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Nonradiant multiphoton states in quantum ring oligomers
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Arrays of coupled dipole emitters support collective single- and multiphoton states that can preserve quantum
excitations. One of the crucial characteristics of these states is the lifetime, which is fundamentally limited due
to spontaneous emission. Here, we present a mechanism of the external coupling of two states via the radiation
continuum, which allows for an increase in the lifetime of both single and double excitations. As an illustrative
example, we consider a ringlike ensemble of quantum emitters, demonstrating that upon slight optimization
of the structure geometry, one can increase the lifetime of singly and doubly excited states with nonzero orbital
momentum by several orders of magnitude. The proposed mechanism of multiphoton excitations lifetime control
has a universal nature and might be applied for a wide class of open quantum systems and quantum ensembles
besides the particular geometry considered in this Letter.
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Assembling quantum emitters in ordered systems allows
for enhancing the light-matter interaction [1,2] which is cru-
cial for quantum information [3,4], quantum sensing [5,6],
and optomechanical [7–10] applications. Due to advanced
trapping techniques, emitters can be assembled into the
structured arrays in free space [11–14] or the vicinity of
nanophotonic structures [15–18], which induces collective ef-
fects in single- and multiphoton regimes [19–30]. However,
the reliable manipulation of quantum states requires their
stability, which can be easily destroyed by the spontaneous
emission inevitably present in open quantum systems. In this
context, controlling the lifetime of quantum states remains one
of the key problems in modern quantum optics.

Fortunately, this problem can be resolved by generating
subradiant states characterized by suppressed spontaneous de-
cay. Since the pioneer work of Dicke [31], the emergence
of these states has been actively studied both theoreti-
cally [32–37] and experimentally [38–42]. Moreover, the
spatial ordering of quantum dipole emitters can provide ad-
ditional control over the lifetime of subradiant states for
one-dimensional arrays in free space [26,43–45], near a
waveguide [24,46–50], for two-dimensional arrays [51–53],
or for single rings [43]. It has been shown that the radiative
decay of large systems can be strongly suppressed, following
either a polynomial ∝N−α [44,48] or exponential ∝e−βN [43]
asymptotic dependence on the number of quantum emitters
in the array N . However, the suppression of radiative decay
in smaller structures consisting of several to tens of emitters
requires different approaches.

In this Letter, we demonstrate the feasibility of forming
singly and doubly excited subradiant eigenstates in finite
dipole ensembles based on the mechanism of external cou-
pling, which was initially proposed by Friedrich and Wintgen
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[54] for open quantum systems. It has recently garnered sig-
nificant attention in the field of nanophotonics for highly
efficient nonlinear generation [55], lasing in single semi-
conductor nanostructures [56], achieving a strong nonlinear
response [57], and engineering bound states in the continuum
of extended periodic structures such as metasurfaces [58,59].
In this work, we demonstrate that this mechanism can also be
extended to form doubly excited subradiant states. Our focus
is on concentric rings of two-level dipole emitters, which
have already attracted significant attention in quantum optics
[60–66], owing to their high symmetry and relevance to vari-
ous natural quantum systems such as organic molecules. The
observation of long-lived doubly excited states with nonzero
orbital momentum may find utility in quantum information
protocols that involve beams with high angular momentum
[34,67–69]. The proposed mechanism can be straightfor-
wardly applied to ordered arrays with different symmetries
and geometries to extend the lifetime of quantum excitations.

General formalism. Let us consider a double-ring ensemble
of N two-level dipole emitters shown in Fig. 1. All emitters are
located in the z = 0 plane. We also assume that all emitters
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FIG. 1. An open system representing a double-ring oligomer of
two-level dipole emitters. The doubly excited eigenstates can have
nonzero orbital quasimomentum with radiative losses that can be
strongly suppressed via the mechanism of external coupling.

2469-9926/2024/110(1)/L011501(7) L011501-1 ©2024 American Physical Society

https://orcid.org/0000-0002-5137-493X
https://orcid.org/0000-0002-0873-9753
https://orcid.org/0000-0002-7810-960X
https://orcid.org/0000-0001-8155-9778
https://ror.org/04txgxn49
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.L011501&domain=pdf&date_stamp=2024-07-09
https://doi.org/10.1103/PhysRevA.110.L011501


N. USTIMENKO et al. PHYSICAL REVIEW A 110, L011501 (2024)

have a ground state with J = 0 and an excited level with
J ′ = 1 [37,70–74]. In such a structure, the lifetime of all
three Zeeman sublevels (J ′

z = −1, 0, 1) is the same τ0 = 1/γ0

with the decay rate γ0 = k3
0 |d|2/(3π h̄ε0), where k0 = ω0/c =

2π/λ0 is the wave number in vacuum, ω0 is the transition
frequency, and ε0 is the vacuum permittivity. The transition
dipole moment of emitters is fixed to be oriented along the
z axis, d = |d|ez, which can be achieved by applying an
external magnetic field isolating this transition from the two
in-plane ones. The emitters are coupled via free-space elec-
tromagnetic modes, and their quantum states are governed by
the effective non-Hermitian Hamiltonian (further, the Planck
constant is set to be h̄ = 1) [62] Ĥeff = −i γ0

2

∑N
k=1 σ̂

†

k σ̂k +∑N
k=1

∑N
l=1,
l �=k

g(|rkl |, ω0)σ̂
†

k σ̂l , where σ̂
†

k (σ̂k) is the creation

(annihilation) operator for excitation on emitter k, |rkl | =
|rk − rl | is the relative distance between emitters k and l ,
and the energy of noninteracting system ω0

∑N
k=1 σ̂

†

k σ̂k has
been subtracted. The coupling rate between two emitters is
defined via the free-space electromagnetic Green’s tensor [75]
g(|r|, ω0) = (−3γ0π/k0)eT

z · G0(r, ω0) · ez. Assumption of
the Born-Markov approximation g(|r|, ω) ≈ g(|r|, ω0) allows
to avoid the dispersion of the coupling rate since γ0 � ω0.

Ring oligomer. First, we consider an ensemble of Nd

emitters arranged in a ring of radius R with the corre-
sponding separation distance between neighbor emitters a =
2R sin(π/Nd ). The eigenvalues of the system can be found
by substituting the effective Hamiltonian into Schrödinger
equation Ĥeff |ψ〉 = ε|ψ〉 (Sec. S1 in Supplemental Material
[76]). Each singly excited eigenstate of the ring can be asso-
ciated with the orbital quasimomentum m due to the discrete
rotational symmetry of the system, |ψ〉 = |ψ (m)

ring〉. As an il-
lustrative example, we consider Nd = 6 dipoles, for which
m can be equal to 0,±1,±2, 3 (Sec. S2 [76]). These eigen-
states have different parities under the symmetry operations
from point group D6h and transform according to the irre-
ducible representations A2u, E1g, E2u, and B1g, respectively
(Sec. S4 [76]). As a result, the eigenstates with ±m are de-
generate, i.e., ε(m) = ε(−m). In the basis of coupled emitters,
the eigenstate with a quasimomentum m reads as |ψ (m)

ring〉 =∑N
k=1 c(m)

k σ̂
†
k |g〉⊗Nd , where c(m)

k = eimϕk /
√

Nd is the excita-
tion probability amplitude for emitter k and ϕk = 2π (k −
1)/Nd (see Refs. [60,62] and also Sec. S2 in Supplemental
Material [76]).

The radiative losses of a single ring do not exhibit any
peculiarities [43,61,62] and the collective decay rate of sub-
radiant eigenstates monotonically decreases with the ring
size (Sec. S5 [76]). However, the situation can be drastically
changed by adding a single emitter at the ring center, forming
the oligomer ensemble, as shown in Fig. 2(a). The external
coupling between the ring state with m = 0 and the central
dipole via the radiation continuum leads to the formation of a
long-living state. This can be understood by constructing the
wave function for the oligomer’s eigenstates from two contri-
butions, |ψ〉 = ca|gring〉 ⊗ |e0〉 + cb|ψ (0)

ring〉 ⊗ |g0〉, where |g0〉
and |e0〉 are the wave functions of the central dipole emitter
in the ground and excited states, respectively, and |gring〉 ≡
|g〉⊗Nd is the ground state of the ring. The central emitter
can couple only to the ring state with m = 0 due to symme-
try considerations. The Hamiltonian in such a basis can be

FIG. 2. (a) Schematic representation of the hybridization of ring
states with a single emitter’s state. (b) Lifetime enhancement for the
states in (a). Inset: The excitation probability is shown in red for
the oligomer eigenstates. (c) Scattering cross section (color coded)
for the ring oligomer excited with the Bessel beam (inset). The
red and green lines represent the eigenfrequencies of the oligomer
eigenstates. (d) Lifetime enhancement for antisymmetric eigenstates
with different m forming in two rings with b/a = 2 (inset).

represented as a sum of the unperturbed Ĥ0 and interaction V̂
parts [63],

Ĥ = Ĥ0 + V̂ =
(

ε0 0
0 ε

(m=0)
ring

)
+

(
0 κ

κ 0

)
, (1)

where ε0 = −iγ0/2 and ε
(m=0)
ring = −iγ0/2 + ∑Nd

k=2 g(|r1k|, ω0)
are the energies of the excited central emitter |e0〉 and the
excited ring eigenstate |ψ (0)

ring〉, respectively, while the coupling

rate is given by κ = √
Nd g(R, ω0). Although κ is proportional

to
√

Nd , the radius of the ring increases and g decreases with
Nd , leading to the overall decrease of the κ. Consequently,
the external coupling in such an oligomer is strong enough
to induce noticeable lifetime modification only for not very
large Nd .
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As depicted in Fig. 2(a), the interaction between sub-
systems leads to the appearance of symmetric |ψ+〉 and
antisymmetric |ψ−〉 hybridized eigenstates with m = 0. Their
decay rates are defined by the imaginary part of eigenener-
gies γ± = −2 Im(ε±) where ε± are given in Sec. S6 [76].
The calculations reveal that the antisymmetric eigenstate pos-
sesses resonantly increased lifetime by a factor of τ−/τ0 =
γ0/γ− ≈ 230 for the particular separation between emitters
a/λ0 ≈ 0.16 [see Fig. 2(b)]. At this point, the phase shift
between the probability amplitudes for the central dipole and
the ring reaches π exactly, while the excitation is primarily
located at the central emitter [see the inset in Fig. 2(b) and
Sec. S6 in Supplemental Material [76]]. Such a suppression
of radiation, caused by external coupling between the ring
and the central emitter states, resembles the destructive in-
terference between the radial modes in dielectric cylindrical
cavities [77,78].

The long-living oligomer state can be excited with tightly
focused Bessel beams possessing a longitudinal component
of the field [79]. In Fig. 2(c), one can see the scattering cross
section (SCS) σ for the oligomer ensembles of different sizes
illuminated by a Bessel beam with orbital angular momen-
tum � = 1 and spin s = −1 adding up to the total angular
momentum m = 0. The SCS of the oligomer is normalized
by Nσ0 where N = Nd + 1 = 7 is the total number of emit-
ters in the system, and σ0 is the SCS for the central emitter
(Sec. S7 [76]). One can observe a resonant enhancement of
the SCS for the symmetric (superradiant) eigenstate |ψ+〉 and
a drastic narrowing of the spectral line corresponding to the
antisymmetric (subradiant) eigenstate |ψ−〉 when approaching
the optimal size condition.

The proposed external coupling mechanism can be also
applied to control the lifetime of eigenstates with m �= 0.
For instance, in the oligomer ensemble consisting of two
concentric rings shown in Fig. 1, the symmetry of singly
excited states in the isolated inner and outer rings, or |ψ (m)

in-ring〉
and |ψ (m)

out-ring〉, is the same. Therefore, the coupling between
rings can lead to radiation suppression for arbitrary m. The
mechanism of such an interaction can be also described within
the framework of two coupled states with the wave function
of the coupled system given as |ψ (m)

two-ring〉 = c(m)
a |ψ (m)

in-ring〉 ⊗
|gout-ring〉 + c(m)

b |gin-ring〉 ⊗ |ψ (m)
out-ring〉. By scaling the oligomer

size with the fixed ratio b/a = 2, one can reach the regime
of resonantly enhanced lifetime for antisymmetric eigen-
states with different m as shown in Fig. 2(d). Additional
details on the superradiant symmetric states are provided in
Sec. S6 [76].

Doubly excited states. The mechanism of external cou-
pling can also be exploited to doubly excited states. Doubly
excited quantum states form a manifold in the Hilbert
space with a dimension of N (N − 1)/2. Due to the sym-
metry of the wave function and the Pauli principle, they
can be expanded over the wave function basis as |�〉 =∑N

k=1

∑N
l=k+1 ckl σ̂

†
k σ̂

†
l |g〉⊗N . Importantly, one can character-

ize doubly excited eigenstates of ring oligomers with orbital
quasimomentum m in a similar manner to the singly ex-
cited eigenstates. Moreover, a doubly excited eigenstate can
be expanded over the products of singly excited eigen-
states, |� (m)〉 = ∑

m1,m2
vm1,m2 |ψ (m1 )〉|ψ (m2 )〉, with vm1,m2 �= 0

FIG. 3. (a) Eigenfrequency curves for eigenstates (2) where the
color corresponds to the lifetime enhancement. The inset schemati-
cally shows the largest amplitudes ckl for the nonradiant eigenstate.
(b) The lifetime enhancement for singly excited eigenstates with
m = 1 (blue dashed dotted) and m = 2 (green dashed) that form
doubly excited eigenstates (2) with m = 3 (orange solid).

if m1 + m2 = m (mod Nd ). This condition for the quasimo-
mentum immediately follows from representation theory. For
example, a direct product of two wave functions of singly
excited states entering E1g (m1 = ±1) and E2u (m1 = ±2)
irreducible representations results in the wave function of
the doubly excited state that enters one of the three irre-
ducible representations E1g ⊗ E2u = B1u + B2u + E1u, with a
total m = 3 (B1u, B2u), or m = ±1 (E1u).

Two rings of Nd = 6 emitters support 61 doubly excited
eigenstates including ten ones with the largest orbital quasi-
momentum m = 3 (Sec. S3 [76]). From now on, we will pay
special attention to the eigenstates |� (3)〉 with m = 3, which
also enter the B1u irreducible representation. The indistin-
guishability of excitations and the Pauli principle imply that
the double-ring oligomer supports only four possible doubly
excited eigenstates of this type,

∣∣� (3)
s1,s2

〉 = i

2

(∣∣ψ (+1)
s1

〉∣∣ψ (+2)
s2

〉 + ∣∣ψ (+2)
s2

〉∣∣ψ (+1)
s1

〉
− ∣∣ψ (−1)

s1

〉∣∣ψ (−2)
s2

〉 − ∣∣ψ (−2)
s2

〉∣∣ψ (−1)
s1

〉)
, (2)

where s1, s2 = ± correspond to symmetric (antisymmetric)
singly excited eigenstates of the double-ring oligomer. We
note that the other six doubly excited eigenstates with m =
3 have lower lifetimes and correspond to the B2u symme-
try since they contain a direct product of the singly excited
eigenstates with m1 = 0 (A2u representation) and m2 = 3 (B2u

representation).
Doubly excited eigenstates inherit their properties from

at least two singly excited eigenstates, and therefore their
lifetime can also be controlled with the external coupling
mechanism. Indeed, the energy E (m) = ω(m) − i�(m)/2 of a
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doubly excited state |� (m)〉 can be written as (Sec. S8 [76])

E (m) =
∑

m1,m2

∣∣vm1,m2

∣∣2
[ε(m1 ) + ε(m2 )], (3)

whereas amplitudes vm1,m2 can be found based on the direct
diagonalization of the effective Hamiltonian (Sec. S1 [76]).
Hence, the energies of states (2) are E (3)

s1,s2
= ε(+1)

s1
+ ε(+2)

s2

where ε
(m)
± are given in Sec. S6 [76]. Consequently, the ra-

diative decay of states (2) can also be decomposed into the
sum �(3)

s1,s2
= γ (+1)

s1
+ γ (+2)

s2
. Hence, the suppression of radia-

tive losses for eigenstates (2) can be achieved for a particular
oligomer geometry when both singly excited eigenstates with
m1 = 1 and m2 = 2 have the lowest radiative losses. By
varying the inner (a/λ0) and outer ring (b/a ratio) sizes inde-
pendently, we find the optimal parameters to be b/a = 2.2 and
a/λ0 ≈ 0.16 (Sec. S9 [76]). Indeed, for these parameters, the
fully antisymmetric eigenstate |� (3)

−−〉 has a lifetime that is two
orders of magnitude larger than that of a single emitter [see
Fig. 3(a)]. Moreover, this point is characterized by the maxi-
mal lifetime of both antisymmetric singly excited eigenstates
with m = 1 and m = 2 [see Fig. 3(b)]. The radiative losses
for the antisymmetric state with m = 2 are much smaller
than those for m = 1, i.e., γ

(2)
− � γ

(1)
− , therefore, the overall

radiative losses for the nonradiant doubly excited eigenstate
|� (3)

−−〉 are �
(3)
−− ≈ γ

(1)
− [see Fig. 3(b)]. Additionally, we can

emphasize that the form of the nonradiant eigenstate |� (3)
−−〉,

given by Eq. (2), implies that both excitations within this state
are predominantly localized on the inner ring [see the inset
in Fig. 3(a)], inheriting the properties of |ψ (±1)

− 〉 and |ψ (±2)
− 〉

nonradiant eigenstates.
Photon emission and spatial correlations. Finally, the ra-

diative decay of doubly excited states can be characterized by
the second-order correlation function, which may be neces-
sary for the future design of potential detection schemes. This
function allows for describing spatial correlations between
photons emitted by a state |�〉 when detectors D1 and D2 are
positioned at coordinates rD

1 and rD
2 , respectively, and reads as

[63,80]

g(2)
(
rD

1 , rD
2

) =
∑

α,β〈�|Êβ,2Êα,1Ê†
α,1Ê†

β,2|�〉∑
α,β〈�|Êβ,1Ê†

β,1|�〉〈�|Êα,2E†
α,2|�〉 . (4)

Here, α, β = x, y, z denote the components in the Carte-
sian coordinate system, and Êα,1(2) ≡ Êα (rD

1(2)) is the electric
field operator that creates a photon at the detector position
rD

1(2) with the polarization along the α axis. The corre-
sponding electric field operator can be expressed via the
free-space Green’s tensor [43] Ê†(r) = k2

0/ε0
∑N

k=1 G0(r −
rk, ω0) · dσ̂k . Singly excited states can be characterized by
the far-field radiation pattern of a single photon p(θ, ϕ)
(Sec. S7 [76]).

In Fig. 4(a), two possible configurations of a two-
photon detection scheme are presented: One when a first
detector is in the polar position (θD

1 = 0), while a second
one scans over the sphere (configuration 1), and another
when both detectors are placed in the same point rD

1 =
rD

2 (configuration 2). The second-order correlation function
(4) of the nonradiant eigenstate |� (3)

−−〉 [see Eq. (2) and
Fig. 3] is shown in Fig. 4(b). It exhibits typical hexagonal
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FIG. 4. (a) Configurations for detecting two-photon correlations
within doubly excited states. (b) Far-field distribution of g(2) func-
tion (4) for the nonradiant eigenstate |� (3)

−−〉. (c) Far-field radiation
patterns for the singly excited antisymmetric eigenstates |ψ (+1)

− 〉 and
|ψ (+2)

− 〉, which form the nonradiant eigenstate |� (3)
−−〉. The results in

(b) and (c) are shown considering the symmetry of distributions.

features with a maximal correlation function at a nodal line
around θ ≈ 60◦–70◦ for both configurations. This behavior
can also be explained by radiation patterns for the singly
excited eigenstates |ψ (+1)

− 〉 and |ψ (+2)
− 〉 with m = +1 and

m = +2, respectively, shown in Fig. 4(c). While maximal
emission of the m = 1 eigenstate is observed around θ = 35◦,
the emission of the m = 2 eigenstate is mainly concentrated
around the θ = 90◦ plane, which results in a maximal cor-
relation function at an intermediate polar angle as shown in
Fig. 4(b).

Discussion and conclusion. As a remark, while the pre-
sented result mainly corresponds to linearly polarized σz

transitions, the external coupling mechanism can be also ap-
plied for creating subradiant states for circularly polarized σ±
transitions with the dipole moments lying in the plane of the
oligomer structure; see Sec. S10 in Supplemental Material
[76]. The recent progress in experimental techniques [41,81]
also motivated by a number of fascinating theoretical concepts
[43,66,82–84] proposed for quantum arrays with subwave-
length spacing give hope that the small spacing between the
atoms required for the observation of the discussed nonradiant
states will be reached soon.

Finally, we have exploited the Friedrich-Wintgen mecha-
nism to demonstrate the formation of subradiant singly and
doubly excited eigenstates with a given orbital momentum in
the ring oligomers. We have shown that the oligomers can
be viewed as two subsystems of emitters supporting states
that interact if they possess the same symmetry. The proposed
mechanism relies on the destructive interference between the
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subsystems resulting in the formation of antisymmetric states
characterized by suppressed radiative losses for preoptimized
oligomer geometry. The suggested approach is not limited to
the systems considered in this Letter and can be applied to
control radiative losses of multiphoton states in various open
quantum systems.
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