the presence of eigenstates with very
different degrees of ergodicity.

Experimental considerations. The abrupt ergodic to non-
ergodic crossover as a function of � characteristic of short
evolution times may be readily probed using polar molecules
or Rydberg atoms, as illustrated by our results at Jt/h̄ =
50 in Fig. 3(a), where we show P(L/2)/Peq(L/2) as a
function of � for θ = 0 [see also Figs. 2(f)–2(i)]. Prob-
ing the partially relaxed regime demands longer evolutions
such as V̄ t = 50 in Fig. 3(a). Note that for � = 3, this
corresponds to Jt/h̄ 	 200. Recent experiments on polar
molecules have demonstrated rotational coherence times well
over this timescale [64].

Experiments, especially those with polar molecules in opti-
cal lattices, are characterized by a sparse lattice filling [29,36],
limited to less than 25%. Sparse filling results in random
positions of the spins, which amounts to spatial disorder of
the exchange couplings. Compared to the clean case depicted
in Fig. 3(b), positional disorder, rather than localizing disor-
der, enhances instability and homogenization, as depicted in
Fig. 3(c), where we show the imbalance at Jt/h̄ = 50 for a
25% filling. In contrast, our results show that typical disorder
resulting from the differential polarizability and imperfections
of the lattice or the tweezer array results in an almost negligi-
ble effect [57].

For the case we discussed, monitoring relaxation requires
leg-resolved detection of one of the spin components. For
polar molecules, this may be readily achieved by means
of an electric field gradient perpendicular to the legs,
which changes the energy splitting between the desired
rotational states in each leg, allowing for leg-resolved spin-
resolved measurements [41]. Recent advances in single-site
resolution in polar molecules and magnetic and Rydberg
atoms [23,36,65] further enable the possibility to study
relaxation dynamics beyond the leg-polarized initial state
considered here.

Conclusions. Dipolar spin ladders feature highly nontrivial
relaxation dynamics due to the interplay between intra- and
interleg interactions, which we have illustrated for the relevant
case in which each leg is initialized in the opposite spin state.
The dynamics have an intriguing dependence on the dipole
orientation and the interchain separation, being maximally
ergodic at the magic angle for which intrachain interactions
vanish. Moreover, increasing the interleg spacing leads not
only to the expected enlargement of time scales but also to
a qualitative change in the stability of the initial pattern and
in the long-term evolution, which falls into one of three pos-
sible regimes: ergodic, quasilocalized, and partially relaxed.
We have checked that other initial states, accessible in the
presence of single-site resolution, such as opposite spin ori-
entations in even and odd rungs, result in qualitatively similar
relaxation regimes. The predicted dynamics may be probed in
current and near-future experiments.
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