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Homodyne detection is optimal for quantum interferometry with path-entangled coherent states
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We present measurement schemes that do not rely on photon-number-resolving detectors but are nevertheless
optimal for estimating a differential phase shift in interferometry with either an entangled coherent state or a
qubit which-path state (where the path taken by a coherent-state wave packet is entangled with the state of a
qubit). The homodyning schemes analyzed here achieve optimality (saturate the quantum Cramér-Rao bound)
by maximizing the sensitivity of measurement outcomes to phase-dependent interference fringes in a reduced
Wigner distribution. In the presence of photon loss, the schemes become suboptimal, but we find that their
performance is independent of the phase to be measured. They can therefore be implemented without any prior
information about the phase and without adapting the strategy during measurement, unlike strategies based on
photon-number parity measurements or direct photon counting.
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Interferometry for phase estimation is one of the funda-
mental tasks of quantum metrology [1], with applications in
fields ranging from biophysics [2–4] to gravitational wave
detection [5–7]. The ultimate goal of quantum-enhanced in-
terferometry is to determine an unknown phase φ with a
precision better than the standard quantum limit (shot-noise
limit) for uncorrelated photons, given by �φ � δφSQL =
N−1/2, where �φ is the standard deviation of φ and N is
the number of photons that pass through the interferometer
in a single measurement. Correlations arising from nonclas-
sical states can however lead to better phase sensitivity, with
improved scaling at the Heisenberg limit �φ ∝ N−1.

The first study of quantum-enhanced interferometry con-
sidered phase estimation with a Mach-Zehnder interferometer
(Fig. 1) fed by a coherent state mixed on a beam splitter
with a squeezed vacuum state [11]. In this configuration,
Heisenberg-limited precision can be achieved by counting the
precise number of photons arriving at each of two output
ports of the interferometer [12,13]. Photon counting is in fact
optimal for this state, in the sense that it enables the best
precision allowed by quantum mechanics, δφmin, given by the
quantum Cramér-Rao bound (CRB) [14–16]

�φ � δφmin = 1√
MIQ(ρφ )

, (1)

where M is the number of independent measurements
and IQ(ρφ ) is the quantum Fisher information of ρφ =
e−iφAρ(0)eiφA with respect to A, the generator of φ. For-
mally, the quantum Fisher information is given by IQ(ρφ ) =
Tr{ρφL2}, with the symmetric logarithmic derivative opera-
tor L defined implicitly through the relation ∂φρφ = (Lρφ +
ρφL)/2 [17].
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Photon counting provides an optimal strategy not just for
a coherent state mixed with squeezed vacuum [12,13], but
for any path-symmetric pure state [18]. The class of path-
symmetric states includes many of the states most commonly
considered for quantum metrology, such as N00N states
[19–21], twin Fock states [22], two-mode squeezed vacuum
states [23], and entangled coherent states (ECSs) [9]. This
optimal measurement strategy may however be associated
with additional technological complexity: Photon-number-
resolving detectors (typically, superconducting transition-
edge sensors) must be kept at cryogenic temperatures, and
state-of-the-art number-resolving detectors have only now
demonstrated the ability to resolve up to approximately
100 photons [24], while phase-sensitive (quadrature) mea-
surements like homodyne and heterodyne detection require
less-specialized equipment.

In this Letter, we present homodyne-detection-based
schemes that are optimal (in the absence of photon loss,
p = 0 in Fig. 1) for quantum interferometry with either of two
path-entangled coherent states, i.e., an ECS [25] or a qubit
which-path (QWP) state [10],

|ECS〉 = Nα (|α, 0〉 + |0, α〉), (2)

|QWP〉 = 1√
2

(|↑〉 |α, 0〉 + |↓〉 |0, α〉), (3)

where Nα = [2(1 + e−|α|2 )]−1/2. Here |α1, α2〉 =∏
i=1,2 Di(αi) |0〉, with vacuum state |0〉 and displacement

operator Di(α) = eαa†
i −H.c.. This is a two-mode coherent

state with amplitude αi in the traveling-wave mode that is
annihilated by ai, located in arm i = 1, 2 of the interferometer.
In Eq. (3), the states |↑〉 and |↓〉 are energy eigenstates of a
two-level system (qubit).

As light passes through the interferometer, the initially
prepared state acquires a dependence on the differential phase
φ = φ1 − φ2 through unitary evolution generated by Uφ =
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FIG. 1. A Mach-Zehnder interferometer can be used to estimate
the differential phase shift φ = φ1 − φ2. Photon loss from the in-
terferometer occurs with a probability per photon p. Homodyne
detection is implemented by mixing the output of the interferometer
with a local-oscillator (LO) field. For state preparation, an ECS can
be produced by mixing an even cat state Nα (|α/

√
2〉 + | − α/

√
2〉)

with a coherent state |α/
√

2〉 on a 50:50 beam splitter (BS) [8,9].
In a cavity-QED setup, a QWP state can be generated by feeding a
coherent-state wave packet into the input port of a cavity containing a
qubit prepared in |+〉 ∝ |↑〉 + |↓〉 while also modulating the strength
of an asymmetric longitudinal (proportional to |↑〉〈↑|) cavity-qubit
coupling [10].

∏
i=1,2 e−iφini , where ni = a†

i ai is the number operator for
mode i. For a pure state, the quantum Fisher information IQ

of |Sφ〉 = Uφ |S〉 is given in terms of the variance of J3 =
(n1 − n2)/2 with respect to |Sφ〉 as IQ(|Sφ〉) = 4 Var|Sφ〉(J3)
[17]. Evaluating the variance gives

IQ(|ECSφ〉) = n̄2 + [1 + w(n̄e−n̄)]n̄, (4)

IQ(|QWPφ〉) = n̄2 + n̄, (5)

where n̄ = 〈n1 + n2〉 is the total average number of photons
and w(z) is the Lambert W function. For a QWP state, n̄ =
|α|2. For an ECS, however, n̄ = |α|2/(1 + e−|α|2 ). Inverting
this relation is what produces a dependence on w(n̄e−n̄). The
term proportional to w in IQ(|ECSφ〉) provides a small advan-
tage over the QWP state at small n̄. For large n̄, however, the
advantage is exponentially suppressed since w(n̄e−n̄) � n̄e−n̄

for n̄ 	 1. At large n̄, both ECSs and QWP states provide
Heisenberg-limited scaling proportional to n̄2. Both states
(ECS and QWP) also have a small precision advantage over
N00N states consisting of superpositions |N00N〉 ∝ |N, 0〉 +
|0, N〉 of N-photon Fock states, for which IQ(|N00Nφ〉) = N2

[19–21]. An analogous expression for the quantum Fisher
information of an ECS [Eq. (4)] was derived in Ref. [26] for
estimation of the total phase shift φ1 in mode 1 (generated
by a†

1a1), rather than estimation of the differential phase shift
φ = φ1 − φ2 (generated by J3).

Not every measurement scheme can be used to saturate
the quantum CRB. For a scheme where φ is estimated by
measuring some quantity O having outcomes x, described
by the positive-operator-valued measure (POVM) {�̂x}, the
standard deviation �φ of any unbiased estimator φ̂(x) has a
lower bound given by the classical CRB [27],

�φ � δφ = 1√
MIC(φ)

. (6)

Here the classical Fisher information IC(φ) is given by

IC(φ) ≡ IC[p(x|φ)] =
∫

dx[∂φ ln p(x|φ)]2 p(x|φ), (7)

where p(x|φ) = Tr{ρφ�̂x}. Under some regularity conditions
[requiring, for instance, that p(x|φ) have a unique global
maximum], the maximum-likelihood estimator φ̂MLE(x) =
argmaxφ p(x|φ) saturates the CRB in the asymptotic limit
M → ∞, where x = {xi}M

i=1 is a set of observations sampled
from p(x|φ) [27]. Since the classical CRB can be saturated in
principle, a measurement scheme is optimal when its classical
Fisher information IC(φ) is equal to IQ(ρφ ), in which case
δφ = δφmin.

We now explain how homodyne detection can be used to
achieve an optimal measurement for ECSs and QWP states
in the absence of photon loss. After light passes through the
interferometer, the initially prepared state |S〉 is mapped to
|Sφ〉. The light is then passed through a 50:50 beam splitter
(Fig. 1) that maps the interferometer modes ai (i = 1, 2) to
output modes a± = (a1 ± a2)/

√
2 via a unitary operation UBS.

The resulting state |̃Sφ〉 = UBS |Sφ〉 is then given by

|ẼCSφ〉 = Nα (|αφ1 , αφ1〉 + |−αφ2 , αφ2〉), (8)

| ˜QWPφ〉 = 1√
2

(|↑〉 |αφ1 , αφ1〉 + |↓〉 |−αφ2 , αφ2〉), (9)

where αφ j = eiφ j α/
√

2. The measurement schemes consist of
(i) measuring modes a± with homodyne detection using local-
oscillator phases ϕ±, respectively, where

ϕ+ = π

2
+ φ̄,

ϕ− = φ̄,

φ̄ = 1
2 (φ1 + φ2). (10)

Prior information about the average phase φ̄ is therefore re-
quired. For the ECS, that completes the measurement. In the
case of the QWP state, the homodyne measurements are fol-
lowed by (ii) a measurement of the qubit in the Pauli X basis,
with outcomes X = ± for states |±〉 = (|↑〉 ± |↓〉)/

√
2.

To evaluate the classical Fisher information [Eq. (7)] as-
sociated with the measurement schemes presented here, we
derive conditional probability distributions pS (x|φ) govern-
ing the measurement outcomes, where for both states S =
ECS, QWP the variable x includes the two outcomes for ho-
modyne detection of modes a± [step (i)] and for the QWP
state x also includes the outcome of the X -basis qubit mea-
surement [step (ii)]. We find that in the absence of photon loss
(p = 0), the measurement schemes described by steps (i) and
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FIG. 2. Reduced Wigner distribution W (x+, p+) = ∫
dx−d p−W

(x+, p+, x−, p−) of mode a+, where W (x+, p+, x−, p−) is the Wigner
distribution of the state resulting from an initial ECS [Eq. (8)] for
α = 3, φ1 = 0.5, and φ2 = 0. Homodyne detection of mode a+ with
a local-oscillator phase of ϕ+ = π/2 + φ̄ implements a projection
onto the rotated quadrature indicated by the black dashed line. Here
αφ j = eiφ j α/

√
2 [cf. Eqs. (8) and (9)].

(ii) are optimal,

IC[pS (x|φ)] = IQ(|Sφ〉), S = ECS, QWP. (11)

The optimality is a consequence of choosing local-oscillator
phases ϕ± [Eq. (10)] that make the measurement outcomes
maximally sensitive to the φ-dependent fringes in the Wigner
distribution of |S̃φ〉 [Eqs. (8) and (9)] (see Fig. 2 for the case of
S = ECS). The measurement schemes presented above only
make use of homodyne detection and (in the case of the
QWP state) single-qubit control or readout. Notably, we have
found that an optimal measurement for the QWP state can
be devised without the use of entangling operations, such as
the controlled-phase gate considered in Ref. [28] as a way of
mapping phase information from a bosonic system into the
state of a qubit. Such entangling operations may be difficult
to implement in an interferometer. Additionally, while the
authors of Ref. [29] argued that achieving Heisenberg-limited
metrology with an ECS cannot be accomplished with homo-
dyning, we show here that this is untrue provided we have
prior information about φ̄.

A consequence of Eq. (11) is that the precision δφ ∝
[IC(φ)]−1/2 that can be achieved using these measurements
is independent of the true value of φ (since IQ is φ inde-
pendent), allowing for an optimal nonadaptive measurement
without prior knowledge of φ. In the case of an ECS, this can
be contrasted to the scheme based on photon-number parity
measurements [9], where information about φ is extracted
by determining whether the number of photons in one of the
output modes of the interferometer is even or odd. Although
parity measurements are suboptimal, they can nevertheless be
used to achieve Heisenberg-limited scaling [9]. For | ˜ECSφ〉,

FIG. 3. Precision δφ [Eq. (6)] as a function of φ, relative to
the standard quantum limit δφSQL ≡ [(1 − p)Mn̄]−1/2, for an ECS
with n̄ = 10 and p = 0.05 (5% photon loss). The values that can
be achieved with homodyne detection (black solid line) and photon
counting (black dashed line) were calculated using the probability
distributions given in Eqs. (14) and (15), respectively. The gray line
corresponds to the optimal precision [δφmin with the quantum Fisher
information given in Eq. (13)].

the probability p(even|φ) of measuring an even number of
photons in one of the output modes exhibits φ-dependent
oscillations that can be used to extract information about
φ [9]. However, since the visibility of these oscillations is
suppressed by a factor e−|α|2sin2(φ/2), the scheme is effective
in the limit n̄ � |α|2 	 1 only if |α|2φ2  1, requiring prior
knowledge of φ with a precision on the order of 1/|α|. The
need for prior characterization of φ could be eliminated by
retaining the full counting statistics, as photon counting is also
optimal for an ECS [18,30]. (We find that photon counting is
optimal for a QWP state as well, when supplemented by a final
X -basis measurement of the qubit [31].) However, as soon
as photon loss is introduced, the classical Fisher information
associated with photon counting acquires a dependence on φ,
and some amount of a priori knowledge is required in order
to avoid values of φ where the Fisher information vanishes (in
which case δφ → ∞). As we now show, the homodyne-based
measurement schemes presented here do not suffer from this
drawback (Fig. 3).

From this point onward, we focus on the ECS and therefore
dispense with the use of explicit subscripts indicating the state
being considered. The results for the QWP state are qualita-
tively similar and are given in the Supplemental Material [31].

To investigate performance accounting for photon loss,
we model losses in the interferometer by inserting a fic-
titious beam splitter into each interferometer arm [26].
These beam splitters are modeled by the operator Rc,c�

(p) =
earcsin

√
p(c†

�
c−H.c.), describing scattering of photons from mode

c into loss mode c� with probability p. Under the action
of the lossy interferometer, the initial state |ECS〉 [Eq. (2)]
evolves to

ρφ = Tr�{RUφρ0U
†
φ R†}, R =

∏
i=1,2

Rai,a�i
(p), (12)
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where ρ0 = |ECS〉〈ECS| ⊗ |0〉〈0|� is the initial state of the in-
terferometer and loss modes (annihilated by a�i , i = 1, 2) and
Tr� describes a trace over the state of both loss modes. Note
that the same state ρφ is obtained regardless of the order in
which Uφ and R are applied. For a mixed state ρφ , the quantum
Fisher information of ρφ with respect to J3 can be calculated
by evaluating matrix elements of J3 in the eigenbasis of ρφ

[17]. This procedure gives

IQ(ρφ ) = (1 − p)2n̄2e−2p[n̄+w(n̄e−n̄ )]

+ (1 − p)n̄[1 + (1 − p)w(n̄e−n̄)], (13)

where w(z) is again the Lambert W function. Photon loss
therefore controls a transition from Heisenberg-limited (pro-
portional to n̄2) scaling to scaling at the standard quantum
limit (proportional to n̄). An analogous result for estimation
of the total phase shift φ1 in arm 1 (rather than φ = φ1 − φ2),
accounting for photon loss, was presented in Ref. [26]. A
detailed derivation of the quantum Fisher information of the
QWP state, accounting for photon loss and qubit dephasing,
is given in the Supplemental Material [31].

Homodyne detection is performed by mixing the signal
field with a local oscillator prepared in a coherent state |β〉,
where we assume that β ∈ R+. In the strong-oscillator limit
|β| 	 |α|, homodyne detection of mode a with a local os-
cillator in state |βei(ϕ−π )〉 implements a projection onto the
eigenbasis |xϕ〉 = e−iϕa†a |x〉 of the rotated quadrature opera-
tor x̂ϕ = x̂ cos ϕ + p̂ sin ϕ [36], where x̂ = (a† + a)/

√
2 and

p̂ = i(a† − a)/
√

2 are canonically conjugate and |x〉 is an
eigenstate of x̂ with eigenvalue x. For measurement of mode
a+ with local-oscillator phase ϕ+ = π/2 + φ̄ [Eq. (10)], this
corresponds to projecting the coherent state in mode a+ onto
a quadrature rotated by an amount φ̄ relative to the out-of-
phase quadrature: x̂ϕ+ = −x̂+ sin φ̄ + p̂+ cos φ̄ (Fig. 2). For
the measurement scheme presented here, the POVM element
describing the measurement of the ECS [step (i)] is there-
fore given by �̂x = ⊗

σ=± e−iϕσ a†
σ aσ |xσ 〉〈xσ |eiϕσ a†

σ aσ . Without
loss of generality, we assume that α ∈ R, in which case
the probability distribution p(x|φ) = Tr{ρφ�̂x} governing the
homodyne-measurement outcomes is given by

p(x|φ) = 2N 2
α [1 + e−pα2

cos �x(φ)]
∏
s=±

gs(xs, φ), (14)

where gs(xs, φ) = π−1/2 exp{−[xs − μs(φ)]2}, μ+(φ) =√
1 − pα sin φ

2 , μ−(φ) = √
1 − pα cos φ

2 , and �x(φ) =
2x+μ−(φ) − 2x−μ+(φ). Setting p = 0, this result [Eq. (14)]
recovers Eq. (11) for S = ECS.

The term proportional to cos �x(φ) in Eq. (14) is a conse-
quence of phase-space interference in the Wigner distribution
of ρφ . To build intuition for this, consider the single-mode
cat state |C+〉 ∝ (|α〉 + |−α〉). For α ∈ R, the states |±α〉
are displaced along the x̂ quadrature. A homodyne mea-
surement with a local-oscillator phase π/2 (corresponding
to a projection onto the p̂ axis) then returns a displace-
ment xπ/2 with probability p(xπ/2) ∝ (1 + cos

√
8αxπ/2) [37],

where the oscillating term is a reflection of interference
fringes parallel to the x̂ axis in the Wigner distribution of
|C+〉. For the measurement of modes a± proposed here, the
local-oscillator phases ϕ± [Eq. (10)] are both chosen so that

FIG. 4. The left axis shows the precision given by the quantum
CRB, δφmin, relative to the standard quantum limit δφSQL ≡ [(1 −
p)Mn̄]−1/2, for an ECS with photon loss p = 0.01 (black solid line)
and p = 0.1 (black dashed line). The right axis shows the precision
that can be attained with homodyning, δφ, for p = 0.01 (gray solid
line) and p = 0.1 (gray dashed line).

the phase-space axis associated with the measured quadra-
ture x̂ϕ± bisects the angle subtended by the coherent-state
displacement of modes a± in the two branches of |ẼCSφ〉
(Fig. 2). Measurements of displacements along these axes
are therefore maximally sensitive to the interference fringes
between the two branches, resulting in an optimal detection
scheme in the ideal scenario of zero photon loss (p = 0)
Eq. (11)]. The dependence of these interference fringes on φ

is what produces Heisenberg-limited scaling in the classical
Fisher information for this measurement scheme.

In Fig. 4 we compare the precision δφ that can be achieved
using this homodyning scheme to δφmin [Eq. (1)] for two
values of p. For n̄ 	 p−1, the performance of the homodyning
scheme saturates at δφ = √

2δφSQL (Fig. 4). This is because
for n̄ � α2 	 p−1, the interference term in Eq. (14) is ex-
ponentially suppressed, and p(x|φ) is given approximately
by the product of two Gaussians p(x|φ) ≈ ∏

s=± gs(xs, φ). In
this case, IC[p(x|φ)] ≈ IC[g+(x+, φ)] + IC[g−(x−, φ)]. Not-
ing that μ±(φ) both oscillate with a period 4π (rather than
2π ), the factor of

√
2 relating δφ to δφSQL in the limit pn̄ 	 1

can therefore be understood as a consequence of subresolution
in the Gaussian distributions, to be contrasted with superres-
olution [38], where the distributions would instead depend on
an amplified phase mφ with m > 1.

As discussed above, photon counting can also be used to
saturate the quantum CRB for an ECS in the absence of pho-
ton loss [18,30]. Accounting for photon loss, the probability
p(m, n|φ) of detecting m and n photons in modes a+ and a−,
respectively, is given by

p(m, n|φ) = 2N 2
α [1 + e−pα2

cos �m,n(φ)]
∏

j=m,n

P( j; λα ),

(15)

where �m,n(φ) = (m + n)φ + mπ , P( j; λ) = e−λλ j/ j!, and
λα = (1 − p)α2/2. We have verified numerically that the
Fisher information IC[p(x|φ)] is independent of φ, while
IC[p(m, n|φ)] = 0 for φ = 0, π , leading to singularities in
Fig. 3. In the asymptotic limit M → ∞, the distribution of
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outcomes φ̂MLE − φ associated with the maximum-likelihood
estimate φ̂MLE of φ converges to a zero-mean normal distri-
bution with variance δφ2 = 1/MIC(φ) [27]. For maximum-
likelihood estimation in the vicinity of φ = 0, π , however,
the maximum-likelihood estimator will not converge to the
true value of φ when an estimation strategy based on photon
counting is used. This caveat is not present when the homo-
dyning scheme is used instead, due to the phase independence
of IC[p(x|φ)] (Fig. 3).

Here we have presented measurement schemes based on
homodyne detection that are optimal, in the absence of photon
loss, for interferometry using either an ECS or a QWP state.
The schemes achieve optimality by using prior knowledge
of the average phase φ̄ to choose local-oscillator phases that
maximize the sensitivity of measurement outcomes to the
φ-dependent interference fringes in the states’ Wigner distri-
butions. We have also shown that the achievable precision, as
given by the CRB, is independent of the true value of φ, even
in the presence of photon loss.

A natural extension of the strategies used here would be
to investigate whether an optimal homodyning scheme can
be found for the Caves state (produced by mixing a coher-

ent state with squeezed vacuum [11]). For a coherent state
combined on a beam splitter with any other quantum state
of light, it was found that the squeezed vacuum produces the
largest quantum Fisher information at a fixed average photon
number [13]. A Caves state therefore has greater potential
sensitivity than either the ECS or the QWP state investigated
here. For a Caves state, it is known that photon-number parity
measurements saturate the quantum CRB in the absence of
photon loss, but only in the vicinity of φ = 0 [39]. In the
presence of photon loss, it was found in Ref. [40] that a nonop-
timal homodyning scheme for the Caves state exhibited better
sensitivity than parity measurements. Optimizing the homo-
dyning scheme for this state using the ideas presented here
could therefore lead to a better and more practical inference
method.
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