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Modified mean-field ansatz for charged polarons in a Bose-Einstein condensate
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Ionic Bose polarons are quantum entities emerging from the interaction between an ion and a Bose-Einstein
condensate, featuring long-ranged interactions that can compete with the gas healing length, resulting in strong
interparticle correlations and enhancement of the gas density around the ion. Full numerical treatment of such
systems is computationally very expensive and does not easily allow one to study the system dynamics. For
this purpose, we study a mean-field-based description of such systems in the co-moving frame. We find that it
captures a sizable change in the gas density and qualitatively reproduces the available results based on Monte
Carlo simulations. We consider a couple of scenarios which consist of a single ion and two pinned ions, where
it is possible to extract their effective interaction induced by the bath. This approach seems to be promising for
studying transport and nonequilibrium dynamics of charged (bi)polarons in condensed media.
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Introduction. The quantum impurity problem lies at the
heart of condensed-matter theory. Quasiparticles arising from
the impurity-medium interactions, called polarons, can be
considered as a building block for many-body physics [1,2]
and have been studied since the early days of quantum me-
chanics [3–6]. Nowadays, controllable quantum impurities
also offer a wide scope of applications, especially in the con-
text of precision measurements [7].

Ultracold matter is a unique platform allowing for realiza-
tion of idealized systems with many remarkable experimental
results, especially in the context of quantum simulations [8,9].
Polarons have been observed and intensely studied in both
degenerate Bose and Fermi gases, in the regime of weak as
well as strong interactions [10–20]. Even though the system
consists of only a single particle and typically weakly inter-
acting gas, calculation of static polaronic properties such as
the energy, the residue, and the spectral function is a nontrivial
task. Out-of-equilibrium dynamics, such as polaron formation
and transport phenomena [21,22], are particularly appealing
in this context, but also much more challenging to study.
Another interesting aspect is the consideration of long-ranged
potentials for which the gas can become strongly perturbed
and the quasiparticle picture may break down, replaced by
formation of a many-body bound state. In particular, ion-
atom systems are a prototypical example in which strong and
long-ranged interactions among their constituents may occur
[23–29]. A large size of the corresponding potential well can
in this case enable bound-state occupation by many bosons,
leading to a clusterlike many-body bound state [30–34].
Ionic polarons can thus have vastly different properties from
their neutral counterparts and theoretical tools should be ap-
plied with care. Specifically, Bogoliubov theory, although it
holds in the weak-coupling regime, is typically based on the

*Contact author: ubaldo.olivas@fuw.edu.pl
†Contact author: luis.penaardila@unicam.it
‡Contact author: krzysztof.jachymski@fuw.edu.pl

assumption of a homogeneous condensate and cannot prop-
erly capture the strongly inhomogeneous atomic density
profile. Instead, one should take a step back and recalcu-
late the bosonic vacuum state over which the Bogoliubov
expansion is performed. The applicability of this approach
has been shown to work as long as the local gas parameter
in the vicinity of the impurity remains small [35,36]. For
mobile impurities, a modified mean-field ansatz can be ap-
plied in a co-moving frame, which has been shown to yield
consistent results. In particular, increased gas density provides
a self-stabilization mechanism of the gas with finite-range
interactions [37], preventing it from collapse. This method has
also revealed universal properties of neutral polarons, as the
polaron size and the correlation functions in this approach turn
out to depend only on the scattering length and the effective
range related to the two-body interaction potential.

In this work, we apply this approach to the case of ionic
polarons, where the interactions have a long-ranged character.
Based on earlier numerical results [31], one can expect that in
this case the atoms should be drawn into the potential well,
resulting in density increases at length scales comparable to
the range of the potential as illustrated in Fig. 1. This means
that the gas will probe the details of the potential surface,
and general features such as the screening effect described for
short-range potentials can display nonuniversal features.

Mean field ansatz. We start by recalling the derivation of
the energy functional that captures the physical properties of
our system, following closely Ref. [6] and later Ref. [37].
We are interested in the characterization of a mobile charged
impurity surrounded by a weakly interacting Bose-Einstein
condensate. The Hamiltonian reads

H = p̂2

2mI
+

∑
i

VIB(x̂B,i − x̂)

+
∑

i

p̂2
B,i

2mB
+ 1

2

∑
i �= j

VBB(x̂B,i − x̂B, j ), (1)
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FIG. 1. The bare (solid lines) interaction given by Eq. (10) and
the effective potential (dotted lines) resulting from Eq. (6) for several
atom-ion scattering length values with c = 0.0023R�, n−1/3

0 = R�,
and aB = 0.0269R�. The inset shows the weakly repulsive character
of the effective interaction close to R�. The cartoon illustrates how the
buildup of the density of repulsive bosons leads to the dressing of the
interaction, with the upper purple (gray) line depicting the repulsive
contribution to the effective potential.

where the impurity is described by its mass mI, position x̂, and
momentum p̂, while the mass of identical bosonic atoms is
denoted in terms of the two-boson scattering length aBB as mB,
with x̂B,i and p̂B,i being the bosonic position and momentum
operators. A commonly used simplification may be achieved
through a Lee-Low-Pines transformation [4] which applies the
total momentum conservation to remove the impurity degrees
of freedom and can be thought of as working in a frame
co-moving with the impurity. Consequently, using the gener-

ator S = exp (ix̂ · ∑
i p̂B,i ), one obtains the new Hamiltonian,

HLLP = SHS−1, written as

HLLP = 1

2mI

(
p0 −

∑
i

p̂B,i

)2

+
∑

i

VIB(x̂B,i )

+
∑

i

p̂2
B,i

2mB
+ 1

2

∑
i �= j

VBB(x̂B,i − x̂B, j ). (2)

Here p0 is the total momentum of the system. Note now that
the impurity coordinates have been removed and the Hamil-
tonian describes a Bose gas in an external potential VIB with
an additional term coupling the momenta, which has a compli-
cated structure and only disappears for a static impurity. In this
work we restrict the analysis to the case of the vanishing p0,
for which the system has spherical symmetry. Hereafter, we
also consider contact interaction among the bosons described
by a pseudopotential VBB(x) = gδ(3)(r), and its strength us-
ing atomic units (i.e., h̄ = 1) is denoted by g = 4πaBB/mB.
We assume that the ground state is a product of identical

symmetric single-particle wave functions:

�(x1, x2, . . . , xN ) =
N∏

j=1

φ(x j ), (3)

where φ(x) satisfies the normalization condition∫
dx|φ(x)|2 = N . With this product wave function one

can calculate the energy of the system, taking into account
the normalization constraint, which leads to a modified
mean-field (MMF) functional:

E 1[φ] =
∫

dx

[
1

2mred,1
|∇φ(x)|2 + VIB(x)|φ(x)|2

+ g

2
|φ(x)|4 − μ|φ(x)|2

]
. (4)

This energy functional is described by the chemical poten-
tial μ = gn0 with an unperturbed condensate density n0, the
reduced mass m−1

red,1 = m−1
B + m−1

I , and the distance from
the impurity r = |x|. One can now introduce the healing
length ξ = 1/

√
8πaBBn0 or, recalling the definition of the

coupling constant g, ξ = 1/
√

2mBμ. Due to the form of
the kinetic energy term in Eq. (4), it is also useful to de-
fine ξ1 = 1/

√
2mred,1μ. We aim to compute φ(x), which

minimizes the energy functional (4), fulfilling the boundary
conditions |φ(x → 0)| < ∞ and |φ(|x| → ∞)| = √

n0. The
exercise may be simplified if the potential VIB(x) has radial
symmetry. As a result, the ground state of the wave function is
real and spherically symmetric. Likewise, it is natural to pro-
pose an auxiliary radial function u(r) = rφ(r)/

√
n0, whose

corresponding Dirichlet boundary conditions are u(0) = 0
and u(r → ∞) = r, and a dimensionless energy functional
(4) may be rewritten as [37]

E1[u]

μ
= 4πn0

∫ ∞

0
dr

{
ξ 2

1

[(
du

dr

)2

− 1

]

+ 1

μ
VIB(r)u(r)2 + (u2 − r2)2

2r2

}
.

Note that this problem is equivalent to finding a function
which satisfies the following differential equation:[

− ξ 2
1

d2

dr2
+ 1

μ
VIB(r) + (u2 − r2)

r2

]
u = 0. (5)

Having the condensate wave function, one can define an ef-
fective interaction modified by the gas density as

VP(r) = VIB(r) + g|φ(r)|2 − μ. (6)

This effective potential is more repulsive than the bare one due
to the mean-field correction, which can prevent the Bose gas
from collapsing in the vicinity of the impurity [37].

Bipolaron formation. Due to the local deformation of the
gas density, impurities are prompted to attract each other,
which can lead to formation of bipolarons. We therefore ne-
glect the direct interaction between the two particles to focus
on the bath-induced properties. This can be justified by as-
suming that the ions are placed in an external trap, which fixes
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the distance between them and balances out the Coulomb in-
teraction [38]. Their motion is then conveniently represented
by the center of mass, r̂, and the relative position among
the impurities, R̂, and their corresponding momenta p̂ and
P̂, respectively. Once more, we start in the laboratory frame
and perform a Lee-Low-Pines transformation, removing the
center-of-mass coordinate. Consequently, the Hamiltonian
is [16,17]

HLLP = 1

4mI

(
p0 −

∑
i

p̂B,i

)2

+ P̂2

mI
+

∑
i

∑
α=±

VIB(x̂B,iα )

+
∑

i

p̂2
B,i

2mB
+ 1

2

∑
i �= j

VBB(x̂B,i − x̂B, j ), (7)

where xB,i = ri and the relative distance between the im-
purities and bosons xB,i ± = ri ± R/2. Analogously to the
single-impurity case, a product state ansatz is adopted and
we consider a cylindrically symmetric potential. Using sym-
metry arguments and fixing the relative distance between the
ions, treating it as a parameter in the spirit of the Born-
Oppenheimer approximation and taking p0 = 0, the terms
involving the kinetic energy are negligible. As a result, one
finds the following energy functional:

E2(φ, R)

μ
=

∫
d3r

{
ξ 2

2 |∇φ|2 + n0

2
(|φ|2/n0 − 1)2

+ [VIB(r + R/2) + VIB(r − R/2)]|φ|2/μ
}
. (8)

Notice that here we have used ξ2 = 1/
√

2mred,2μ, which cor-
responds to the reduced mass m−1

red,2 = m−1
B + (2mI )−1. The

minimizer of Eq. (8) satisfies a boundary value problem, de-
scribed by the partial differential equation{−ξ 2

2 ∇2 + [VIB(r + R/2) + VIB(r − R/2)]/μ

+ (|φ(r, z)|2/n0 − 1)
}
φ(r, z) = 0, (9)

with Dirichlet boundary conditions φ(r → ∞, z) =
φ(r, z → −∞) = φ(r, z → ∞) = √

n0. One can then extract
the induced interaction between the impurities mediated by
the condensate by subtracting the contribution to the system
energy from single polarons VBP(R) = E2(R) − 2E1 + E0,
where E0 is the energy of the unperturbed Bose gas that we
set to zero here.

Ion-atom interactions. Let us now briefly discuss the prop-
erties of the ion-boson interaction mediated by the potential
VIB(r). The leading contribution at large distances comes
from the charge-induced dipole interaction [23] VIB(r −→
∞) = −C4

r4 , where the induction coefficient C4 = αq2/2, with
α being the static electric dipole polarizability of the atom
and q the ion charge. It leads to the characteristic length
R� = √

2mred,1C4 and energy E � = 1/[2mred,1(R�)2]. In order
to stabilize its short-range behavior, we use the regularized
potential [39]

VIB(r) = − C4

(r2 + b2)2

r2 − c2

r2 + c2
. (10)

The parameter b controls the potential depth, while c
provides a bound for the distance at which the interaction

becomes repulsive. This parametrization allows for control-
ling the scattering length as well as the number of bound
states mediated by the potential. At b � 0.58 the potential is
so shallow that it does not have a bound state, and as a result
the scattering length is small and negative.

Results. Throughout this section, we present the static
properties of the polaron and the bipolaron described above.
In order to obtain these results, we have numerically solved
the differential equations for the condensate wave function,
Eqs. (5) and (9), using FENICS software [40]. For comparison,
we have also calculated the polaronic properties solving the
full three-dimensional Gross-Pitaevskii equation with a mo-
bile as well as a pinned impurity. We choose to work with
equal boson and impurity masses, having in mind, e.g., the
experimental realization using the 87Rb /Rb+ system [28]. For
infinitely large mI, the impurity becomes pinned and the re-
duced mass is just the boson mass, making the Lee-Low-Pines
transformation obsolete.

The single impurity case is essentially one-dimensional
(1D). Under such circumstances we use the simplest arrange-
ment for a 1D mesh, i.e., a linear rod, with 100 grid points. The
finite element scheme implemented in FENICS that we utilize
consists of a uniformly partitioned mesh, followed by space
discretization using second-order Lagrange polynomials. In
the ultradilute limit ξ1 � R� and n−1/3

0 , we expect no signif-
icant effect of the r−4 interaction. Therefore, we work at the
values of condensate density n0 comparable to ξ−3

1 , and we
assume the competing length scenario in which also ξ1 ≈ R�.
In order to vary between different regimes of the interaction,
we set the parameter c = 0.0023R�, crucial for a repulsive
potential at r � a0 [31]. Then by changing the b parameter,
we can achieve a shallow or deep potential with or without a
bound state with tunable scattering length.

The minimization of the MMF functional (4) yields the
ground-state energy of the system which we show in Fig. 2
and compare to the ladder approximation result of Ref. [32]
using exactly the same parameters. The two approaches agree
well in the limit of very weak interactions, b � 1, as expected.
For deeper potentials, the MMF curve bends towards lower
energies due to the buildup of atomic density around the
ion which increases the integrated interaction energy. The
standard mean-field formula E1 = 4πna/m [41], with a being
the ion-atom scattering length, lies very closely to the lad-
der approximation result as it also assumes a homogeneous
gas. We also include a comparison with a quantum Monte
Carlo (QMC) calculation for 192 bosons at a lower density
n0 = 0.1458(R�)−3. The MMF and the QMC calculations
agree very well in the whole range of b considered, while
the standard mean-field theory leads to a higher estimation
of energy. Also, the solution of the standard GPE equation for
two coupled fields representing the ion and the atoms, shown
as yellow dots, can only reproduce the QMC and MMF results
for large values of b where essentially all approaches agree
with each other. The formation of the cloud in the vicinity
of the ion modifies the effective potential (6) as a result of
the mean-field boson repulsion, as illustrated in Fig. 1. In
addition to becoming more shallow, we note that the potential
loses its power-law decay and even becomes weakly repul-
sive at intermediate distances, but retains a similar range.
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(a) (b)

FIG. 2. (a) Energy of a single polaron in units of E � = 1/[mB(R�)2] as a function of the regularization parameter b, with n0 =
0.1458 (R�)−3. Results of the modified mean-field theory in the co-moving frame [straight red (gray) line] are compared with the QMC
calculation [green (gray) dots] as well as standard mean-field theory where E1 = −π 2n/b [light blue (light gray) dashed line] and the GPE
calculation [yellow (light gray) dots]. (b) Results for higher density n0 = (R�)−3 with the T -matrix results of Ref. [32] [green (gray) dashed
line with dots] and the mean-field prediction [light blue (light gray) dashed line] for comparison.

Furthermore, the gas density profile is given by u(r), which
can also be interpreted as the impurity-boson correlation func-
tion g(2)

IB (r) = |φ(r)|2/n0. It exhibits a smooth shape which
peaks close to the impurity and asymptotically flattens to an
unperturbed Bose-Einstein condensate for distances far away
from the ion. In Fig. 3, the behavior of the gas density is
depicted for various b values in the weak-interaction regime.
The peak density value can be an order of magnitude larger
than the background density. We have checked that for a short-
ranged potential with the same scattering length a much lower
enhancement of the density around the impurity is obtained.
The large range of the interactions can thus lead to new effects
even at the mean-field level. This feature also manifests itself
as clustering of particles in a cloud, which can be quantified
as [42]

Ncloud =
∫

d3r[|φ|2 − n0]. (11)

Figure 3(b) shows the number of bosons trapped by the ion as
a function of the regularization parameter b. With increasing
b the potential becomes more shallow, such that less atoms
can fit in the potential well. We observe that this number
turns out to be of the order of a few tens of atoms, qual-
itatively similar to the Gaussian potential predictions [37].
Furthermore, within the semiclassical approximation [42] one
obtains Ncloud = −2a/aBB, which is of the order of hun-
dreds of atoms, again in qualitative agreement. On the other
hand, the perturbative mean-field result for the number of
bound particles [41], 	N ≈ −a/aBB − 4

√
2a2/πξaBB, ren-

ders a negative value as a/ξ is not a small parameter here.
In the case of two impurities we set up a 2D rectangular

mesh, composed of 100 elements in each dimension, and
second-order Lagrange polynomials for space discretization
as well. Note that if we assume ξ1 = R�, the correspond-
ing value for the healing length is now ξ2 = (

√
3/2)R�

for the same condensate density n0. The impurity-impurity-
boson correlation density profiles, depicted in Fig. 4, reach a

(a)

(b)

FIG. 3. (a) The gas density as a function of the distance from
the impurity r for several values of b. The dots indicate the results
of solving the functional in full three-dimensional space. (b) The
number of bosons in the polaronic cloud as a function of the potential
regularization parameter b for one ion [light blue (gray) line with
dots] and two pinned ions at two different distances R [straight and
dashed red (gray) lines]. The other parameters are the same as those
in Fig. 1.
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(a) (b) (c)

FIG. 4. (a) Cut of the gas density profile along z for r = 0 for two pinned ions. Here ξ2 = R�, c = 0.0023R�, b = 0.572R�, and n0 =
1.9531(R�)−3. The red dots indicate the results of a full three-dimensional calculation. (b) Absolute value of the system energy in units of
E � for two ions as a function of their separation for the same parameters and several b values. (c) The resulting induced effective interaction
potentials. The dashed line indicates the power law derived within the ladder approximation [18] described by Eq. (12).

maximum value where the impurities are located. We further
observe that the number of bound bosons is roughly twice that
of the single-impurity case for both potentials, as presented
by the red curve in Fig. 3(b). This would be expected if the
induced interactions were relatively weak such that the system
could be regarded as two almost independent polarons. In-
deed, inspecting the density profile shows that the gas density
is quite well approximated by a sum of two polaron peaks.
We also show in Fig. 4 the energy of the system as well as
the effective interaction induced by the medium. We observe
that the effective interaction follows a power law at long range
and levels off at distances � R�, where the buildup of the
density starts being significant. The magnitude of the effective
potential of the order of E � is in qualitative agreement with
the numerical results [34] for the weakly interacting polaron
regime. Note that, within the ladder approximation, the in-
duced interaction at large distance is given by [18]

Vind(r)/E � = −π

4

1

aBBb

b2 + 2bc − c2

(b + c)2

1

r4
. (12)

This formula displays a weak dependence on the value of the
b parameter and agrees with our results best for the largest b
values corresponding to the most shallow potential.

The adopted approach relies on a modified mean-field
ansatz which takes into account the boson repulsion. However,
this approximation neglects higher-order bosonic correlations
and cannot fully reproduce the phenomenon of many-body
bound-state formation [31]. In order to test the method outside
of its expected validity range, we applied it for the interaction
potential parameters c = 0.225 R� and b = 0.02 R�, for which
there appears a strong repulsive barrier at r � 0.1 R�. The
resulting density profiles are shown in Fig. 5. As expected,
the gas density vanishes close to the ion(s) and the correlation
peak is located at a finite distance. However, its maximum
value is of the order of 5, while the Monte Carlo results
give an order of magnitude larger result [31]. This is due to
macroscopic occupation of the few-body bound states which
is not present in our model as the mean-field approach does
not resolve individual particles. For the bipolaron case we
observe a similar behavior of the peaks in the correlation func-
tion being typically much lower than the QMC results [34].
However, in the weakly interacting regime the two approaches
provide qualitatively similar results. Indeed, for the b = R�

case studied in Ref. [34], an enhancement in density by about
a factor of 2 has been observed, in agreement with the present
results.

Conclusions. In conclusion, we have studied the ground-
state properties of charged polarons within the mean-field
approximation which in the weak-coupling limit correspond-
ing to the regularization parameter b � R� agree qualitatively
with more elaborate numerical treatment. For two pinned ions,
the method also provides reasonable cloud density profiles
and induced interactions. This makes it promising for several
future extensions. For instance, switching from the static to
the dynamical scenario [43,44], as well as including external
traps and nonzero total momentum, will enable the study of
the impurity effective mass and other transport properties,
while Monte Carlo-based methods require a lot more intense
numerical effort to probe nonequilibrium situations. Note that
the considered limit of long-range but weak potential cannot
describe the creation of many-body bound states, making the
system resemble the case of neutral impurity, but with notable
quantitative differences in the cloud size and density. It would
thus be interesting to enrich the current ansatz to include

FIG. 5. Cut through the atomic density profile for a single im-
purity for the interaction potential with large short-range repulsive
barrier with ξ1 = R�, b = 0.02R�, c = 0.225R�, and n0 = (0.8R�)−3.
Inset: The density for two impurities separated by R = 1.3R� for the
same parameters. Results were normalized by the asymptotic atomic
density such that gIB(r) = n(r)/n0.
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bosonic correlations explicitly by means of the Jastrow wave
function [45], which may extend the validity of the method to
greater coupling strength and resonant interactions within the
bath.
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