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Fermionic anyons: Entanglement and quantum computation from a resource-theoretic perspective
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Quantum computational models can be approached via the lens of resources needed to perform computational
tasks, where a computational advantage is achieved by consuming specific forms of quantum resources, or,
conversely, resource-free computations are classically simulable. Can we similarly identify quantum computa-
tional resources in the setting of more general quasi-particle statistics? In this work, we develop a framework to
characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon. As
we evince, the usual notion of partial trace fails in this scenario, so we build the notion of separability through a
fractional Jordan-Wigner transformation, leading to an entanglement description of fermionic-anyon states. We
apply this notion of fermionic-anyon separability and the unitary operations that preserve it, mapping it to the free
resources of matchgate circuits. We also identify how entanglement between two qubits encoded in a dual-rail
manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
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Introduction. Over the last five decades, our notion of
identical particles in nature has expanded beyond fermions
and bosons. Many two-dimensional systems were shown to
contain anyonic excitations [1,2], which are quasi-particles
characterized by the nontrivial phases their wave functions
acquire under particle exchange. These include fractional
quantum Hall states [3,4], topological spin liquids [5,6],
and semiconductor nanowire arrays [7,8]. These systems
are seen as possible platforms for fault-tolerant quantum
computing [1,8], given their inherent error-correcting proper-
ties [9–11] and recent experimental evidence of their existence
and predicted properties [12].

Although anyons are most commonly associated with
two-dimensional systems, they can also be defined in one
dimension. Some notable examples are anyons obtained by
dimensional reduction [13,14], or appearing as a free-particle
description of one-dimensional systems with two-body in-
teractions [15–19]. The one-dimensional anyons considered
here are motivated by their role in solving many-body
systems with three-body interactions [20–26] and have
been investigated in optical lattice implementations [27–30].
Although they lack the topological properties of their two-
dimensional counterparts [31], their relation to standard
fermionic and bosonic systems via generalized Jordan-Wigner
transformations [32–34] makes them a good case study for
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generalizations of quantum computing with bosonic and
fermionic linear optics.

In this Letter, we develop a framework to define and inves-
tigate the separability of fermionic anyons. Since this is well
understood for fermions, the naive approach is to directly re-
purpose definitions of fermionic entanglement to their anyonic
counterparts [35–38]. However, this sometimes leads to non-
sensical results. For example, we notice that single-particle
transformations on a manifestly unentangled pure state can
result in states with a nonzero entanglement entropy.

Within subspaces of fixed particle number, we circumvent
these problems by a well-motivated approach for single-
particle entanglement, and revise the definition of Schmidt
coefficients of a composite fermionic-anyon state based on a
noncanonical transformation over the anyonic states. Specif-
ically, we map the anyonic algebra to another system that
satisfies an anticommutative algebra, and prove that the
Schmidt coefficients of the resulting mapped state coincide
with those of the original anyonic state.

We showcase our approach by investigating the connec-
tion between separability and classical simulability in these
systems. Free-fermionic quantum circuits [39] and matchgate
computing [40,41] are quantum computing settings where
separability and computational power are tightly connected.
Nearest-neighbor matchgate circuits can be mapped to free-
fermion dynamics, and both are known to be classically
simulable. However, it is known that supplementing these
systems with any nonmatchgate operation (in the fermionic
picture, adding an interaction between particles) or any non-
matchgate generated state (respectively, any non-Gaussian

2469-9926/2024/110(1)/L010404(6) L010404-1 ©2024 American Physical Society

https://orcid.org/0000-0001-6840-0869
https://orcid.org/0000-0002-2614-2053
https://orcid.org/0000-0001-6411-3723
https://ror.org/03490as77
https://ror.org/001kv2y39
https://ror.org/036jqmy94
https://ror.org/02rjhbb08
https://ror.org/023b0x485
https://ror.org/002v2kq79
https://ror.org/04d836q62
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.L010404&domain=pdf&date_stamp=2024-07-08
https://doi.org/10.1103/PhysRevA.110.L010404


ALLAN TOSTA et al. PHYSICAL REVIEW A 110, L010404 (2024)

fermionic state) is enough to allow for universal quantum
computation [42]. Here, we leverage this connection to make
a similar statement for fermionic anyons. In particular, we
notice that both nonseparable states or transformations, as
per our definition, can be seen as computational resources.
Moreover, specific values of the fermionic-anyon phase ϕ re-
cover well-known results. Fermionic-anyon dynamics reduces
to fermionic linear optics when ϕ = 0, and to “qubit linear
optics” (or matchgate quantum computing) when ϕ = π .

One-dimensional fermionic anyons. Given a one-
dimensional set of m sites (or modes), we define a family of
operator algebras {Aϕ

m| ϕ ∈ [0, 2π )} over C, generated by
operators {aϕ,i| i = 1, ..., m}, satisfying

aϕ,ia
†
ϕ, j + e−iϕεi j a†

ϕ, jaϕ,i = δi j,

aϕ,iaϕ, j + eiϕεi j aϕ, jaϕ,i = 0, (1)

with εi j given by

εi j =
⎧⎨
⎩

1, if i < j
0, if i = j

−1, if i > j.

The variable ϕ is called the statistical parameter and deter-
mines the kind of particle described by the algebra. If ϕ = 0
we identify fi := a0,i, and A0

m ≡ Fm, where Fm is the algebra
of m-mode fermionic operators. If ϕ = π , then for all i, j
we have [aπ,i, aπ, j] = 0 as well as {aπ,i, a†

π, j} = 0, and we
identify Aπ

m ≡ Qm, where Qm is the algebra of operators for
m-mode hardcore bosons, or qubits [43]. For any other value
of ϕ, the algebra Aϕ

m describes particles with exotic exchange
statistics called fermionic anyons.

In the Supplemental Material [44] we show that, for all ϕ,
the algebras Aϕ

m have a well-defined Fock-space representa-
tion with number operators of the form a†

ϕ,iaϕ,i. Therefore, a
general pure state of N fermionic anyons has the form

|ψ〉 =
∑

IN

wIN a†
ϕ,i1

...a†
ϕ,iN

|vac〉, (2)

where |vac〉 is the vacuum state, IN = {i1 < · · · < iN } is a
shorthand for the list of particle indices, and

∑
IN

|wIN |2 = 1.
Separability for fermionic anyons. For a quantum system

with two sets of degrees of freedom, a standard quantifier of
correlations for pure states is the entanglement entropy [45],

E (|ψ〉) = S(ρred). (3)

Here, S(ρ) is the von Neumann entropy of ρ, and ρred is the
reduced state obtained by tracing out one of the subsystems.
However, naively applying a particle partial trace on systems
of fermionic anyons and computing its entanglement accord-
ing to Eq. (3) can lead to nonsensical results. To illustrate this,
consider the state

|ψθ 〉 = 1√
2

(a†
ϕ,1aϕ,2 + cos θa†

ϕ,1a†
ϕ,4 + i sin θa†

ϕ,2a†
ϕ,4)|vac〉.

It can be obtained by applying a fermionic-anyon
single-particle operation on a manifestly separable state
|ψ〉 = 1√

2
a†

ϕ,1(a†
ϕ,2 + a†

ϕ,4)|vac〉, i.e.,

|ψθ 〉 = exp[iθ (a†
ϕ,1aϕ,2 + a†

ϕ,1aϕ,2)]|ψ〉. (4)
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FIG. 1. Fermionic anyon entanglement as defined in Eq. (3) of
the state |ψθ〉. The plot shows how the von Neumann entropy of the
single-particle state varies as a function of ϕ, even though |ψθ〉 should
not have any particle entanglement.

Since particle entanglement is invariant under single-particle
operations, the entanglement entropy of |ψθ〉 should also be
invariant, and hence zero by construction. As shown in Fig. 1,
however, that is not the case.

For standard fermions, single-particle operations must act
as changes of basis over single-particle systems, implying
they have the second-quantized form

f †
i → U f †

i U † =
m∑

j=1

Ui j f †
j , (5)

where Ui j are elements of an m × m unitary matrix. This map
is well defined for fermions because it is canonical, i.e., does
not change particle commutation relations. However, defining
single-particle operations for fermionic anyons by analogy
with Eq. 5 (i.e., replacing f with aϕ) does not produce a
canonical transformation. To properly define these operations
for fermionic anyons, we must find an appropriate definition
for their canonical transformations.

As shown in Refs. [46,47], creation and annihilation oper-
ators for fermionic anyons (for any ϕ) can be identified with
operators in the usual fermionic algebra via the relation

Jϕ (aϕ, j ) = f je
−iϕ

∑ j−1
k=1 f †

k fk , (6)

known as the fractional Jordan-Wigner transform (JWT). It
follows that a†

ϕ,iaϕ,i = f †
i fi, from which we obtain the inverse

relationship

J−1
ϕ ( f j ) = aϕ, je

iϕ
∑ j−1

k=1 a†
ϕ,kaϕ,k , (7)

Thus, we define a map Jϕ over operators in Fm that is linear,
invertible, and preserves operator products and conjugation
(see the Supplemental Material [44]), and use it to shift be-
tween the fermionic and anyonic forms of any operator. In
other words, given O ∈ Fm, we define the mapped operators
via JWT by the following:

O =: [O]0 = Jϕ ([O]ϕ ), [O]ϕ = J−1
ϕ ([O]0). (8)

Thus, if [U ]0 is a single-particle change of basis over
fermionic states, then [U ]ϕ must have the same action in
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terms of fermionic-anyon states. For fermionic systems, an
N-particle state |φ〉 is separable, i.e., it has no particle entan-
glement, if there is an N-particle state in the Fock basis and a
single-particle operator U such that [48,49]

|φ〉 = [U ]0( f †
i1

. . . f †
iN

)|vac〉, (9)

where we can assume that i1 < · · · < im. These states are
described by a single Slater determinant, with only exchange
correlations due to symmetry [50,51]. We now extend this
notion for general fermionic anyons, leading to the central
definition in this work:

Definition 1 (Separable fermionic anyon states). A pure
N-particle fermionic-anyon state |φ〉 is separable if and only
if there is a single-particle fermionic operator [U ]0 such that

|φ〉 = [U ]ϕ (a†
ϕ,i1

. . . a†
ϕ,iN

)|vac〉, (10)

where [U ]ϕ = J−1
ϕ ([U ]0).

Having defined a separability criterion, we investigate en-
tanglement in fermionic anyons by adapting corresponding
concepts for fermions. For instance, for fermionic systems,
Ref. [52] shows that single-particle entanglement can be
quantified through the minimization over all possible mode
representations of

ESP(|ψ〉) = min
f

∑
i

H (〈 f †
i fi〉, 〈 fi f †

i 〉), (11)

where H (p, 1 − p) = −p log p − (1 − p) log(1 − p) is the
Shannon binary entropy, and fi are the fermionic operators
transformed according to the Bogoliubov transformation in
Eq. (5). For fermionic anyons, the entanglement can be ob-
tained by mapping the anyonic state into a fermionic form,
calculating the minimization of Eq. (11), and translating the
new state back into anyonic form. Since Jϕ is a *-algebra
endomorphism, we obtain the following theorems (see the
Supplemental Material [44] for proof).

Theorem 1 (Single-particle entanglement for fermionic
anyons). For a fermionic-anyon state with fixed particle
number, there exists a mode representation such that its
single-particle reduced state has the same eigenvalues as the
corresponding fermionic single-particle state, which mini-
mizes Eq. (11).

Theorem 1 implies that there exists a fermionic-anyon
mode representation that reflects the particle separability, even
though the von Neumann entropy of the single-particle re-
duced state, obtained through the partial trace on another
basis, does not characterize the separability. Such a rep-
resentation ensures that the reduced state is diagonal and
independent of the statistical parameter ϕ. Consequently, the
entropy of the reduced state accurately reflects the entangle-
ment of a single particle to the N − 1 fermionic anyons. It
is possible to generalize the single-particle entanglement for
mixed states ρ = ∑

x px|ψx〉〈ψx|,
E (ρ) = inf

{px,|ψx〉}

∑
x

pxESP(|ψx〉), (12)

where the |ψx〉 are given in Eq. (9). Therefore, for a
one-dimensional system with N fermionic anyons, the en-
tanglement between two particles at modes i and j can
be computed by taking the partial trace concerning the

N − 2 modes in the minimal entropic basis. This basis is ob-
tained by applying the JWT to the fermionic space. However,
when the two particles are in a pure state, it is possible to
derive the analog of a Schmidt decomposition for fermionic
anyons. This involves mapping the state using JWT and cal-
culating the well-known Schliemann decomposition in the
fermionic space [53].

Theorem 2 (Schmidt decomposition for fermionic anyons).
Any pure state of two fermionic anyons with a fixed number of
modes has a Schmidt decomposition with the same expansion
coefficients as its Schliemann fermionic state counterpart.

The decomposition is obtained by a dressed unitary
transformation [USD]ϕ that maps a fermionic anyon state
|ψ〉 = ∑

m<n wm,na†
ma†

n|vac〉, written in a given basis, onto its
Schmidt decomposition |ψ ′〉 as

|ψ ′〉 = [USD]ϕ|ψ〉 =
∑

μ

ωμα
(1)†
2μ α

(2)†
2μ−1|vac〉, (13)

where [USD]ϕ = J−1
ϕ [USD]0, and [USD]0 is a single-particle

fermionic unitary operator that maps the fermionic state
Jϕ (|ψ〉), written in a given basis, in its Schliemann decompo-
sition with coefficients given by ωμ.

Fermionic linear optics and fermionic anyons. To showcase
what insights can be drawn from an entanglement theory
for fermionic anyons, we apply the formal framework we
proposed to particle-based quantum computing. Specifically,
we define a family of computational models based on two-
mode “linear-optical elements,” which reduce to well-known
fermionic linear optics when ϕ = 0, and show how our notion
of separability closely tracks the regime of classical simula-
bility of these models.

Let PSi, BSi, j , and PAi, j be of the form

PSi(θ ) = exp[iθ (a†
ϕ,iaϕ,i )]

BSi, j (θ ) = exp[iθ (a†
ϕ,iaϕ, j + a†

ϕ, jaϕ,i )]

PAi, j (θ ) = exp[iθ (a†
ϕ,ia

†
ϕ, j + aϕ, jaϕ,i )].

We refer to these unitaries as Gaussian optical elements or,
by analogy with linear optics, phase shifters (PSi), beam split-
ters (BSi, j), and parametric amplifiers (PAi, j). A product of
Gaussian optical elements is called an optical circuit. When
ϕ = 0, this set of transformations acting on Fock states and
followed by single-mode number detectors defines a compu-
tational model called fermionic linear optics (FLO). When
ϕ = π , they are called matchgates [41], which we refer to
here as qubit linear optics (QLO). For any other value of
ϕ, we refer to quantum computing with optical circuits by
fermionic-anyon linear optics (�LO). What operations are
analogous to matchgates for fermionic anyons?

Let us use Jϕ to translate known FLO results into results
for �LO and QLO. First, we look at how fermionic optical
elements transform under J−1

ϕ . We are interested in invariant
operations under J−1

ϕ , i.e., that have the same operator de-
composition in all particle systems. Since phase shifters are
generated by Hamiltonians proportional to f †

i fi, they must
be invariant under the action of J−1

ϕ —as must, in fact, be
any operator whose fermionic form contains only products of
number operators.
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Fermionic beam splitters are generated by Hamiltonians
proportional to f †

i f j + f †
j fi. Those are transformed by J−1

ϕ

into a†
ϕ,ie

iϕ
∑ j−1

k=i+1 nk aϕ, j + a†
ϕ, je

−iϕ
∑ j−1

k=i+1 nk aϕ,i. This form im-
plies that J−1

ϕ leaves only nearest-neighbor beam splitters
invariant. It is known that all single-particle fermionic oper-
ators can be decomposed as products of phase shifters and
nearest-neighbor beam splitters by using the f SWAP gate,
given by

f SWAPi,i+1 = exp

[
i
π

2
( f †

i − f †
i+1)( fi − fi+1)

]
, (14)

which is itself expressible as a product of nearest-neighbor
beam splitters and phase shifters [54]. Therefore, we conclude
that, even if fermionic-anyon single-particle operators are
complicated, they can always be decomposed in fermionic-
anyon nearest-neighbor optical elements.

Fermionic parametric amplifiers are generated by
Hamiltonians proportional to f †

i f †
j + f j fi. Their J−1

ϕ

transforms are given by e−i2ϕ
∑i−1

k=1 nk a†
i e−iϕ

∑ j−1
k=i+1 nk a†

j +
ei2ϕ

∑i−1
k=1 nk aieiϕ

∑ j−1
k=i+1 nk a j . The only case where a parametric

amplifier is invariant under J−1
ϕ is when {i, j} = {1, 2}.

Nevertheless, we also show in the Supplemental Material [44]
that an arbitrary fermionic PAi, j can be decomposed in terms
of PA1,2 and f SWAP, implying a similar decomposition for
their anyonic counterparts.

In Ref. [55], it was shown that FLO circuits are easy to
simulate classically in the sense that if [U ]0 is an FLO circuit,
there is a polynomial-time classical algorithm that computes
the matrix elements of [U ]0 in the Fock basis. Now, since the
Fock-basis elements of [U ]ϕ are, by construction, the same
as those of [U ]0, the same algorithm can efficiently compute
the matrix elements of [U ]ϕ for states in the fermionic-anyon
Fock space. Therefore, any �LO circuit composed only of
PA1,2 and nearest-neighbor beam splitters must be easy to
simulate classically in the same sense. For the special case
of QLO, this recovers well-known simulability results for
circuits of nearest-neighbor matchgates [56].

Given that all FLO circuits are easy to simulate classically
represented either in fermionic or anyonic form, we might
ask if all �LO circuits are also easy to simulate. The answer,
however, is no, for the following reasons. A fermionic-anyon
beam splitter is generated by a Hamiltonian proportional
to a†

ϕ,iaϕ, j + a†
ϕ, jaϕ,i. Under Jϕ , this gets transformed into

f †
i e−iϕ

∑ j−1
k=i+1 nk f j + f †

j eiϕ
∑ j−1

k=i+1 nk fi, which only generates a
fermionic Bogoliubov transformation if j = i + 1 and, there-
fore, is not generally an FLO circuit. It was shown in Ref. [57]
that non-nearest-neighbor beam splitters allow for universal
quantum computation with fermionic anyons for all ϕ 	= 0,
which also reduces to a known result for matchgates when
ϕ = π [41]. Furthermore, it is known that almost all fermionic
non-Gaussian operations (i.e., gates outside of FLO) can ex-
tend it to universality [58], from which follows the analogous
statement for �LO for any ϕ 	= 0.

To summarize, the set of FLO circuits is strictly smaller
than the set of �LO (or QLO) circuits. Furthermore, the J−1

ϕ

map sends FLO circuits into a small subset of �LO circuits,
which is particularly easy to simulate classically (when acting

on the Fock basis). What about the computational power of
these models with input states not on the Fock basis?

In Ref. [42], the authors show a magic-state injection
protocol that uses only nearest-neighbor QLO operations to
perform universal quantum computation. Furthermore, they
also show that any fermionic non-Gaussian state is a magic
state for the same protocol. Since the transformations them-
selves are nonuniversal, we can identify a computational
resource, necessary for a quantum speedup, in the magic states
and identify the set of fermionic Gaussian states as resource
free. This dichotomy matches that defined by the notion of
separability: (pure) Gaussian fermionic states are also the free
states if one views entanglement as the resource, as done in
Ref. [59] based on a definition of one-body entanglement
entropy.

The proposed methods allow us to repurpose these previ-
ous results and draw similar conclusions for fermionic anyons.
By writing the magic state injection protocol in terms of J−1

ϕ

invariant optical elements, and subsequently applying J−1
ϕ ◦

Jπ to the corresponding circuit, the same injection protocol
can use fermionic-anyon magic states to induce a non-FLO
operation. Following the approach developed in Ref. [59], our
results imply that the notions of free states for both types of
resources (computational power and entanglement) match for
fermionic anyons as they do for fermions.

Our formalism can also be used to understand pre-
vious results about matchgate circuits (i.e., QLO). Ref-
erences [41,60,61], for example, consider supplementing
circuits of nearest-neighbor matchgates with other resources.
The authors use a dual-rail encoding, where we can encode
a logical 0 (resp. 1) qubit state as the |01〉 (resp. |10〉) state
of two physical qubits. In that case, Ref. [54] shows that the
f SWAP gate cannot be used to generate entanglement between
the two logical qubits, whereas the SWAP gate can—a curious
role reversal, given that the f SWAP is a maximally entangling
two-qubit gate and the SWAP is not entangling. Our formal-
ism provides an alternative interpretation that resolves this
conundrum neatly: there is a notion of entanglement between
logical qubits in a matchgate circuit, corresponding to the
one we proposed, when one views the state of a physical
qubit as the occupation number of a fermionic-anyon mode (at
ϕ = π ). This notion of entanglement would naturally differ
from the standard definition of entanglement between the
physical qubits, but would be more relevant to the compu-
tational complexity of matchgate circuits with non-Gaussian
elements—for instance, it is an interesting question for future
work whether this alternative notion of entanglement trans-
lates into a quantitative measure of the complexity of classical
simulation of matchgate circuits.

Conclusions. In summary, we have introduced a resource-
theoretic framework for investigating the separability of
fermionic anyons and their connection to quantum com-
puting. We characterized the entanglement of fermionic
anyons, and showed that the concept of fermionic-anyon
separability can be mapped to the free resources of match-
gate circuits. Our framework was applied to particle-based
quantum computing, revealing that fermionic-anyon linear-
optical circuits can be expressed using nearest-neighbor beam
splitters, phase shifters, and mode swaps. Additionally, we
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showed that universal quantum computation with fermionic
anyons can be achieved by introducing nonseparable states,
similar to the magic-state injection protocol presented in
Ref. [42].

Finally, we translated the statistical parameter ϕ

of the fermionic-anyon commutation relation into two
well-established forms of universal quantum computation:
fermionic and qubit-based. When ϕ = 0, universal anyonic
quantum computation reduces to fermionic linear optics;
similarly, qubit linear optics can be obtained by interpreting a
physical qubit as the occupation of a fermionic-anyon mode
at ϕ = π . This approach creates a matchgate scheme where
magic states are entangled as per our definition rather than the
traditional notion for qubits. These notions are not equivalent,
and our definition is instead a type of particle entanglement
when one interprets qubits as occupation numbers of exotic
particles [43]. Nonetheless, we consider it to have already
helped to reinterpret the results of Ref. [41] in a clearer
manner. We leave it as a direction for future research to
investigate further consequences of viewing qubit circuits via
the lens of our definition of fermionic-anyon entanglement,
as well as the possible resourceful limitations and costs
of such a quantum computational model. Naturally, one
could ask: what quantum computational models exist for

intermediate parameters ϕ ∈ (0, π )? We leave this question
unanswered and also propose a potential generalization
model for two-dimensional fermionic anyons, inviting further
investigation.

To achieve a comprehensive quantum computation frame-
work, we need to establish a measurement method specific to
fermionic anyons. One can explore the measurement distur-
bance model presented in Ref. [62] and adapt it for fermionic
anyons employing JWT. Considering the techniques outlined
in Ref. [59], one could fully describe the theoretical resources
available for fermionic anyons computation.
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