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Any physical theory aims to establish the relationship between physical systems in terms of the interaction
between these systems. However, any known approach in the literature to infer this interaction is dependent on
the particular modeling of the physical systems involved. Here, we propose an alternative approach where one
does not need to model the systems involved but only assume that these systems behave according to quantum
theory. We first propose a setup to infer a particular entangling quantum interaction between two systems from
the statistics. For our purpose, we utilize the framework of Bell inequalities. We then extend this setup where an
arbitrary number of quantum systems interact via some entangling interaction.
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Introduction. In physics, the exploration of interactions
between two systems constitutes the foundational aspect of
understanding natural phenomena. Despite significant ad-
vancements in the field, the analyses conducted thus far
remain inherently model dependent. A notable example of
this lies in quantum field theories, where one hypothesizes
different fields to explain experimental observations. While
these models have proven immensely powerful in explaining
a wide array of physical phenomena, their reliance on specific
theoretical constructs underscores the necessity for continued
refinement and exploration. Furthermore, these models are
highly dependent on the parameters and the assumptions made
on the experimental setup.

Recently, the idea of device-independent (DI) certification
of quantum states and measurements has gained a lot of
interest as they allow one to certify the properties of an un-
known quantum device by only observing the statistical data it
generates and making minimal assumptions about the device.
The essential resource for any DI scheme is Bell nonlocality
[1–3]. For instance, any violation of a Bell inequality is a DI
certification of the presence of entanglement inside the device.

The strongest form of DI certification is termed self-
testing [4,5], enabling near-complete characterization of the
underlying quantum state and its associated measurements by
only assuming that the devices behave according to quan-
tum theory. Consequently, a wide range of schemes has been
proposed to self-test pure entangled quantum states and pro-
jective quantum measurements (see, e.g., Refs. [6–20]) as
well as mixed entangled states [20,21] and nonprojective mea-
surements [20,22]. Furthermore, schemes to self-test single
unitaries [23] and the controlled-NOT gate have been proposed
in Ref. [24]. Despite this progress, no scheme has been pro-
posed that can be used to certify the interaction between two
unknown systems.

Inspired by self-testing, in this Letter, we propose a
model-independent approach to infer the quantum interaction
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between two systems from the statistics generated in the ex-
periment. We do not delve into the physical considerations
of the experimental setup but rather focus on the operational
nature of the scheme, that is, we do not care about the degree
of freedom in which the interaction between the systems takes
place. However, the concerned degree of freedom is the one
that is being measured by the detectors. We particularly focus
on entangling quantum interactions, that is, quantum interac-
tions that can generate an entangled state from a product state.

Recently, a lot of attention has been devoted to such in-
teractions as they can be a certificate to probe the quantum
nature of gravity [25,26]. Such entangling interactions have
also been explored in quantum electrodynamics, for instance,
two electrons that dynamically scatter get entangled either in
spin or momentum degrees of freedom [27–35]. Furthermore,
such entangling interactions have also been explored in the
quark-quark system [36–39] and have been recently observed
at the Large Hadron Collider [40]. We first propose a scenario
that can be used to infer that two systems are interacting via
a particular entangling quantum interaction that can generate
maximally entangled states from product ones. For our pur-
pose, we use the Bell inequalities suggested in Refs. [18,20].
Then, we generalize this result where an arbitrary number
of systems interact with each other. Again, we utilize the
Bell inequalities suggested in Ref. [20] to certify a particular
entangling quantum interaction that can create Greenberger-
Horne-Zeilinger (GHZ)-like states from product states.

Two-system interaction. Let us begin by describing the
setup to infer the entangling quantum interaction in a model-
independent way.

A source P sends particles to Alice and Bob who are
located in spatially separated laboratories. Alice and Bob can
freely choose two inputs each denoted by x1, y1 = 0, 1, re-
spectively, based on which local measurements are performed
on their particles at time t1. Furthermore, each measurement
results in two outputs denoted by a1, b1 = 0, 1 for Alice and
Bob, respectively. Then, the postmeasured particles are al-
lowed to leave their laboratories after which they interact via
some interaction I. After the interaction, the particles come
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FIG. 1. Left: Setup for model-independent inference of quantum
interaction. Particles from source P are sent to spatially separated
laboratories where Alice and Bob reside. At time t1, Alice and Bob
choose x1, y1 = 0, 1 for local measurements, yielding a1, b1 = 0, 1.
Postmeasured particles interact via I, and return to their respective
laboratories at t2. At t2, inputs x2, y2 = 0, 1 are chosen by Alice
and Bob, respectively, resulting in a2, b2 = 0, 1. Right: An example
of an entangling quantum interaction. Two electrons interacting via
dynamical scattering can get entangled either in spin or momentum
degrees of freedom.

back to Alice and Bob at time t2. Again, Alice and Bob
choose two inputs x2, y2 = 0, 1 based on which the incoming
particles are measured and result in two outputs a2, b2 = 0, 1
(see Fig. 1).

By repeating the above-described procedure, they ob-
tain two joint probability distributions often referred to as
correlations. The first one is obtained at time t1 given by
�p1 = {p(a1, b1|x1, y1, P)}, where p(a1, b1|x1, y1, P) denotes
the probability of obtaining outcomes a1, b1 given the inputs
x1, y1 given the source P. The second probability distribution
is obtained at time t2 given by

�p2,a1,b1,x1,y1 = {p(a2, b2|x2, y2, a1, b1, x1, y1, I, P)}, (1)

where p(a2, b2|x2, y2, a1, b1, x1, y1, I, P) denotes the condi-
tional probability of obtaining outcome a2, b2 at time t2 given
inputs x2, y2 when Alice and Bob at time t1 obtained a1, b1

with inputs x1, y1 and the postmeasured states interacted via
some interaction I.

Let us now describe the above-proposed scenario
(see Fig. 1) within quantum theory. The probability
p(a1, b1|x1, y1, P) is obtained via the Born rule as

p(a1, b1|x1, y1, P) = Tr
(
MA

a1|x1
⊗ MB

b1|y1
ρAB

)
, (2)

where MA
a1|x1

, MB
b1|y1

denote the measurement elements of
Alice and Bob such that these elements are positive and∑

a MA
a1|x1

= ∑
b MB

b1|y1
= 1. Here, ρAB is the quantum state

prepared by the source P. One could similarly define the above
formula (2) at time t2 where the state ρAB will be replaced
by the postinteraction states defined below in (5). It is often
helpful to express the correlations in terms of the expected
values of observables which are defined as

〈Am ⊗ Bl〉 =
1∑

a,b=0

(−1)a+b p(a, b|m, l, . . . , P). (3)

Notice that by using Eq. (2), these expectation values can be
expressed as 〈Am ⊗ Bl〉 = Tr[Am ⊗ BlρAB], where Am, Bl are

quantum operators, referred to as observables, defined via the
measurement elements as Am = MA

0|m − MA
1|m, Bl = MB

0|l −
MB

1|l for every m, l . When the measurement is projective,
then the corresponding observable is unitary. Furthermore, if
the measurements of Alice and Bob are projective and they
observe the outputs a1, b1 given the inputs x1, y1, respectively,
then the postmeasurement states are given by

ρ ′
a1,b1,x1,y1

= MA
a1|x1

⊗ MB
b1|y1

ρABMA
a1|x1

⊗ MB
b1|y1

p(a1, b1|x1, y1)
. (4)

Then, the particles interact via some Hamiltonian H (t ) for a
time δt . Consequently, the state ρ ′

a1,b1,x1,y1
at time t1 evolves

via the unitary process V (δt ) [41]. For instance, when the
Hamiltonian is time independent H (t ) ≡ H for any time t ,
then V (δt ) is given by V (δt ) = e−iHδt . Now, the states af-
ter the interaction, referred to as postinteraction states, are
given by

V (δt )ρ ′
a1,b1,x1,y1

V (δt )† = σa1,b1,x1,y1 . (5)

For simplicity, we will further represent V (δt ) ≡ V . Without
loss of generality, we consider that the unitary maps quantum
states from the Hilbert space HA(t1 ) ⊗ HB(t1 ) to a different
Hilbert space HA(t2 ) ⊗ HB(t2 ).

Model-independent inference. Inspired by the idea of self-
testing (see Ref. [42] for a review), let us introduce the idea
of model-independent inference of a quantum interaction via
statistics by referring back to the scenario shown in Fig. 1.
First, we consider that the measurements conducted by the
parties, the state prepared by the source as well as the inter-
action between the postmeasured states are unknown except
for the fact that they obey quantum theory. The only other
information that Alice and Bob have about the whole scenario
is via the observed correlations �p1, �p2,a1,b1,x1,y1 . It is worth
mentioning here that we assume that dimensions of the local
Hilbert spaces HA(ti ),HB(ti ) for i = 1, 2 is unknown but finite.

Let us then consider a reference experiment giving rise
to the same correlations �p1 when some known observables
A′

m, B′
l are performed on a known quantum state prepared by

the source |ψ ′
AB〉 ∈ HA′(t1 ) ⊗ HB′(t1 ). Then the postmeasured

states interact via some known unitary V ′, after which they
are measured using the same known observables A′

m, B′
l to

obtain �p2,a1,b1,x1,y1 . The task of model-independent inference
is to deduce from the observed �p1, �p2,a1,b1,x1,y1 that the actual
experiment is equivalent to the reference one in the follow-
ing sense: (i) The local Hilbert spaces admit the product
form HA(ti ) = HA′(ti ) ⊗ HA′′(ti ) and HB(ti ) = HB′(ti ) ⊗ HB′′(ti )
for some auxiliary Hilbert spaces HA′′(ti ) and HB′′(ti ). (ii) There
are local unitary operations Us(ti ) : Hs(ti ) → Hs′(ti ) ⊗ Hs′′(ti ) for
s = A, B and i = 1, 2 such that

(UA(t1 ) ⊗ UB(t1 ) )ρAB(UA(t1 ) ⊗ UB(t1 ) )
†

= |ψ ′〉〈ψ ′|A′(t1 )B′(t1 ) ⊗ ξA′′(t1 )B′′(t1 ), (6)

where ξA′′
i E ′′

i
acting on HA′′(ti ) ⊗ HB′′(ti ) is some auxiliary quan-

tum state, and

UA(ti ) Am(ti ) U †
A(ti )

= A′
m ⊗ 1A′′(ti ),

UB(ti ) Bl (ti ) U †
B(ti )

= B′
l ⊗ 1B′′(ti ), (7)
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where 1s′′(ti ) is the identity acting on the parties auxiliary
system and Am(ti ) = �A

i Am�A
i and Bl (ti ) = �B

i Bl�
B
i such that

�A
i ,�B

i denotes the projection of the observables Am, Bl onto
the Hilbert space HA(ti ),HB(ti ) respectively. (iii) The interac-
tion V is certified as

(UA(t2 ) ⊗ UB(t2 ) )V (UA(t1 ) ⊗ UB(t1 ) )
† = V ′ ⊗ V0, (8)

where V0 is a unitary matrix mapping HA′′(t1 ) ⊗ HB′′(t1 ) to
HA′′(t2 ) ⊗ HB′′(t2 ). For a note, if the above conditions (i) and
(ii) are met, one may say that the reference state and mea-
surements are self-tested in the actual experiment from the
observed correlations. Then if condition (iii) is met, the inter-
action between the systems is certified in a model-independent
way.

Consider now the following Bell inequalities for a1, b1 =
0, 1,

Ba1,b1 = (−1)a1〈Ã1 ⊗ B1 + (−1)b1 Ã0 ⊗ B0〉 � βC, (9)

where

Ã0 = A0 − A1√
2

, Ã1 = A0 + A1√
2

. (10)

The classical bound of the above Bell inequalities is βC = √
2

for any a1, b1. Consider now the following states,

|φa1,b1〉 = 1√
2

[|a1b1〉 + (−1)a1
∣∣a⊥

1 b⊥
1

〉]
, (11)

where a⊥
1 = 1 − a1, b⊥

1 = 1 − b1, and the following observ-
ables,

A0 = X + Z√
2

, A1 = X − Z√
2

, B0 = Z, B1 = X. (12)

As shown in Fact 1 of Sec. A of the Supplemental Material
[43], using these states (11) and observables (12), one can
attain the value Ba1,b1 = 2. This is the quantum bound βQ of
Ba1,b1 , that is, the maximal value of Ba1,b1 that can be attained
within quantum theory.

Let us now suppose that correlations �p1 achieve the quan-
tum bound of B0,0, that is, the quantum state ρAB maximally
violates the Bell inequality B0,0. Furthermore, the correlations
�p2,a1,b1,0,0 achieve the quantum bound of Ba1,b1 for each a1, b1,
that is, the postinteraction quantum states σa1,b1,0,0 maximally
violate the Bell inequalities Ba1,b1 . Along with them, one also
needs to observe that when a1 = b1 = 0 and x1 = 1, y1 = 1,
the postinteraction states σ0,0,1,1 satisfy

〈1 ⊗ B1〉 = −〈Ã0 ⊗ 1〉 = 1. (13)

Consider now the following unitary,

U =
∑

a1,b1=0,1

|φa1,b1〉〈a1b1|, (14)

where {|0〉, |1〉} are the eigenvectors of (X + Z )/
√

2. It is
straightforward to verify that if the state |φ0,0〉 (11), after
being measured by the observables (12) and obtaining out-
come a1, b1 with inputs x1 = y1 = 0, evolves via the unitary
(14), then one obtains the postinteraction state as |φa1,b1〉.
Consequently, all these states and observables satisfy the
above-mentioned statistics and thus we take them as the refer-
ence quantum states, observables, and interaction.

Let us now state the main result.
Theorem 1. Assume that the Bell inequality B0,0 (9) is max-

imally violated at t1. Furthermore, when Alice and Bob obtain
the outcome a1, b1 with inputs x1 = y1 = 0, then the Bell
inequalities Ba1,b1 (9) for any a1, b1 are maximally violated at
t2. Along with it, when Alice and Bob observe the outcomes
a1 = b1 = 0 with inputs x1 = 1, y1 = 1, then the condition
(13) is also satisfied. Then, the quantum state prepared by the
source and the observables of both parties are certified as in
(6) and (7), with the reference strategies given below Eq. (14).
Importantly, the unitary V is certified as defined in (8)

UA(t2 ) ⊗ UB(t2 ) V U †
A(t1 ) ⊗ U †

B(t1 ) = U ⊗ V0, (15)

where U is given in Eq. (14) and V0 is unitary.
The proof of the above theorem is presented in Sec. A

of the Supplemental Material [43]. Here, we provide a short
description of the proof. The proof is mainly divided into two
parts. In the first part, we self-test the state prepared by the
source and the measurements acting on the local support of
this state. This further allows one to certify the postmeasure-
ment states of the parties. We then self-test the postinteraction
states along with the measurements acting on their local sup-
ports. Both of these self-tests are based on the sum of squares
(SOS) decomposition of the Bell operator corresponding to
the inequality (9) for which we follow the techniques intro-
duced in Ref. [20]. Importantly, we do not assume any state
to be pure or measurements to be projective in our proof.
In the second part, utilizing the certified postmeasured and
postinteraction states and the condition (13), we then conclude
that the only quantum interaction that can reproduce all the
statistics has to be of the form (15).

Let us now generalize the above result to the scenario
where an arbitrary number of particles interact with each other
via some entangling quantum interaction.

N-system interaction. We begin by generalizing the sce-
nario depicted in Fig. 1. A source PN sends particles to N
Alices who are located in spatially separated laboratories.
All the parties freely choose two inputs, each denoted by
xn,1 = 0, 1 for n = 1, . . . , N based on which local measure-
ments are performed on their particles at time t1, respectively.
Furthermore, each measurement results in two outputs de-
noted by an,1 = 0, 1 for the nth Alice. Then, the postmeasured
particles are allowed to leave their laboratories after which
they interact via some interaction IN . After the interaction,
the particles come back to their respective starting labora-
tories at time t2. Again, all the parties choose two inputs
xn,2 = 0, 1 based on which the incoming particles are mea-
sured and result in two outputs an,2 = 0, 1. We further denote
xi = x1,i, . . . , xN,i and ai = a1,i, . . . , aN,i for i = 1, 2.

By repeating the above-described procedure, they obtain
two joint probability distributions or correlations. The first one
is obtained at time t1 given by �pN,1 = {p(a1|x1, PN )} where
p(a1|x1, PN ) denotes the probability of obtaining outcome a1
given the input x1 and source PN . The second probability
distribution is obtained at time t2 given by

�pN,2,a1,x1 = {p(a2|x2, a1, x1, IN , PN )}, (16)

where p(a2|x2, a1, x1, IN , PN ) denotes the conditional proba-
bility of obtaining outcome a2 at time t2 given inputs x2 when
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Alice and Bob at time t1 obtained a1 with input x1 and the
postmeasured states interacted via some interaction IN .

Within quantum theory, the probability p(a1|x1, PN ) is ob-
tained via the Born rule as

p(a1|x1, PN ) = Tr

(
N⊗

n=1

Mn
an,1|xn,1

ρN

)
, (17)

where Mn
an,1|xn,1

denote the measurement elements of nth Alice
with ρN denoting the quantum state prepared by PN . If the
measurements of all parties are projective and they observe
the output a1 given the input x1, then the postmeasurement
states are given by

ρ ′
a1,x1

=
( ⊗N

n=1 Mn
an,1|xn,1

)
ρN

(⊗N
n=1 Mn

an,1|xn,1

)
p(a1|x1, PN )

. (18)

Then, the particles interact via some unitary VN to evolve to
the postinteraction states σa1,x1 . We consider that the unitary
VN maps quantum states from the Hilbert space

⊗
n HAn(t1 ) to

some other Hilbert space
⊗

n HAn(t2 ).
Model-independent inference for N systems. One can define

the model-independent inference for N systems in the same
way as done for two systems, that is, the state, measurements,
and interaction are certified to be equivalent to the reference
strategies up to the action of local unitaries and the presence
of the junk part.

Consider now the following Bell inequalities for any a1
introduced in Ref. [20],

Ba1 = (−1)a1,1

〈
(N − 1)Ã1,1 ⊗

N⊗
n=2

An,1

+
N∑

i=2

(−1)an,1 Ã1,0 ⊗ An,0

〉
� βC, (19)

where An,1 are quantum observables defined via the measure-
ment operators of the nth party as in (3) and

Ã1,0 = A0 − A1√
2

, Ã1,1 = A0 + A1√
2

. (20)

The classical bound of the above Bell inequalities is βC =√
2(N − 1) for any a1. Consider now the following states,

|φa1〉 = 1√
2

[|a1,1 · · · aN,1〉 + (−1)a1,1
∣∣a⊥

1,1 · · · a⊥
N,1

〉]
, (21)

where a⊥
n,1 = 1 − an,1, and the following observables for n =

2, . . . , N ,

A1,0 = X + Z√
2

, A1,1 = X − Z√
2

, An,0 = Z, Bn,1 = X.

(22)
As shown in Fact 2 of Sec. B of the Supplemental Material
[43], using these states (21) and observables (22), one can
attain the quantum bound βQ = 2(N − 1) of all the Bell in-
equalities (19).

Let us now suppose that correlations �pN,1 achieves the
quantum bound of B0,...,0. Furthermore, the correlations
�pN,2,a1,0,0,1,...,1 achieve the quantum bound of Ba1 for every
a1. Along with them, suppose one also observes that when
an,1 = 0 for all n and x1,1 = x2,1 = 1, xn,1 = 0 (n = 3, . . . , N)

that the postinteraction state satisfies

−〈Ã1,0 ⊗ 1〉 = 〈1 ⊗ An,1〉 = 1, n = 2, . . . , N. (23)

Consider now the following unitary,

UN =
∑

a1=0,1

|φa1〉
〈
a1,1a2,1ax

3,1 · · · ax
N,1

∣∣, (24)

where {|0〉, |1〉} and {|0x〉, |1x〉} are the eigenvectors of (X +
Z )/

√
2 and X , respectively. It is straightforward to ver-

ify that if the state |φ0,...,0〉 (21) after being measured by
the observables (22) and obtaining outcome a1 with inputs
xn,1 = 0 evolves via the unitary (24), then one obtains the
postinteraction state as |φa1〉. Consequently, all these states
and observables satisfy the above-mentioned statistics and
thus we take them as the reference quantum states, observ-
ables, and interaction.

Let us now state the result.
Theorem 2. Assume that the Bell inequality B0,...,0 (19)

is maximally violated at t1. Furthermore, when the parties
obtain the outcome a1 with inputs x1,1 = x2,1 = 0 and xn,1 = 1
(n = 3, . . . , N), then the Bell inequalities Ba1 (19) for any a1
are maximally violated at t2. Along with it, when the parties
observe the outcomes an,1 = 0 for all n and x1,1 = x2,1 = 1,
xn,1 = 0 (n = 3, . . . , N), then the condition (23) is also satis-
fied. Then, the quantum state prepared by the source and the
observables of both parties are certified as in the straightaway
generalization of (6) and (7) to N parties, with the reference
strategies given below Eq. (24). Importantly, the unitary VN is
certified as(⊗

n

Un(t2 )

)
VN

(⊗
n

Un(t1 )

)†

= UN ⊗ Vaux, (25)

where UN is given in Eq. (24) and Vaux is unitary.
The proof of the above theorem follows similar lines as the

two-system interaction case and is presented in Sec. B of the
Supplemental Material [43].

Discussions. For completeness, let us describe the pro-
tocol to certify entangling interactions among particles. In
step one, the source P generates a state and distributes it
to all the parties. At time t1, on each of their respective
subsystems the parties perform two binary measurements and
record their outcomes. From the joint statistics, they will be
able to certify that the incoming state is a particular entangled
state along with their measurements to be projective and of
a particular form as stated above. In step two, in half the
rounds of the experiment (which are randomly chosen by
the parties) they allow the individual postmeasured states to
interact with each other and then return to their respective
laboratories. In the other half of rounds of the experiment,
which we will call checking rounds, they again measure
their postmeasured states before they interact with any other
system and ensure that they obtain the same outcome as
at time t1. This step is important as it could well be that
the measurement device might cheating by not sending the
actual postmeasured state and sending some auxiliary ones.
However, if the checking rounds are chosen randomly, the
device would not know beforehand when to cheat and thus
would be caught by the parties. Moreover, as the measurement
is certified to be projective, if the device is not cheating,
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then performing the same measurement as at time t1 in the
checking rounds will always give the same outcome. Then at
time t2, in the rounds when the postmeasured states interacted,
the parties again measure their respective subsystems and
obtain the joint statistics using that which they can evaluate
the final states after the interaction. Using the initial and final
certified state along with some additional statistics one can
then certify the interaction between the particles in a model-
independent way. For a remark, we require nondestructive
measurements in the above-described protocol which might
be experimentally challenging to implement (see Ref. [44] for
a review).

The controlled-NOT gate, which is an entangling quantum
operation, has been self-tested in Ref. [24]. However, their
scheme required not applying the gate at half the rounds of
the experiment, thus making it not applicable to certify the
interaction between two systems as one would be required
to assume a particular model of the interaction to impose it,
or put simply, one cannot switch off the interaction between
two systems without assuming the nature of the interaction.
Additionally, the scheme is not entirely device independent, as
it relies on certified measurements performed on the support
prior to the interaction. To certify any operation based on
these measurements, one must assume that the operation does
not alter the local supports. Then, the scheme of Ref. [24]

also needed two independent sources which is again an
additional assumption that cannot be verified. Here, we do not
make any such assumptions, thus making our scheme model
independent. Although our proposed scheme currently has
limited applicability, it can be considered as an alternative to
infer quantum interactions rather than the standard approach
to observe scattering amplitudes. Furthermore, if one assumes
that the interaction does not change the local supports of the
postmeasured states, then the source, instead of preparing a
maximally entangled state, can even send local white noise to
both the detectors and the scheme would still allow certifica-
tion of the interaction between the postmeasured states.

Several follow-up problems arise from our work. The first
problem would be to compute the robustness of the proposed
scheme towards experimental errors. Then, one could explore
the other classes of interaction that could be certified in a
model-independent way. Furthermore, one might extend this
approach where one could also certify time-dependent evolu-
tions.
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