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Conversion of twistedness from light to atoms
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We develop a simple model and propose a scheme that allows the production of twisted atoms in free space
using the absorption of twisted photons by a bound electron. We show that in the inelastic collision of a photon
and an atom, the twisted state of the photon is transferred to the center-of-mass state, so that the projection
of the orbital momentum of the atom becomes mγ − �me. We also show that, depending on the experimental
conditions, the twistedness of the photon is either transferred to the atomic center-of-mass quantum state or
modifies the selection rule for the bound electron transition. The proposed scheme is general and enables complex
shaping of the atomic wavefront.
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Introduction. Structured waves with a nonzero topological
charge (TC) are actively studied in many modern fields of
physics. Ranging from acoustics [1–3], elastic waves [4,5],
and hydrodynamics [6] to quantum optics [7,8], high-energy
physics [9,10], and atomic physics [11–15], this topic attracts
more and more researchers and is proven to be very fruitful.

The concept of a wave carrying a TC or possessing a dis-
location on the wavefront was introduced and studied by Nye
and Berry back in 1974 [16] and gave rise to a wide modern
field of singular optics [7,8,17,18]. The next breakthrough in
this field is connected to the simple but nontrivial discovery
that elementary particles can also carry a TC [19–21] (due
to the principle of wave-particle duality). Such particles are
usually called twisted particles, since the de Broglie wave-
front has a helical twist. The TC of twisted particles can be
observed as an increase in the projection of the total angular
momentum (TAM) on the propagation axis due to the nonzero
value of the intrinsic orbital angular momentum (OAM) even
in free space. For example, in the case of free twisted elec-
trons, the TAM projection can exceed the commonly accepted
value of 1/2 by many times [20,21], which is experimentally
confirmed [22–24]. More details on recent developments can
be found in the following reviews [10,21,25] and road maps
[26,27].

The twisted wave concept extends even further and ap-
plies to more complex quantum systems such as atoms and
molecules [28,29]. For example, coherent atomic beams can
experience quantum interference in a computer-generated
hologram [30,31] and acquire a TC. This idea [31] has been
proved in experiment just recently [32].

Once the twisted state framework was extended to complex
(composite) quantum systems, several fundamental questions
immediately appeared. In what sense is a complex system
twisted? Is this twist redistributed among the internal de-
grees of freedom in the process that induces such a state?
A straightforward answer to the first question is to attribute
the twist to the center of mass of the system, which seems
natural from the perspective of the density matrix formalism.
The second question is less obvious, and the answer strongly
depends on the experimental conditions. If one assumes that

the center of mass of the system cannot move and cannot
acquire any motion properties such as momentum and angular
momentum, as well as cannot change its energy, then the
twistedness can only be accepted by the part that interacts
with the twisted species. For example, if a twisted photon is
absorbed by a bound electron in a trapped atom, the selection
rules are modified [11–14,33–37]. This striking discovery was
experimentally confirmed [38,39]. The latest investigations
[40,41] show that the modification of the selection rule is not
always the case, and once the restriction on the motion of the
center of mass is removed, the TC that modifies the TAM of
the incoming photon can be shared between the center of mass
and the excited electron.

In this Letter, extending this observation, we develop a
simple model and propose a scheme that allows the production
of twisted atoms and atoms with even more complex structure
of the wave function in free space by means of absorption of
strucutred photons by a bound electron.

Similar studies have been performed for twisted light in
the dipole and quadruple approximation in Refs. [42–47]. In
contrast to the previous results, we explicitly show that it is not
only the TAM of the photon that is transferred to the center of
mass, but a quantum state, i.e., the transverse structure of the
photon is imprinted on the center of mass, allowing complex
shaping of the atomic wavefront.

Theoretical formulation. To properly describe a twisted
atom, we begin with the Schrödinger equation in an inertial
coordinate system. The nonrelativistic Hamiltonian of a nu-
cleus with charge number Z and nuclear mass M located at
rn and an electron of mass m located at re interacting with
quantized electromagnetic potential takes the following form:

Ĥ = [p̂e − eÂ(t, re)]2

2m
+ V (|rn − re|)

+ [p̂n + eZÂ(t, rn)]2

2M
, (1)

where V is the electron-nucleus interaction potential and
Â(t, r) is the (transverse) vector potential of the quantized
electromagnetic fields. To simplify the solution, we employ
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the well-known transformation to the center-of-mass (R) and
relative (r) coordinates [48]:

R = rem + rnM

m + M
and r = re − rn. (2)

The momenta transform as follows:

P̂ = p̂e + p̂n and p̂ = p̂e − m

m + M
(p̂e + p̂n). (3)

Substituting the above equations into Eq. (1) and keeping only
the lowest order in m/M, we get

Ĥ = Ĥ0 + Ĥi + O
[ m

M

]
(4)

with the unperturbed Hamiltonian Ĥ0,

Ĥ0 = P̂2

2M
+ p̂2

2m
+ V (r), (5)

and the interaction part Ĥi,

Ĥi = eZ

M
P̂ · Â(t, R) − e

M
P̂ · Â(t, R + r) − e

m
p̂ · Â(t, R + r).

(6)

Here, we keep only the terms linear in Â, since we consider
the one-photon process of atomic photoionization. Due to the
separation of variables, the eigenfunctions of the zero-order
Hamiltonian are now easy to find:

Ĥ0�(t, R)φ(t, r) = (E + ε)�(t, R)φ(t, r), (7)

where � and φ are the wave functions of the freely propagat-
ing center of mass and the bound electron, respectively, with
the corresponding eigenvalues E and ε.

Absorption of the photon. We now consider the process of
photoabsorption by an atom,

A(Pa, εa) + f → B(Pb, εb), (8)

where the initial(final) state of the atom A(B) is described by
the momentum of the center of mass Pa(Pb) and by the energy
of the bound electron εa(εb), and f indicates the quantum
numbers of the photon. The corresponding S-matrix element
reads [49]

Sba ≡ 〈Pb, εb|S|Pa, εa, f 〉

= −i
∫ ∞

−∞
dt

∫
d3R d3r�∗

Pb
(t, R)φ∗

b (t, r)〈0|Ĥi| f 〉

× �Pa (t, R)φa(t, r), (9)

where �Pa and �Pb are the plane-wave solutions of the equa-
tion of motion of the center of mass

�Pa (t, R) = exp[−i(Eat − Pa · R)] (10)

with Ea = P2
a /(2M ). Expanding the quantized electromag-

netic potential in terms of creation and annihilation operators,
we obtain

〈0|Ĥi| f 〉 = eZ

M
P̂ · A f (t, R) − e

M
P̂ · A f (t, R + r)

− e

m
p̂ · A f (t, R + r), (11)

where A f is the photon wave function, A f (t, r) =
exp(−iωt )A f (r), and ω is the photon energy. Here, one

FIG. 1. Schematics of the momentum vector for different cases.
(a) General plane-wave case; (b) a twisted photon and a plane-wave
center of mass; (c) twisted final center of mass.

can neglect the contributions of the first and the second terms
in Eq. (11), since in the long-wavelength approximation, they
correspond to the photon absorption by the center of mass
[e(Z − 1)/M]P̂ · A f (R) without the change in the electron
configuration. Further, higher-multipole contributions of
the second term should be considered together with the
relativistic correction [50,51]. Thus, we omit the terms with
P, and the S matrix takes the form

Sba = 2π iδ(Ea + εa + ω − Eb − εb)
∫

d3R d3r

× �∗
Pb

(R)φ∗
b (r)

e

m
p̂ · A f (R + r)�Pa (R)φa(r). (12)

Final state of the center of mass. We approach the main
question of the paper: which state does the center of mass
evolve to after the photoabsorption? According to the formal-
ism of the S, the final state can be found as [49]

|out〉 =
∑

α

|α〉〈α|Ŝ|in〉, (13)

where the summation is performed over the entire Hilbert
space of final states α. For convenience purposes, we use the
plane-wave basis set. Thus, the final state of the center of mass
�b(t, R) is

�b(t, R) =
∫

�Pb (t, R)Sba
d3Pb

(2π )3
. (14)

To proceed further, one has to specify the state of the absorbed
photon.

Plane-wave photon. When the absorbed photon is de-
scribed by a plane wave with the wave vector k and
polarization vector εk�, the coordinate part of the photon wave
function reads

A f (R + r) ≡ Ak�(R + r) = εk�√
2ω

exp[ik · (R + r)]. (15)

Substituting (15) into Eq. (12), we arrive at

SPW
ba = (2π )3δ(Ea + εa + ω − Eb − εb)

× δ(Pa + k − Pb)Mmbma (θk, ϕk ), (16)

with the electronic transition matrix element Mmbma (θk, ϕk )
defined as

Mmbma (θk, ϕk ) = 2π i√
2ω

e

m

∫
d3r φ∗

nblbmb
(r)

× exp(ik · r)εk� · p̂ φnalama (r), (17)

where na, la, ma (nb, lb, mb) are the quantum numbers of the
initial (final) state of the bound electron and (θk, ϕk ) are the
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polar and azimuthal components of the wave vector k, shown
in Fig. 1(a). Using Eq. (14), we obtain

�PW
b (t, R) = exp[−iEbt + i(Pa + k) · R]

× δ(Ea + εa + ω − Eb − εb)Mmbma (θk, ϕk ).

(18)

Thus, the final state of the center of mass after the ab-
sorption of the plane-wave photon is a plane wave with
a well-defined energy Eb = (Pa + k)2/(2M ) and momen-
tum Pb = Pa + k. The δ function fixes the photon energy
by the resonance condition Ea + εa + ω − Eb − εb = 0, and
Mmbma (θk, ϕk ) characterizes the amplitude of the process.

Twisted-wave photon. Next, we consider the interaction of
an atom with twisted radiation. We propose a collinear sce-
nario: the z axis (quantization axis) is chosen along the initial
center-of-mass momentum Pa = (0, 0, Pz,a), and the twisted
photon wave packet propagates along the z axis toward the
atom, see Fig. 3(b). We note that nonzero impact parameters
and noncollinear scenarios do not, in principle, affect the
concept. We provide this analysis in the Supplemental Ma-
terial [52], but retain a simplified model.

In the collinear case, the wave function of the twisted
photon Akzκmγ � can be written as a superposition of the plane
waves in the following form [53,54]:

Akzκmγ �(R + r) =
∫

εk�eik·(R+r)aκ,mγ
(k⊥)

d2k⊥
(2π )2

(19)

with the amplitude

aκ,mγ
(k⊥) = (−i)mγ eimγ ϕk

√
2π

k⊥
δ(k⊥ − κ ). (20)

The following quantum numbers are well defined for the
twisted photon: kz is the longitudinal momentum, κ is the ab-
solute value of the transverse momentum, mγ is the projection
of the TAM on the propagation axis, and � is the photon he-
licity. One can also define the opening angle θk as θk = κ/kz.
By substituting Eq. (19) into Eq. (12) and integrating plane
waves, we arrive at

STW
ba = (2π )3δ(Ea + εa + ω − Eb − εb)δ(Pz,a − kz − Pz,b)

×
∫

δ(k⊥ − P⊥,b)aκ,mγ
(k⊥)Mmbma (θk, φk )

d2k⊥
(2π )2

.

(21)

We note the transverse δ function and immediately conclude
that the center of mass acquires the perpendicular momentum
of the photon. To investigate the phase, we have to identify
the dependence of the electronic transition matrix element
Mmbma (θk, ϕk ) on the azimuthal angle ϕk . This can be done
with the help of Wigner D functions, as was demonstrated in
Ref. [35]. The electron wave function can be rotated to the
quantization axis along k, by two Euler angles θk around the
y axis and an angle φk around the z axis, as follows [55]:

φnlm(r) =
∑

m′
Dl∗

mm′ (ϕk, θk, 0)φnlm′ (r′), (22)

where Dl
mm′ (ϕk, θk, 0) = e−imϕk dl

mm′ (θk ) is the Wigner D func-
tion. The electronic transition matrix element can be then

FIG. 2. Normalized amplitude of the process MN
mbma

=
M̃mbma (θk )/M̃10(0) as a function of the photon opening angle θk for
the case of � = 1, ma = 0, and mb = 1, solid red line; for mb = 0,
dot-dashed black line; and for mb = −1, dashed blue line. The gray
area highlights the range of θk ∈ [0, π/10], where the transition with
mb = 1 is dominant.

written as

Mmbma (θk, ϕk ) =
∑
m′

am′
b

ei(ma−mb)ϕk dlb
mbm′

b
(θk )dla

mam′
a
(θk )

× Mm′
bm′

a
(0, 0), (23)

with the collinear matrix element

Mm′
bm′

a
(0, 0) = 2π i√

2ω

e

m

∫
d3r′ φ∗

nblbm′
b
(r′)

× exp(ikz′) p̂� φnalam′
a
(r′), (24)

where p� = −i∇� is the cyclic (� = ±1) projection of the
momentum operator. Substituting Eq. (23) into Eq. (21) and
then into Eq. (14), we get

�TW
b (t, R) = exp[−iEbt + i(Pz,a − kz )z]

×
∫

eiP⊥,b·Raκ,ma+mγ −mb (P⊥,b)
d2P⊥,b

(2π )2

× δ(Ea + εa + ω − Eb − εb)M̃mbma (θk ) (25)

with Eb = [(Pz,a − kz )2 + κ2]/(2M ),

aκ,ma+mγ −mb (P⊥,b) = (−i)ma+mγ −mbei(ma+mγ −mb)ϕP⊥,b

×
√

2π

P⊥,b
δ(P⊥,b − κ ) (26)

and

M̃mbma (θk ) = ima−mb
∑
m′

am′
b

dlb
mbm′

b
(θk )dla

mam′
a
(θk )Mm′

bm′
a
(0, 0).

(27)

Equation (25) represents the main result of the paper. The first
and second lines characterize the properties of the final state of
the center of mass, the δ function ensures the resonance con-
dition, and M̃mbma (θk ) quantifies the amplitude of the process.
It is easy to see that the wave function �TW

b is the eigenstate
of the squared momentum operator

P̂2�TW
b (t, R) = [(Pa,z − kz )2 + κ2]�TW

b (t, R) (28)
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and the longitudinal momentum operator

P̂z�
TW
b (t, R) = (Pa,z − kz )�TW

b (t, R). (29)

The transverse integral in Eq. (25) can be evaluated as [12]∫
eiP⊥,b·Raκ,ma+mγ −mb (P⊥,b)

d2P⊥,b

(2π )2

=
√

κ

2π
Jma+mγ −mb (κR⊥)ei(ma+mγ −mb)φR . (30)

From the expression above, it becomes clear that �TW
b is also

an eigenfunction of the operator L̂z,

L̂z�
TW
b (t, R) = (ma + mγ − mb)�TW

b (t, R), (31)

and, consequently, has a defined OAM projection on the
z axis.

Thus, we explicitly demonstrate that the absorption of
twisted light converts an atom to a twisted state, see
Fig. 1(c). Its opening angle θPb is equal to the ratio of the
transversal momentum to the longitudinal momentum, θPb =
arctan[κ/(Pa,z − kz )]. At the same time, the photon’s TAM
projection is shared by the electron, and the center of mass,
i.e., (mb − ma), goes to the bound electron, while the rest,
mγ − mb + ma, goes to the center of mass.

The amplitude of the process M̃mbma (θk ) does not depend
on the photon’s TAM projection and, therefore, the twist-
edness of the photon does not change the atomic selection
rules. Similar to the ordinary plane-wave case, the selection
rules are determined by the initial and final electronic states,
which define the allowed multipoles in the photon wave func-
tion expansion. To illustrate this observation, we numerically
evaluate the amplitude M̃mbma (θk ) for a hydrogen-like atom
excited from its ground state 1s (ma = 0) to the 2p (mb =
0,±1) state as a function of angle θk . The results are presented
in Fig. 2.

In Fig. 2, we show that for θk → 0 and for � = 1, the
only nonvanishing amplitude is M̃10(θk ), as expected from
the common selection rule. When the photon opening angle
increases, the amplitudes with mb = 0 and mb = −1 start to
contribute as well. This means that the final state of center
of mass becomes a mixture of twisted states with TAM pro-
jections mγ − 1, mγ , and mγ + 1. However, for large mγ , we
can neglect the unity and note that the center of mass is a
twisted state with an almost defined TAM projection (with a
small dispersion of TAM projection). Moreover, as one can
see from Fig. 2, for relatively small photon opening angles,
i.e., θk � π/10, the dominant channel is mb = 1. The latter
ensures that the center-of-mass TAM projection is equal to
mγ − 1 for the considered case.

Another idea that can be implemented experimentally is to
place an atom in a constant magnetic field. In this case, the
Zeeman sublevels will be energetically resolved. Then, one
can choose the photon energy equal to the transition between
the ground electron state and the magnetic sublevel mb. In
this scenario, the final state of the center of mass will be a
pure twisted state with a TAM projection of mγ + ma − mb, as
other excitation channels are forbidden. The possible experi-
mental scheme is presented in Fig. 3: an atomic (ion) beam

laser beam

solenoid

twisted atoms

plane wave atoms

B

B

FIG. 3. Experimental scheme for conversion of TAM from pho-
ton to atom in a magnetic field of a solenoid. Due to the Zeeman
splitting, the ground state (S0 state) of an atom can be selectively ex-
cited into P1 state with projection +1. At the output, the atomic beam
(center-of-mass state) gains TAM projection mγ − 1 and evolves to
a twisted state.

passes through a solenoid, where it intersects with the twisted
laser beam.

Limit of infinite mass. It is instructive to consider the limit
of M → ∞. In this case, we assume that both Pa and Pb are
much larger than k, and the center of mass does not change its
momentum Pb = Pb. In turn, it means that P⊥,b = 0, and one
can easily perform the integration over ϕP⊥,b in Eq. (25). The
final state of the center of mass in the limit of infinite mass
reads

�TW
b (t, R)

∣∣
M→∞ ∝ exp[−iEat + iPz,az]M̃mbma (θk )

× δmγ ,mb−maδ(εa + ω − εb). (32)

Evidently, the Kronecker δ symbol ensures that mγ = mb −
ma, meaning that the twisted light with TAM projection mγ

can excite only the transitions with �m = mγ . This modified
selection rule was earlier obtained in various theoretical works
[13,34–36,39] and confirmed in experiments with photoab-
sorption of twisted light by an ion in the Paul trap [14,38].
In the measurement scheme, the condition M → ∞ was real-
ized by the trap potential, where the motion of the center of
mass is quantized to vibration levels. Once the ion is cooled
to the lowest vibration level, only resonant excitation of the
electronic degree of freedom is possible, as the transfer of
the photon’s energy and TAM to the center of mass is ener-
getically forbidden. In a followup experiment [40], however,
Stopp et al. demonstrated that when excitation of the sideband
structure of the ion motion is allowed, the photon’s TAM can
be shared between the bound electron and the center of mass,
which has also been described theoretically recently [41].

Conclusion. We have considered the interaction of twisted
light with a composite system within the one-electron atom
(ion) model. The presented formulation can be easily ex-
tended to a many-electron system for investigation of more
complex interactions. We have shown how the TAM of a
photon can be redistributed between the center-of-mass and
the bound-electron degrees of freedom, in full agreement with
the previous studies [42–47]. We have revealed that for a
collinear scenario, the structure of the photon’s wave function
as well as TAM is completely transferred to the atom, and
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the atomic wave function becomes twisted. Since the cross
section of such a resonance process is rather large, it can be
used to produce twisted atomic (ionic) beams. In addition, this
technique can be used to create structured atomic beams of
various shapes, such as Hermitt-Gauss, Airy, and others. Such
shaping of the atomic wavefront can be very useful in the scat-
tering process with twisted atoms, as it could help to extract
new types of information the same way it has with the help of
twisted neutrons [56]. Moreover, collisions of ions in a vortex

state are expected to exhibit different properties compared to
usual ones, e.g., nuclear reactions could be altered.
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