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We study the phase matching of resonant high-harmonic generation (HHG) and high-order frequency mixing
(HFM) in plasma. We numerically solve the propagation equations coupled with the time-dependent Schrödinger
equation for the nonlinear polarization. The macroscopic harmonic signal is enhanced in the vicinity of a
multiphoton resonance with the transition between the ground and autoionizing states of the generating ion. We
show that narrow and strong resonances (as for gallium and indium ions) provide compensation of the plasma
dispersion in a spectral region above the exact resonance, improving the phase matching and leading to a high
macroscopic signal. The compensation does not take place for a wider resonance (as for manganese ions), instead
the phase matching is achieved in the HFM process. Comparing the XUV generated in manganese plasma and
in neon gas, we show that the resonant HHG in plasma is an order of magnitude more effective than in the gas;
moreover, another order of magnitude can be gained from the propagation using HFM in plasma.
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Attosecond pulses have proven to be a unique instru-
ment to observe and control ultrafast electron dynamics in
different kinds of matter [1–3], and the improvement of at-
topulse brightness is of key fundamental and technological
importance. The production of attopulses largely relies on
the process of high-harmonic generation (HHG), where many
photons of the strong laser driver are converted into a comb
of high harmonics (HH) through a highly nonlinear, non-
perturbative response of the medium. The total efficiency of
this process is composed of the microscopic, single-particle
response and of the macroscopic response describing the
propagation of the light through the medium. Commonly, one
of these responses is improved to reach the higher efficiency
of HHG, and thus brighter attopulses: i.e., microscopic, by
smartly choosing the generating medium, or macroscopic, by
optimizing the propagation conditions such as the density of
the medium and the laser parameters. One way to boost the
microscopic HHG response is to use a resonance of HHs and
a transition between the states of the generating system. In
the case of the transition between the ground state and an
autoionizing state (AIS), the resonant HHs are generated up
to orders of magnitude more efficiently than the nonresonant
ones [4]. Resonant HHG enhancement has been observed in
plasma plumes [4–8], as well as for a giant resonance in Xe
[9]. For the HHG propagation, it has been shown [10,11] that
there are three mechanisms limiting the coherent growth of
the HH energy with propagation length: absorption, phase
matching, and blueshift. However, there is another fundamen-
tally close high-order process, taking place when the strong
driver is accompanied by another generating field—high-
order frequency mixing (HFM) [12–14]—which experiences
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the phase-matching and blueshift limitations to a lesser extent
[11,15–20]. In this Letter, we study resonant HHG, as a pro-
cess resulting in a boosted microscopic response, considering
theoretically the macroscopic properties of this process. We
also investigate the resonant HFM, optimizing the propagation
by choosing parameters of the additional weak generating
field. We start from the analysis of the propagation properties
of the HHG process along with the microscopic resonant
response. For HHG, the coherence length is

Lcoh = π

|�k| , (1)

where the wave-vector mismatch is �k = kq − qk0; here, q is
a HH order, and k0 and kq are the driver and HH wave vectors,
correspondingly. The wave vectors are

k0 = ω0

c

(
1 + �n(ion)

0 + �n(el)
0

) + δk(geom)
0 , (2)

kq = qω0

c

(
1 + �n(ion)

q + �n(el)
q

)
, (3)

where ω0 is the driver frequency, and �n(el)
0 is the contribution

to the refractive index of the driver due to the free electrons
(atomic units are used throughout if not specified otherwise)
written as

�n(el)
0 = −2πN

ω2
0

, (4)

with the electronic density N (in usual units, the latter equa-
tion is written as �n(el)

0 = −4.5 × 10−22N[cm−3](λ0[µm])2).
�n(ion)

q is the additive to the refractive index for the harmonic
due to the ions. Note that the common assumption for the
HHG phase matching is that the HH refractive index is unity.
While it is a very reliable assumption for nonresonant HHG,
here we show that this is not the case for the resonant one.
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Namely, the resonant term for �n(ion)
q (see Refs. [21,22]) is

�n(ion)
q = −πN f

�

�ω

�ω2 + �2/4
, (5)

where � and � are the resonant frequency and width, �ω =
qω0 − � is the detuning from the resonance, f is the oscillator
strength of the resonant transition, and we assume that the
ionic and the electronic densities are equal. The other terms
contributing to the medium refractive index in Eqs. (2) and
(3) are negligible: �n(el)

q is rather small because the HH fre-

quency is high, while �n(ion)
0 is low because the fundamental

frequency is far from ionic resonances. We also neglect the
geometric dispersion δk(geom)

0 , which can be taken into ac-
count similarly to the �n(el)

0 contribution if necessary. One
can see from Eqs. (4) and (5) that above the resonance, the
contribution of the ions to the detuning can compensate the
contribution of the free electrons. The maximum value of
|�n(ion)

q | is achieved near the resonance for |�ω| = �/2. For
�ω = �/2,

�n(ion,max)
q /�n(el)

0 = f ω2
0/(2��). (6)

The absorption of the generated radiation near the reso-
nance is also important. The absorption length is Labs =
1/(Nσ ) with the photoionization cross section σ , which can
be written using the parameters of the resonance (see, for
instance, [4]) as

Labs =
[
πN f

c

�

�ω2 + �2/4

]−1

. (7)

From Eqs. (7) and (1)–(5) for �ω � �, we can write

Labs

Lcoh
=

∣∣∣∣2�(�ω2 + �2/4)

π�ω2
0 f

− �ω

π�

∣∣∣∣. (8)

In particular, near the resonance (�ω = �/2), we have

Labs

Lcoh
= 1

2π

∣∣∣∣1 − 2��

f ω2
0

∣∣∣∣ = 1

2π

∣∣∣∣∣1 − �n(el)
0

�n(ion,max)
q

∣∣∣∣∣. (9)

From the latter equation, we see that when the electronic
contribution to the dispersion dominates, HHG is phase-
matching limited (Lcoh � Labs); this is the case for high �,
� and low f , ω0. For the opposite case, free-electron and ion
contributions can compensate each other (such compensation
was discussed in [23]), so the macroscopic HHG is absorp-
tion limited. We study several resonant HHG conditions.
We consider the transition 3d104s2 1S0 −→ 3d94s24p 1P1

in Ga II (the transition energy is 21.88 eV and the linewidth
is 0.15 eV; see [4,24,25] for other parameters), the transition
4d105s2 1S0 −→ 4d95s25p(2D) 1P1 in In II (the transition
energy is 19.92 eV and the linewidth is about 0.1 eV; see [26]
for other parameters), and the “giant” 3p −→ 3d resonance
in Mn II (the transition energy is 51 eV and the linewidth is
about 3.5 eV; see [27] for other parameters). We find that for
the IR driver for all three cases, the ratio (6) is below unity,
and thus HHG is phase-matching limited. However, when we
switch to a visible driver, the situation becomes complicated.
For the resonant harmonic 7 (H7) generation in Ga II (driver

wavelength is ∼400 nm,1 which is the second harmonic of the
Ti:sapphire laser), we find that ratio (6) is 0.96, and for the res-
onant H7 generation in In II (driver wavelength is ∼435 nm),
this ratio is as high as 2.1. Thus, above the exact resonance,
the contribution of the free electrons can be compensated
by the ionic contribution in Ga as well as in In plasma. In
the vicinity of the frequencies, for which the compensation
takes place, the HHG is absorption limited, while outside this
band gap, it is phase-matching limited; see Eq. (8). For the
resonant H17 generation in Mn plasma (driver wavelength
is ∼420 nm), the ratio (6) is 0.034, and thus the HHG is
phase-matching limited even using a visible generating field.
The wave-vector mismatch, which is a key factor limiting the
HHG macroscopic efficiency in this case, can be essentially
reduced for the process of HFM. Let us consider the HFM
process involving Q quanta from the strong fundamental and
m quanta from the additional weak field. The HFM process
leads to the generation of frequency components,

ωQ,m = Qω0 + mω1, (10)

where Q, m, and Q + m are natural, integer, and odd numbers,
respectively. For a weak additional field in comparison to the
driver, HFM leads to a notable efficiency only for processes
involving few weak-field quanta: |m| � Q. If the plasma con-
tribution dominates in the dispersion, the phase mismatch
neglects [11,15–19] for this process for m < 0 and for the
frequency of the weak field,

ω1 = |m|
Q

ω0, (11)

which means that the weak-field frequency is much lower than
the one of the driver. Note that for orders q that neighbor the
ideally phase-matched Q, the phase mismatch is rather small.

One more phenomenon that influences the macroscopic
efficiency of HHG and HFM is the plasma-induced blueshift.
The ionization of the medium by the generating fields leads
to frequency shifts of these fields. In spite of being small in
comparison to the fields’ frequencies, these shifts are multi-
plied by a high order of the process that leads to a noticeable
shift of the generated frequencies. The latter shift can limit
the macroscopic efficiency of the HHG and HFM processes
[11,28]. It was shown [20] that for HFM, the compensation of
the plasma-induced blueshifts is similar to the compensation
of the phase mismatch. Thus, the HFM process described
by (10) and (11) for q ≈ Q almost does not suffer from the
blueshift of the generating fields.

Below we numerically study the HHG and HFM macro-
scopic signals, taking into account the propagation of both the
generating and generated fields in Ga and Mn plasma. We as-
sume that initially, the plasma consists of singly charged ions
and free electrons. The one-dimensional (1D) propagation
equations for the fields are integrated as described in [28,29]
using a single-ion response calculated via numerical solution
of the 3D time-dependent Schrödinger equation (TDSE) at
every propagation step. The TDSE is solved for the ionic

1It has been shown that HHG with 400 nm driver in plasma plumes
[4,8] achieves a much higher efficiency than using an 800 nm one.
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FIG. 1. H7 macroscopic signals generated in Ga plasma as a
function of propagation length. The drivers’ wavelengths are 396 nm
(above resonance), 400 nm (in resonance), and 404 nm (below reso-
nance). The laser pulse intensity is 3 × 1014 W/cm2, its duration is
60 fs, and the plasma density is 1018 cm−3.

model potential (similar to the one used in [4,30]) with the
parameters chosen to reproduce the properties of the real ion:
the ionization energy, the AIS energy, and its width. Note
that because we consider 1D propagation, the effect of the
geometric dispersion is not taken into account. However, for
typical conditions of HHG experiments in laser plasmas, this
term is negligible in comparison to the plasma dispersion.

To estimate the XUV field propagation in plasma, we nu-
merically calculate the refractive index and the absorption
coefficient in the absence of the laser field, which defines
the actual HH refraction and absorption only approximately
because the laser field modifies them.

First, we study the effect of the detuning from the exact
resonance between the harmonic energy and the ground-AIS
transition energy on the propagation of the resonant HHG
emission. Figure 1 shows the calculated H7 intensity in Ga
plasma for three driving wavelengths in the vicinity of the
7-photon resonance with the ground-AIS transition. When the
driving wavelength is such that H7 is in the exact resonance,
as well as when H7 is above the exact resonance, the harmonic
signal monotonically saturates with the propagation length.
This means that the generation is absorption limited, in agree-
ment with our analytical model above. When the fundamental
frequency is such that “resonant” H7 is below the resonance,
the initial growth of the macroscopic signal is stronger, but
it stops growing at a much shorter distance. This behavior
is followed by oscillations of the harmonic signal, which is
typical for phase-matching limited generation. Thus, even a
minor variation of the driving wavelength (resulting in the
detuning of H7 near the resonance) changes the behavior of
its macroscopic signal.

To understand this feature in more detail, we perform
the calculations for a number of driving wavelengths; see
the results in Fig. 2. The macroscopic signal presented in
the figure is the maximal HH macroscopic intensity achieved
during propagation in the target. We see that the absorption
line and the resonant enhancement of the microscopic HHG

FIG. 2. XUV absorption line and intensities of microscopic
and macroscopic (a) H7 responses of Ga and (b) H17 responses
of Mn plasma for different fundamental wavelengths. Other laser
pulse parameters for (a) are the same as in Fig. 1, and for (b) the
driving pulse intensity is 9 × 1014 W/cm2 and its duration is 40 fs.
The upper panels of each graph show two main additives to the
refractive indexes of the driver and of the resonant HH, defining
phase matching of the HHG.

response do not coincide. For Ga plasma [Fig. 2(a)], at first
glance, the generation conditions below the absorption line
are favorable due to the high microscopic response and low
absorption. However, Fig. 1 as well as the macroscopic re-
sponse in Fig. 2(a) show higher signal above the resonance.

To clarify this, Fig. 2 also shows the two main, numerically
calculated contributions to the refractive indexes, which define
the wave-vector mismatch for HHG in plasma; see Eqs. (2)
and (3). One can see that above the resonance, these two
terms compensate each other, improving phase matching for
HHG. As discussed above, such compensation is possible for
strong and narrow resonances (such as the ones in Ga II and
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FIG. 3. Macroscopic HHG and HFM signals in Mn plasma with
propagation. The XUV intensities are divided by the maximal XUV
intensity from HHG in Ne. The driver wavelength for HHG is 420 nm
and for HFM is 415 nm; the weak-field wavelength is 3800 nm. The
driving pulse intensity and duration are as in Fig. 2(b), and the weak-
field intensity is 0.5% of the driver. Inset: The sketch of the HHG and
HFM processes.

In II), and only using visible or UV fundamental for which the
contribution �n(el)

0 is moderate.
When H7 in Ga plasma is below the resonance, the mi-

croscopic response is high, but the phase matching is weak
and HHG is limited by both absorption and phase matching,
providing the weakest signal shown in Fig. 1. Above the
resonance, the microscopic response is weaker, but the phase
matching is better, providing higher HHG signal. The XUV
absorption plays a key role in the saturation of this signal, as
well as for the resonant case.

For the nonresonant harmonics, the plasma contribution to
dispersion dominates, leading to a poor phase matching for
their generation. Thus, the resonant harmonic is enhanced
with respect to the neighboring ones not only due to mi-
croscopic, but also due to macroscopic response properties.
For the resonant HHG in Ga plasma [4], the observed en-
hancement of the macroscopic signal was higher than the
enhancement of the microscopic signal calculated in the same
paper. This can be attributed to the favorable phase matching
of the resonant HHG described above.

We also study HHG in Mn plasma in the vicinity of the
resonance. Figure 2(b) presents the absorption coefficient as
well as the microscopic and macroscopic responses. One can
see that the peaks of the three lines coincide, but their widths
are different. The figure also shows the main contributions
to the refraction coefficients for H17 and for the driver. We
see that the phase-matching conditions qualitatively differ
from the ones in Ga plasma: in Mn plasma, the resonant

refraction coefficient is too low to compensate the plasma
dispersion (in agreement with our analytical model), so HHG
is phase-matching limited in the resonant case, as well as
below and above it. Figure 3 shows the resonant H17 intensity
with propagation length. One can see deep oscillations of the
macroscopic signal, which are typical for phase-matching-
limited generation.

To quantitatively characterize the HHG efficiency in
plasma, we calculate the HHG macroscopic signal in (ini-
tially neutral) Ne. Note that a rather high driving intensity is
necessary to achieve a cutoff higher than H17 of the 400 nm
fundamental. We choose Ne because HHG in Ne is compatible
with such a high fundamental intensity. In Fig. 3, one can see
that the H17 generation efficiency in Mn plasma can be an
order of magnitude higher than in Ne. This is achieved due to
the very high resonant microscopic response of Mn II and in
spite of the weak phase matching of HHG in Mn plasma.

As we discussed above, the efficiency of phase-matching-
limited HHG can be improved by realizing HFM. The phase
mismatch vanishes for harmonics with orders q ≈ Q; see
Eq. (11). The highest conversion efficiency is achieved for q
slightly lower than Q [28]; so to optimize HFM with q = 17,
we choose Q = 19 and m = −2, and from Eq. (11), we find
that the low-frequency field wavelength is 3800 nm. In Fig. 3,
we see that the improved phase matching for HFM allows a
growth of the signal up to a much longer propagation length
than for HHG. This leads to a higher macroscopic response
which exceeds the one for HHG in Ne by two orders of
magnitude.

To summarize, we theoretically study the phase match-
ing of resonant HHG and HFM in plasma. We integrate the
propagation equations using the nonlinear polarization found
via numerical solution of the TDSE at every propagation
step. The macroscopic HH signal is enhanced in the vicinity
of multiphoton resonances with the transition between the
ground state and AIS of the generating ion. We show that
narrow and strong resonances in Ga II (same as in In II)
ions provide compensation of the plasma dispersion in the
region above the exact resonance. As a result, the improved
phase matching leads to a high macroscopic signal in this
spectral region. However, the compensation does not take
place for wider resonances, as in Mn plasma, where the phase
matching can be achieved instead in the HFM process. We
compare the HHG efficiency in Ne gas and Mn plasma and
show that the resonant HHG in plasma is an order of mag-
nitude more effective than in the gas, while another order
of magnitude can be gained switching from HHG to HFM
in plasma.
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