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One of the most counterintuitive aspects of quantum theory is its claim that there is “intrinsic” randomness in
the physical world. Quantum information science has greatly progressed in the study of intrinsic, or secret, quan-
tum randomness in the past decade. With much emphasis on device-independent and semi-device-independent
bounds, one of the most basic questions has escaped attention: how much intrinsic randomness can be extracted
from a given state ρ, and what measurements achieve this bound? We answer this question for three different
randomness quantifiers: the conditional min-entropy, the conditional von Neumann entropy, and the conditional
max-entropy. For the first, we solve the min-max problem of finding the projective measurement that minimizes
the maximal guessing probability of an eavesdropper. The result is that one can guarantee an amount of
conditional min-entropy H∗

min = − log2 P∗
guess(ρ ) with P∗

guess(ρ ) = 1
d (tr

√
ρ )2 by performing suitable projective

measurements. For the conditional von Neumann entropy, we find that the maximal value is H∗ = log2 d − S(ρ ),
with S(ρ ) the von Neumann entropy of ρ, while for the conditional max-entropy, we find the maximal value
H∗

max = log2 d + log2 λmax(ρ ), where λmax(ρ ) is the largest eigenvalue of ρ. Optimal values for H∗
min, H∗ and

H∗
max are achieved by measuring in any basis that is unbiased with respect to the eigenbasis of ρ, as well as by

other, less intuitive, measurements.

DOI: 10.1103/PhysRevA.110.L010403

Introduction. One of the core differences between classical
and quantum physics is the latter’s probabilistic character,
which is irreducible to ignorance of underlying variables. This
difference has fundamental implications for our worldview,
but it is also attractive as a natural source of randomness for
practical uses. Indeed, Geiger counting was already used as
a source of physical randomness in the second half of the
20th century. In the past two decades, with the development
of quantum information science, a large number of quantum
random number generators (QRNGs) have been designed,
and many have been implemented, usually with light (see
[1,2] for comprehensive reviews). The amount of randomness
is naturally captured by the guessing probability Pguess: the
higher the probability that the random variable is guessed, the
smaller the randomness. This intuitive characterization was
found to have operational meaning: the min-entropy Hmin =
− log2 Pguess quantifies (informally) the fraction of perfect
coin tosses that can be extracted from a string generated by the
available source. But randomness is not an absolute notion:
one has to specify for whom the source should be partly un-
predictable. For mere sampling purposes, it might be sufficient
to take the observed probabilities at face value; for cryp-
tographic applications, however, one needs to estimate the
probability that an adversary, Eve, guesses the outcomes. The

resulting randomness is called secret randomness, or intrinsic
randomness.

The computation of intrinsic randomness using quantum
resources and against a quantum adversary has been stud-
ied from different perspectives. When considering a user
with classical data correlated with quantum information in
the hands of an adversary, the min-entropy quantifies the
amount of perfect random bits that the user can estab-
lish [3]. The question was also addressed for the task of
quantum key distribution, which is the extraction of secret
shared randomness. It was in this context that the idea of
device-independent certification was born: the possibility of
bounding the amount of randomness in a black-box setting,
based on the observation of Bell-nonlocal correlations [4].
Next, it was noticed that device-independent certification
can be performed for randomness as well [5,6], providing
the first disruptive case for quantum randomness in a non-
shared setting [7]. This breakthrough happened as the race
to demonstrate loophole-free Bell tests was taking up speed.
There followed an explosion of designs and implementa-
tions of QRNGs certifiable under various assumptions, from
device-independent (disruptive, but hard to implement), to
semi-device-independent in various forms, to fully charac-
terized (practical and fast, but requiring a precise modeling
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of the setups). For these developments, we refer to the
reviews [1,2,8,9].

In this flurry of activity, one of the most basic ques-
tions was somehow left out: how much secret randomness
can be extracted from a known state ρ. In this paper, we
solve this problem for three of the most natural and opera-
tional measures of randomness: the conditional min-entropy,
the conditional von Neumann entropy, and the conditional
max-entropy. For the first, we show that the answer is
H∗

min = − log2 P∗
guess(ρ), with

P∗
guess(ρ) = 1

d
(tr

√
ρ)2 , (1)

where d is the dimension of the Hilbert space of the system,
assumed to be finite. We find a family of measurements that
generate this amount of randomness, which is closely related
to the concept of “pretty good measurements” [10], originally
used as a close-to-optimal way to distinguish an ensemble of
states. For the second, we find the maximal value

H∗ = log2 d − S(ρ) , (2)

where S(ρ) = −tr(ρ log2 ρ) is the von Neumman entropy of
ρ, while for the third, we find

H∗
max = log2 d + log2 λmax(ρ) , (3)

where λmax(ρ) is the largest eigenvalue of ρ. Interestingly,
for d > 2, we find that some measurements maximize one of
Hmin, H and Hmax, but not the other two.

Qubit example. A case study will help to introduce the
main ideas. Alice has a source that produces a qubit. She has
characterized its state to the best of her knowledge and found
it to be

ρ = 1

2
(1 + mσz ) = 1 + m

2
|0〉〈0| + 1 − m

2
|1〉〈1| (4)

for some 0 � m � 1. If she measures σx, her observed statis-
tics will be those of a perfect unbiased coin: PA(+1) =
PA(−1) = 1

2 . Suppose now that what the source really does
is produce a pure state in each round, specifically half of the
rounds |χ+〉 and half of the rounds |χ−〉, with

|χ±〉 =
√

1 ± √
1 − m2

2
|+x〉 +

√
1 ∓ √

1 − m2

2
|−x〉 (5)

(indeed, 1
2 |χ+〉〈χ+| + 1

2 |χ−〉〈χ−| = ρ). If Eve knows the
working of the source exactly, she will guess i = +1 (i = −1)
in the rounds when the source sent out |χ+〉 (|χ−〉). Her guess
will then be correct with probability

Pguess = 1
2 (1 +

√
1 − m2) , (6)

which is strictly larger than 1
2 when m < 1 (i.e., when ρ is

mixed). Thus, the intrinsic randomness of Alice’s protocol is
less than her apparent perfect randomness. In particular, there
is no secret randomness in the state ρ = 1

21, since Pguess = 1
for m = 0.

As will be expanded on in what follows, two things are
already known about this case study and its generalization to
higher dimensions. First: we presented this example with Eve
having perfect classical information about the source, in the

sense that she knows at each instance which state has been
prepared and accordingly makes her guess on Alice’s mea-
surement outcome. However, the result is unchanged if Eve
holds quantum side information. Eve then holds a purification
of Alice’s state, and she measures her own system to guess
Alice’s result. Since the two scenarios are equivalent in terms
of the guessing probability, we will move from one to the
other when convenient for the argumentation. Second: having
fixed Alice’s protocol (both the state and the measurement),
the maximization of Pguess over all decompositions of ρ is a
known semidefinite program (SDP) [11]; in the case study, we
have presented the optimal decomposition. What is not known
is whether σx is the best measurement for Alice, even in the
presence of Eve: could another measurement on the same
state ρ decrease Eve’s guessing probability, at the expense of
biasing the observed PA? We set out to solve this min-max
problem, and thus determine the maximal amount of secret
randomness that can be extracted from ρ.

Setting of the problem. Alice holds a quantum state ρ

from a Hilbert space of dimension d . We want to deter-
mine how much intrinsic randomness she can extract from
ρ and which measurement achieves this maximum. We con-
sider only measurements M = {Mi}i which are projective,
i.e., MiMj = δi jMi, where δi j is the Kronecker delta (we dis-
cuss general POVMs at the end of this section). To quantify
how intrinsically random, that is, how unpredictable, Alice’s
measurement outcome is, one considers the existence of an
eavesdropper, Eve, who has a more detailed knowledge than
Alice about the process, but cannot actively influence it (she
is “outside the laboratory”). Concretely, in every round, Eve
knows the true state ρc produced by the source. Given this
knowledge, she guesses the most likely outcome i = i(c) for
that round. Without loss of generality, we can group together
all of Eve’s states that lead to the same guessed outcome, since
Eve does not gain anything in treating them as distinct. We
denote by ρi the states seen by Eve, subnormalized such that
qi = trρi is the probability that Eve’s most likely outcome is
i. These states must satisfy

∑
i ρi = ρ.

Having set this stage, Eve’s average guessing probability is
Pguess({ρi},M) = ∑

i tr(Miρi ). Since we don’t know the true
states ρi, we need to consider the worst case scenario, i.e., the
decomposition that maximizes Eve’s guessing probability,

Pguess(ρ,M) = max
{ρi}

∑
i

tr(Miρi ) s.t.ρi � 0,
∑

i

ρi =ρ.

(7)

This optimization is an SDP, and so can be solved efficiently.
In order to determine, the maximal amount of secret random-
ness that can be extracted from the known state ρ, one needs
to optimize Eq. (7) over Alice’s measurement, i.e., compute

P∗
guess(ρ) = min

M∈�
Pguess(ρ,M) , (8)

where � is the set of all projective measurements. Our
main result is to show that Eq. (1) is the solution to the
optimization (8).

The search for an optimal measurement could have been
extended to the larger set of positive operator-valued measures
(POVMs), but the operational interpretation in our context
is unclear. Recall that our goal is to quantify the secret
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randomness in the state ρ. When implementing a POVM,
however, the projective measurement acts on the given state ρ

plus an auxiliary system, so part of the obtained randomness
may come from the latter. In fact, for extremal measurements
minimizing the guessing probability, the auxiliary system has
to be in a pure state, say, |a〉, of dimension dA [12]. It follows
from our main result that the maximal amount of randomness
obtained when implementing a projective measurement on the
global state is P∗

guess(ρ ⊗ |a〉〈a|). It is easy, however, to see that
P∗

guess(ρ ⊗ |a〉〈a|) = 1
dA

P∗
guess(ρ), that is, the optimal guessing

probability is equal to that obtained by performing the corre-
sponding optimal projective measurements independently on
the system and the auxiliary.

Thus, the extra randomness supplied by using the optimal
POVM is exactly equal to the intrinsic randomness of the
auxiliary system used to implement the POVM, so we view
it as arising from the auxiliary rather than from ρ itself.

Main results. Theorem 1. The maximal amount of secret
randomness that can be extracted from a quantum state
ρ using a projective measurement is given by H∗

min =
− log2 P∗

guess(ρ) with P∗
guess(ρ) = 1

d (tr
√

ρ )2.
Without loss of generality, one can restrict the op-

timization to rank-one projective measurements (see the
Supplemental Material [13, Sec. II]). In what follows, we
outline a proof that uses notions from state discrimination
and the resource theory of coherence, with full details in
the Supplemental Material [13, Sec. III] (see also Refs.
[29–33] therein). An alternative proof using properties of the
min-entropy and semidefinite programming is provided in
[13, Sec. IV]. We prove the theorem by first proving the lower
bound P∗

guess(ρ) � 1
d (tr

√
ρ )2 (Lemma 1) and then show-

ing that there exist measurements that achieve that bound
(Lemma 2).

Lemma 1. The lower bound P∗
guess(ρ) � 1

d (tr
√

ρ )2 holds
for every state ρ.

Proof. Using the fact that rank-one measurements are op-
timal for Alice, from [14, Theorem 1, (iii)], we find

Pguess(ρ,M) = max
{σ∈IM}

F (ρ, σ ) , (9)

where F is the Uhlmann fidelity and IM is the set of states
that are diagonal in the measurement basis {|mi〉}. Notice that
1/d ∈ IM for all M ∈ �, so Pguess(ρ,M) � F (ρ,1/d ) =
1
d (tr

√
ρ )2 for all M. Hence, P∗

guess(ρ) cannot be smaller than
1
d (tr

√
ρ )2. �

Lemma 2. A projective measurement M in the basis
{|mi〉} achieves the bound Pguess(ρ,M) = 1

d (tr
√

ρ)2 if and
only if 〈mi|√ρ|mi〉 = 1

d tr
√

ρ for all i = 1, . . . , d .
Proof. The details missing here are provided in

[13, Sec. III A]. In the quantum side-information scenario,
any k-outcome rank-one measurement, M, by Alice steers k
pure states on Eve. To optimize her guess, Eve has to measure
her system to optimally discriminate among these k states.
It is known [15] that the best discrimination of a set of pure
states is obtained with rank-one measurements: thus, Eve
will also perform a rank-one measurement. In turn, Eve’s
measurement defines an ensemble realizing the mixed state ρ.
This ensemble consists of k pure states ρi = |ψ̃i〉〈ψ̃i|. If M is
projective, we have k = d , and it follows from [16] that any

decomposition of ρ in d pure states is defined by the choice
of an orthonormal basis {|i〉} through

˜|ψi〉 = √
ρ|i〉 with 〈i|i′〉 = δii′ , i, i′ = 1, . . . , d . (10)

Inserting all these observations in (7), we obtain

Pguess(ρ,M) = max
{|i〉}

∑
i

|〈mi|√ρ|i〉|2 . (11)

The r.h.s. has been called the geometric coherence of ρ [17]
and was shown in [18] to be equivalent to max{σ∈IM} F (ρ, σ ),
with IM the set of states diagonal in the basis {|mi〉}. If we
rewrite (11) as

Pguess(ρ,M) = max
{�i}i

∑
i

tr(�i|γ̃i〉〈γ̃i|) s.t.�i � 0,

∑
i

�i = 1 , (12)

the r.h.s. defines the optimal discrimination of the subnor-
malized states |γ̃i〉 := √

ρ|mi〉 with a projective measurement
�i = |i〉〈i|. One then checks (see [13, Sec. III B]) that, under
the assumption that

〈mi|√ρ|mi〉 = 1

d
tr
√

ρ for all i = 1, . . . , d , (13)

the choice |i〉 = |mi〉 fulfills all the conditions for optimal dis-
crimination of the |γ̃i〉 [19–21]. Thus, for measurements satis-
fying (13), it holds that Pguess(ρ,M) = ∑

i |〈mi|√ρ|mi〉|2 =
1
d (tr

√
ρ)2. Furthermore, we prove (see [13, Sec. III C]) that

the condition (13) is also necessary for a projective mea-
surement to achieve the optimal guessing probability. What
remains to be proven is that there exist measurements sat-
isfying condition (13). An example of such a measurement
valid for any state is the one defined by a basis {|mi〉} that is
unbiased to the eigenbasis of ρ, that is, all moduli of inner
products between elements of the two different bases equal

1√
d

. However, as we discuss in two case studies, one can find
other measurements satisfying condition (13) when d > 2. �

Notice that, when Alice uses measurements satisfying (13),
the decomposition (10) that is optimal for Eve is ˜|ψ〉i =√

ρ|mi〉. If ρ is full rank, Mi = ρ−1/2ρiρ
−1/2 is the “pretty

good measurement” [10] for the ensemble {qi, ρi/qi} steered
by Eve. This measurement is known to be optimal when
special symmetries like (13) are present in the problem [22]
(in the notation of that work, the Gram matrix has en-
tries Gi j = 〈mi|ρ|mj〉). Moreover, when Alice’s measurement
satisfies (13) and when ρ is full-rank, we can show (see
[13, Sec. III D]) that Eve’s optimal measurement to discrimi-
nate her local states is also a “pretty good” measurement.

After solving the problem for the guessing probability, we
now move to the von Neumann entropy of the measurement
outcomes conditioned on Eve’s side information, a quantity of
relevance in the multiround setting [23–25].

Theorem 2. The maximal conditional entropy that can be
extracted from a quantum state ρ using a projective measure-
ment is H∗ = log2 d − S(ρ), where S(ρ) = −trρ log2 ρ is the
von Neumann entropy.

Proof. From [14, Theorem 1, (i)], we have that the entropy
H (Z|E ) of Alice’s measurement outcomes Z conditioned on
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Eve’s side information E is

H (Z|E ) = D

(
ρ ||

∑
z

MzρMz

)
, (14)

where {Mz}z is Alice’s projective measurement and D(ρ||σ )
is the quantum relative entropy between the states ρ and σ ,

D(ρ||σ ) = tr[ρ(log2 ρ − log2 σ )] , (15)

which is defined when the support of ρ is contained within the
support of σ . In [13, Sec. II B], we show that (1) a rank-one
measurement is optimal for Alice to maximize H (Z|E ) for a
given ρ, and (2) that

D

(
ρ ||

∑
z

MzρMz

)
= S

(∑
z

MzρMz

)
− S(ρ). (16)

In [26], the r.h.s. is shown to be equivalent to the relative
entropy of coherence of ρ with respect to the measurement
basis, which is used as a quantifier of randomness.

The maximum von Neumann entropy of a state of dimen-
sion d is log2 d and is achieved only for maximally mixed
states, so we can upper bound Eq. (16) with

H (Z|E ) � log2 d − S(ρ) , (17)

with equality reached if and only if Alice’s measurement basis
{|mz〉}z leaves her system in the maximally mixed state, i.e., if
the condition

〈mz|ρ|mz〉 = 1

d
for all z = 1, . . . , d (18)

is satisfied. �
As in the case for the condition (13) for H∗

min, suitable
measurements satisfying (18) include bases {|mz〉} that are
unbiased to the eigenbasis of ρ, implying the tightness of
(17). However, when d > 2 we can find other suitable mea-
surements, as discussed in two case studies. The quantity
log2 d − S(ρ) is defined in [27] as the total information of ρ,
and it is used in [28] as a measure of the objective information
of ρ.

We now consider the conditional max-entropy of the mea-
surement outcomes conditioned on Eve’s side information.
This quantity has been interpreted as the security of Alice’s
measurement outcomes when used as a secret key [3].

Theorem 3. The maximal conditional max-entropy that
can be extracted from a quantum state ρ using a projective
measurement is H∗

max = log2 d + log2 λmax(ρ), where λmax(ρ)
is the largest eigenvalue of ρ.

Proof. The details missing here are given in [13, Sec. V].
Without loss of generality, we restrict Alice to performing
rank-one projective measurements (see [13, Sec. II B]). In the
case where Alice makes a rank-one projective measurement,
the conditional max-entropy of her outcomes conditioned on
Eve can be formulated [3] as

Hmax(A|E ) = log2 psecr , (19)

where

psecr = max
σ

(∑
x

√
pxtr

(
σ
∣∣ψE

x

〉〈
ψE

x

∣∣ψE
x

))2

, (20)

s.t. σ � 0, trσ = 1 , (21)

where {|ψE
x 〉} are Eve’s postmeasurement states and px =

〈mx|ρ|mx〉. By applying the Cauchy-Schwartz inequality and
identifying the semidefinite optimization problem for the
maximum eigenvalue of a quantum state, we find

psecr � dλmax(ρ) . (22)

In the case where the largest eigenvalue of ρ is unique, the
bound (22) is reached if and only if the condition

|〈mx|umax〉|2 = 1

d
for all x = 1, . . . , d (23)

is satisfied, where |umax〉 is the eigenvector of ρ corresponding
to its largest eigenvalue. The optimal measurements in the
case where the maximum eigenvalue of ρ is degenerate are
discussed in [13, Sec. V]. �

As in the case of H∗
min and H∗, suitable measurements

satisfying (23) include bases {|mx〉} that are unbiased to the
eigenbasis of ρ, but, as before, when d > 2 we can find other
suitable measurements, as discussed in two case studies.

Two case studies. Let us now study measurements that
satisfy (13), (18), or (23) but which are not unbiased to the
eigenbasis of ρ. For one qubit, it is quickly verified that all
measurements that satisfy (13) are unbiased, so our first case
study is for one qutrit. Consider ρ = ∑3

i=1 λi|i〉〈i| with λ1 �
λ2 � λ3, and the measurement basis {Mi = |mi〉〈mi|}i=1,2,3,
with

|m1〉 =
√

1 + a

3
|1〉 +

√
1 + b

3
|2〉 +

√
1 + c

3
|3〉 ,

|m2〉 =
√

1 + a

3
eiθ1 |1〉 +

√
1 + b

3
|2〉 +

√
1 + c

3
eiθ2 |3〉,

(24)

and |m3〉 defined by the normalization condition
∑

i Mi =1,
where a = −(γ2 − γ3)k, b = (γ1 − γ3)k, c = −(γ1 − γ2)k,

k ∈ R and each γi � 0 with γ1 � γ2 � γ3. We show in [13,
Sec. VI A] that suitable parameters θ1 and θ2 can always be
chosen such that this is a valid rank-one projective measure-
ment when k is in the range − 1

2 � k � 1
2 .

This measurement basis is not in general unbiased to the
eigenbasis of ρ, except when ρ is maximally mixed. When
we set {γi} = {√λi}, it is straightforward to show that the
condition (18) for the measurement to maximize Hmin is satis-
fied. Similarly, if we set {γi} = {λi}, we see that the condition
(18) for maximal H is satisfied. Finally, the condition (23)
for maximal Hmax is satisfied when γ2 = γ3, so we see that,
for qutrits at least, there exist nonunbiased measurements that
achieve maximal randomness for every ρ for all three of our
quantifiers of randomness. Interestingly, though, these three
conditions are inequivalent in general, so one can choose
parameters {γi} such that the measurement maximizes any one
of the entropies but not the other two.

The second case study uses two qubits. It is based on the
observation (proved in [13, Sec. VI B]) that there is no product
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basis unbiased to the basis

|ψ1〉 = |00〉,

|ψ2〉 = 1√
3

(|01〉 + |10〉 + |11〉),

|ψ3〉 = 1√
3

(|01〉 + ω|10〉 + ω2|11〉),

|ψ4〉 = 1√
3

(|01〉 + ω2|10〉 + ω|11〉) , (25)

where ω = ei 2π/3. Consider a state ρ = ∑4
k=1 λk|ψk〉〈ψk|

diagonal in this basis. To extract the maximal random-
ness with an unbiased measurement, one must be able to
perform entangled measurements. This is not a concep-
tual problem in our setting, since there is no reason why
the two qubits should be far apart; nonetheless, such mea-
surements may be more challenging to perform than basic
single-qubit measurements. The question is: can one ex-
tract maximal randomness from ρ by using a product basis?
The answer seems to be positive. While we do not have
an analytical proof, for a large number of choices of λ,
we performed a heuristic optimization over product bases,
both general ({|a, b〉, |a, b⊥〉, |a⊥, c〉, |a⊥, c⊥〉}, with six free
parameters) and restricted to proper product measurements
({|a, b〉, |a, b⊥〉, |a⊥, b〉, |a⊥, b⊥〉}, with four free parameters).
In both cases and for all states that we probed, we numerically

found measurements satisfying
∑

i (〈mi|√ρ|mi〉 − tr
√

ρ

4 )
2
�

10−15,
∑

i (〈mi|ρ|mi〉 − 1
4 )

2
� 10−15 or

∑
i (|〈mi|umax〉|2 −

1
4 )

2
� 10−15, which suggests that there exist product mea-

surements satisfying the conditions (13), (18), and (23),
respectively. In this family of examples, therefore, the free-
dom to choose a measurement basis that is not unbiased may

lead to a practical advantage: it allows one to obtain maximal
randomness with product measurements.

Conclusion. It is well known that quantum physics contains
an intrinsic form of randomness, but, somewhat surprisingly,
given a quantum state, it is unknown what is the optimal
measurement to extract from it the maximum amount of such
randomness. In this work, we concentrate on three different
quantifiers of the amount of randomness in a measurement’s
outcomes conditioned on an adversary’s side information: the
conditional min-entropy, the conditonal von Neumann en-
tropy, and the conditional max-entropy. As one might have
expected, all measurements in a basis that is unbiased to
the eigenbasis of ρ maximize all three of these conditional
entropies. However, we also find other measurements that
achieve the optimal values, providing a flexibility that may
have practical implications, as in the second case study
reported. In fact, beyond its fundamental motivation, our
analysis is also relevant for the design of device-dependent
QRNGs, for which the quantum state is fully characterized.
Interestingly, we find measurements in the qutrit case that
maximize one of the three conditional entropies considered,
but which are not optimal for the other two.
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