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We study the dynamics of a Bose-Hubbard model coupled to an engineered environment which in the
noninteracting limit induces an effective nonreciprocal hopping as described by the Hatano-Nelson model. At
strong interactions, two bosons occupying the same site form a so-called repulsively bound pair, or doublon.
Using tensor-network simulations, we clearly identify a distinct doublon light cone and show that the doublon
inherits nonreciprocity from that of single particles. Applying the idea of reservoir engineering at the level
of doublons, we introduce a new set of dissipators and we analytically show that then the doublon dynamics
are governed by the Hatano-Nelson model. This brings about a two-particle non-Hermitian skin effect and
nonreciprocal doublon motion. Combining features of the two models we study, we show that single particles
and doublons can be made to spread with opposite directionality, opening intriguing possibilities for the study
of dynamics in interacting nonreciprocal models.
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Introduction. Nonreciprocal systems appear in physics
in many different forms (see, e.g., Ref. [1] and references
therein). They have recently received significant attention
for the interesting phenomena they host, often lacking a
counterpart in reciprocal systems. These range from the
dramatic sensitivity of the spectral properties on the bound-
ary conditions, to novel topological features in the complex
spectrum [2–5]. A paramount example is the celebrated
Hatano-Nelson model [6] where the presence of nonreciprocal
hopping leads to an exponential localization of all left and
right eigenstates on the opposite boundaries of an open one-
dimensional chain, the so-called non-Hermitian skin effect
(NHSE) [7–11].

One physical implementation of nonreciprocity is based on
reservoir engineering [12,13] where the system is coupled to a
nontrivial environment resulting in an effective nonreciprocal
dynamics. These strategies are widely used in the noninter-
acting case [14–23] where the equations of motion close and
one can analytically obtain the non-Hermitian Hamiltonian
giving rise to nonreciprocity. Additionally, reservoir engineer-
ing and nonreciprocity were recently realized in cold atom
experiments [24–26].

The rich landscape of novel phenomena emerging in non-
reciprocal systems has further stimulated the question of the
interplay of nonreciprocity and interactions. Most of the liter-
ature on non-Hermitian interacting systems focuses on the no-
click limit of engineered open many-body systems [27–49].
This approximation, however, completely neglects the effect
of jump operators and describes a single trajectory (the one
where no photon is detected, hence the name) out of the
exponentially many possibilities. In certain particular cases,
however, a formal relation between the eigensystem of the
non-Hermitian Hamiltonian and the eigensystem of the Li-
ouvillian can be established [50]. A different possible step
towards interacting systems considers the interaction on the
mean-field level, yielding tractability at the expenses of a
correct quantification of quantum fluctuations [51].

To correctly take fluctuations into account, one can study
the system at the level of the many-body Lindblad mas-
ter equation [15,52–55]. While in this framework analytical
and exact numerical methods have limited application, tensor
network techniques allow the study of dynamics of large inter-
acting systems. The use of these methods is well established
in the context of open quantum dynamics [56–59], and it was
recently applied to the study of universality in a nonreciprocal
spin-1/2 XXZ chain [60].

Here, we study the dynamics of a Bose-Hubbard model
in the presence of engineered dissipation. Inspired by the
so-called repulsively bound pairs appearing in isolated optical
lattices at strong interactions [61], we focus on the dynam-
ics of a single doublon, i.e., a composite particle made of
two bosons occupying the same site. Focusing on dynamics,
our work unveils interesting features beyond the steady state
which in the strong nonreciprocity regime is only weakly
affected by the presence of interactions [60]. Our numeri-
cal simulations show that both single particles and doublons
can move nonreciprocally, although with different veloci-
ties. The directional doublon light cone we identify is a
clear indication of emergent nonreciprocity in the interacting
regime.

Applying the idea of reservoir engineering [13] to the ef-
fective strong-coupling doublon Hamiltonian, we introduce
a new set of dissipators and show that the resulting equa-
tions of motion within the single-doublon sector reproduce the
Hatano-Nelson model. Our model is then characterized by an
interaction-induced NHSE, where single-particle dynamics
are reciprocal and only doublons feature directional motion.
Their different behavior opens several intriguing possibilities
for the study of dynamics, as we show by briefly exploring
the case of opposite directionality for doublons and single
particles.

Model. We study bosons in a dissipative cavity array
with on-site Kerr nonlinearity of strength U . The coher-
ent part of the dynamics is encoded in the Bose-Hubbard
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FIG. 1. (a) Neighboring cavities are coupled with amplitude J
and bosons on the same site interact via the Kerr nonlinearity with
strength U . In addition, the one-particle nearest-neighbor dissipation
�1 couples neighboring cavities [L̂ j in Eq. (2)], giving rise to nonre-
ciprocal hopping JR(L). Both single-particle and doublon dynamics
are directional, although doublons propagate more slowly and decay
faster. (b) As in the strong-coupling limit U � J doublons are stable
excitations, we introduce a second two-particle dissipator with rate
�2 [Eq. (6)]. In this second model, doublons acquire directional
dynamics with nonreciprocal hopping JR(L), whereas single particles
spread reciprocally.

Hamiltonian

Ĥ = J
L−1∑

j=1

(â†
j â j+1 + H.c.) +

L∑

j=1

U (â†
j )

2â2
j , (1)

where J is the hopping amplitude between neighboring cav-
ities and â†

j (â j) creates (annihilates) a boson on site j. The
action of the environment is represented by a set of Lindblad
operators L̂ j which introduce a nearest-neighbor dissipation
L̂ j = √

�1(â j + eıθ1 â j+1). The full quantum dynamics of the
system are then described by the many-body Lindblad master
equation

ρ̇ = −ı[Ĥ , ρ] +
L−1∑

j=1

L̂ jρL̂†
j − 1

2
{L̂†

j L̂ j, ρ}, (2)

as depicted in Fig. 1(a). This model was recently introduced
in Refs. [46,55] studying the effective non-Hermitian Hamil-
tonian arising in its fully nonreciprocal no-click limit.

Previous studies in the noninteracting case, U = 0, have
shown how the dynamics of the first moments 〈â j〉 [17]
and the second moments 〈â†

j âi〉 [19] are described by
a non-Hermitian dynamical matrix corresponding to the
Hatano-Nelson model [6]. Consequences of this effective non-
reciprocity include directional exponential amplification of
the cavity amplitude [16–18] and nonreciprocal dynamics of
the boson densities [20].

Nonreciprocity and dynamics. To avoid the exponential
growth of the Hilbert space (D ≈ 106 in the case we study),
we use tensor-network methods which allow to obtain ac-
curate results at a cost scaling only linearly with system
size. In particular, we use the well-known time-evolving
block decimation (TEBD) algorithm [62] adapted to the

description of Lindblad dynamics, as detailed in the Supple-
mental Material [63].

Throughout this Letter, we study the dynamics of the
single-doublon initial state

|ψ0〉 = 1√
2

(â†
L/2)2|vac〉, (3)

which in the isolated scenario can form a repulsively bound
pair [61] when strong interactions make single-particle
hopping energetically unfavorable. The behavior of this
composite particle at U � J is accurately captured by the fol-
lowing effective Hamiltonian [64,65] which can be obtained
through a Schrieffer-Wolff transformation [66,67],

Ĥeff = 1

2

J2

U

L−1∑

j=1

[(â†
j )

2(â j+1)2 + H.c.], (4)

where doublons move coherently with a reduced hopping
amplitude. The presence of engineered dissipation makes
the dynamics richer as it enables nonreciprocal hopping in
the noninteracting case JR(L) = J − ıe−(+)ıθ1�1/2, tuning the
model from reciprocal at �1 = 0 to fully nonreciprocal at
�1 = 2J (for θ1 = ±π/2) [13].

Considering second-order processes in the equations of
motion of doublon states, one can show that doublons in-
herit nonreciprocity and move with an effective nonreciprocal
hopping amplitude J (d )

R(L) ≈ J 2
R(L)/(U + ı�1). We confirm this

prediction numerically in Fig. 2.
At strong nonreciprocity �1 = 2J and θ1 = −π/2

[Figs. 2(a) and 2(b)], particles move only to the right
following the single-particle light cone x(t ) ∝ Jt , irrespective
of interaction strength U . This is a consequence of the large
dissipation rate �1, which quickly depletes the system thus
making the effect of interactions weak [60].

In Figs. 2(c)–2(f) we decrease the dissipation rate to �1 =
0.1J , hence the degree of nonreciprocity is expected to be
weaker. Nevertheless, dynamics still show clear signatures
of nonreciprocity in both the interacting and noninteract-
ing cases. Importantly, the presence of interactions leads to
the emergence of a second light cone x̃(t ) ∝ (J2/U )t [black
dashed line in Figs. 2(e) and 2(f)]. This doublon light cone is
related, to leading order, to the effective nonreciprocal dou-
blon hopping amplitude, and it clearly highlights the slower
doublon dynamics due to strong nonlinearity. We further ob-
serve a slightly larger population on the right branch of the
doublon light cone, suggesting the extension of nonreciprocity
also to the interacting level. In passing, comparing Figs. 2(c)
and 2(e) we notice that the interference pattern at long times
Jt � L/2 is washed out in the interacting case, reminiscent
of many-body dephasing in isolated systems, where dynam-
ics relax to the thermal average due to interactions and
ergodicity [68–71].

To obtain a clearer picture of the doublon dynamics and
distinguish it from that of single particles it is useful to define
a doublon density

n̂d
j = 1

2 (â†
j )

2â2
j , (5)

which is identically zero for all single-particle states and in the
single-doublon sector corresponds to the doublon population
on site j. In Figs. 2(d) and 2(f) we show the dynamics of
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FIG. 2. (a) At �1 = 2J , dynamics are restricted to the right half of the system and follow the single-particle light cone (white dashed line)
for all U (U = 0 is shown here). (b) Remarkably, the full nonreciprocity expected in the noninteracting case is extended to U �= 0 substantially
unchanged (red and green lines), as shown by the snapshots at different times. (c)–(f) At smaller �1 = 0.1J the system is effectively less
nonreciprocal, the left half of the system becomes slightly populated, and novel interaction-driven phenomena emerge. (e), (f) In particular, at
U = 2.5J we observe the appearance of a light cone corresponding to stable doublons moving nonreciprocally (black dashed line) and distinct
from the single-particle light cone observed in (c) and (d). This feature is more evident in the doublon density dynamics for U = 2.5J (f). The
single-particle light cone is highly suppressed, and the density propagation follows the black dashed line corresponding to J2/U . These data
were obtained for a system of L = 60 sites, using an vectorized matrix product operator (MPO) of bond dimension χ = 128 and θ1 = −π/2.

〈n̂d
j 〉 for a small dissipation rate �1 = 0.1J and for U = 0 and

U = 2.5J , respectively. In the noninteracting case, the dou-
blon density follows the single-particle light cone, indicating
the absence of coherent doublon motion. On the other hand, at
U = 2.5J , the single-particle light cone is strongly suppressed
and the dominant contribution comes from the slower and
nonreciprocal doublon motion. Hence, the interacting system
inherits the nonreciprocity characterizing single-particle dy-
namics. The emergence of metastable nonreciprocal doublons
is a genuine consequence of interactions, clearly distinguish-
able from the single-particle case, and is one of the main
results of this Letter.

Stabilizing doublon directional motion. Inspired by the
structure of the effective Hamiltonian Eq. (4), we introduce
a different set of dissipators which stabilize doublon nonre-
ciprocity. Following the approach of Ref. [13], we replace
the one-particle nearest-neighbor dissipator with its doublon
version

�2D
[
â2

j + eıθ2 â2
j+1

]
, (6)

where only pairs of bosons (i.e., doublons) are lost to the
environment, as sketched in Fig. 1(b).

Using the effective Hamiltonian (4) and the dissipator
above we obtain the equation of motion for the doublon
amplitudes 〈â2

�〉 and correlations 〈(â†
� )2â2

m〉 [63]. In the single-
doublon sector these simplify and can be written in terms of a
non-Hermitian dynamical matrix H acting nontrivially on the
single-doublon space only,

ı
∂
〈
(â†

� )2â2
m

〉

∂t
=

∑

j

Hm, j
〈
(â†

� )2â2
j

〉 − H†
j,�

〈
(â†

j )
2â2

m

〉
, (7)

with H the Hatano-Nelson matrix

H =
∑

j

JR| j + 1〉2〈 j|2 + JL| j − 1〉2〈 j|2 − 2ı�2| j〉2〈 j|2.

(8)
Similarly to the noninteracting case [17,19], the interfer-
ence of the coherent nearest-neighbor coupling with the

doublon dissipation causes the emergence of different left and
right hopping amplitudes JL = J2

U − ıeıθ2�2 and JR = J2

U −
ıe−ıθ2�2. The dissipation rate required for full nonreciprocity
is then �2 = J2/U and is of the same order of the doublon
motion timescale. This results in more stable nonreciprocal
doublon dynamics, as compared to the one-particle dissipa-
tor case where full nonreciprocity is achieved at �1 = 2J �
J2/U .

Remarkably, the non-Hermitian skin effect arising from the
Hatano-Nelson matrix (8) affects only doublon states | j〉2 =
|0 . . . 2 j . . . 0〉. Binding particles together, interactions have a
dramatic effect and enable the exponential localization of dou-
blons at the boundaries of the system, whereas single particles
behave reciprocally. The nonreciprocity and non-Hermitian
skin effect resulting from the quadratic dissipator (6) com-
bined with the interaction-induced doublon stability represent
the second central result of our work.

In our numerical analysis, we go beyond the approximate
picture of the effective Hamiltonian and simulate the full
dynamics of the system using the interacting Hamiltonian (1)
and the quadratic dissipator (6). As we want to separate
single-particle from doublon contributions to the dynamics,
the density n̂ j = â†

j â j is not a convenient quantity, as it is
affected by both. We then define the single-particle population
P̂(1)

j = n̂ j − 2n̂d
j which accounts for the weight of single-

particle states, when the total number of bosons is N = 2.
In Fig. 3(a), we show the single-particle and doublon pro-

files at time JT = 15 in the noninteracting case. Due to the
absence of stable doublons at U = 0, dynamics are reciprocal
and particles spread in both directions equally, irrespective of
the value of �2.

A dramatic difference is observed when U � J
[Figs. 3(b)–3(e)], where the doublon forms a stable excitation
and the quadratic dissipative coupling (6) leads to strong
nonreciprocity. In particular, at �2 = J2/U and θ2 = −π/2,
where JL = 0, the doublon density propagates exclusively
towards the right boundary as predicted by the equations of
motion (7). As a consequence of the finite interaction U ,
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FIG. 3. (a) In the absence of interactions, U = 0, dynamics are reciprocal, irrespective of dissipation rate �2. Both single-particle (solid
lines) and doublon (dashed lines) population profiles at time JT = 15 are equally spread in the two halves of the system. As expected, the
value of �2 affects significantly the doublon density only. (b)–(e) As interactions are turned on, U � J , the system shows clear signatures of
directional motion. (c), (e) Due to the destructive interference induced by the quadratic dissipator, a highly nonreciprocal doublon light cone
x̃ ∝ J2/U (black dashed line) appears, affecting the doublon density. (b), (d) The single-particle population, however, spreads reciprocally and
is only slightly affected by the doublon light cone due to its decay into single-particle states. (e), (d) As the interaction strength is increased,
the nonreciprocal doublon spreading becomes slower, in agreement with the smaller effective hopping amplitude. Additionally, we notice a
smaller population of single-particle states due to the increased stability of the doublon. These data were obtained for a system of L = 60 sites,
using an MPDO of bond dimension χ = 128 and θ2 = −π/2.

single-particle hopping processes are allowed, and the initial
doublon can decay into single-particle states. These are free
to propagate in both directions, as they are not affected by the
dissipator (6).

Opposite directionality. Combining the one-particle and
doublon nearest-neighbor dissipators as in Fig. 4(a), one can
separately control doublons and single particles. In Fig. 4, we

FIG. 4. (a) Combining the one- and two-particle nearest-
neighbor dissipators gives rise to fascinating effects on particle
dynamics. (b) At θ1 = −π/2 and �1 = 0.1J the single-particle
density is slightly nonreciprocal towards the right. (c) However,
choosing θ2 = +π/2 and �2 = J2/U leads to almost full nonre-
ciprocity of doublons to the left. These data were obtained for a
system of L = 60 sites, using an MPDO of bond dimension χ = 128
and U = 2J .

show dynamics of both single-particle population [Fig. 4(b)]
and doublon density [Fig. 4(c)]. Choosing θ1 = −θ2 generates
opposite interference of the nearest-neighbor hopping with
the two dissipators and results in the different directionality
of single particles [Fig. 4(b)] and doublons [Fig. 4(c)]. This
simple example points out how introducing the dissipator (6)
causing doublon nonreciprocity opens several interesting di-
rections for the investigation of interacting nonreciprocal
dynamics.

Conclusions. In this Letter, we investigated the dynamics
of a Bose-Hubbard model coupled to engineered dissipators.
Showing the emergence of a nonreciprocal doublon light
cone, we highlighted how the study of time evolution can
unveil genuinely interacting effects, which would be hidden
in the study of steady states alone [60].

We introduced a different type of dissipator, based on the
structure of the strongly interacting effective Hamiltonian,
and showed how it gives rise to a doublon non-Hermitian
skin effect. This arises at the level of the Lindblad master
equation, going beyond the no-click limit studied in previous
works [47,48]. The quadratic dissipator leads to the two-
particle nonreciprocal dynamics observed in our numerical
simulations, and opens new possibilities for the study of dy-
namics in nonreciprocal systems.

Strictly related to the study of dynamics we presented is
the issue of how relaxation and thermalization are affected by
interactions in nonreciprocal models [20,52]. Our approach
can be easily generalized to other systems which support
stable excitations such as one-dimensional spin-1/2 chains.
This setup allows for the study of strongly correlated systems,
raising some intriguing questions regarding non-Hermitian
topology of many-body systems [33] as well as the nature
of transport in nonreciprocal bosonic and fermionic mod-
els [22,23].
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