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Faithful geometric measures for genuine tripartite entanglement
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We present a faithful geometric picture for genuine tripartite entanglement of discrete, continuous, and hybrid
quantum systems. We first find that the triangle relation Eα

i| jk � Eα
j|ik + Eα

k|i j holds for all subadditive bipartite
entanglement measure E , all permutations under parties i, j, k, all α ∈ [0, 1], and all pure tripartite states. Then,
we rigorously prove that the nonobtuse triangle area, enclosed by side Eα with 0 < α � 1/2, is a measure for
genuine tripartite entanglement. Finally, it is significantly strengthened for qubits that given a set of subadditive
and nonsubadditive measures, some state is always found to violate the triangle relation for any α > 1, and
the triangle area is not a measure for any α > 1/2. Our results pave the way to study discrete and continuous
multipartite entanglement within a unified framework.
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Introduction. Entanglement is the most puzzling feature of
quantum theory and plays an indispensable role in various
quantum processing tasks, such as device-independent cryp-
tography [1] and teleportation [2]. It is thus of fundamental
and practical interest to investigate the characterization and
quantification of entanglement. During past decades, exten-
sive research has been devoted to studying entanglement for
bipartite quantum systems and, correspondingly, numerous
methods have been developed to quantify bipartite entangle-
ment [3–7]. However, much less progress has been achieved
for multipartite entanglement, mainly due to the complicated
structures of multipartite states and operations [8]. Besides,
it still lacks a unified approach to quantifying entanglement
of both discrete and continuous quantum systems, except for
using a well-chosen entanglement witness [4] or Fisher infor-
mation matrix [9] to certify the presence of entanglement.

In this work, we mainly study the entanglement properties
of discrete, continuous, and even hybrid tripartite systems. In
particular, using the well-explored measures for bipartite en-
tanglement, we present a unified geometric approach to tackle
the problems of (1) how to characterize tripartite entangle-
ment and (2) how to quantify genuine tripartite entanglement
via proper measures that are able to detect all genuinely en-
tangled states that are useful in multiparty information tasks.

Our first main result is a geometric characterization of
tripartite entanglement based on a class of triangle relations.
Specifically, given any tripartite state |ψ〉ABC , the degree of
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entanglement between one party and the rest, quantified by a
subadditive measure E , satisfies

Eα
i| jk � Eα

j|ik + Eα
k|i j, (1)

and its permutations under three parties, i, j, k = A, B,C, for
power α ∈ [0, 1]. This relation suggests that entanglement
owned by one party is no larger than the sum of entan-
glement by the other two, complementary to monogamy of
entanglement [10–12] and closely related to the entangle-
ment polytopes [13,14] and the quantum marginal problem
[15,16]. Furthermore, Tsallis entropy [17] is chosen as the
measure E to exemplify that it is valid for all discrete, all
Gaussian, and all discrete-discrete-continuous pure tripartite
states, significantly generalizing previous results for qubits
[18–21]. When it comes to the qubit, Eq. (1) is obtained for
subadditive measures, such as von Neumann entropy [22],
Tsallis entropy [17,23], squared concurrence [24–26], squared
negativity [27], and nonsubadditive ones, including Schmidt
weight [28,29] and Rényi-2 entropy [30].

As illustrated in Fig. 1, the triangle relation (1) and its
permutations provide us with a nice geometric picture for
tripartite entanglement, in the sense that its bipartition entan-
glement, measured by Eα , can be interpreted as the side of a
triangle. It is further proven to be faithful for genuine tripartite
entanglement that the induced triangle with α ∈ (0, 1) is non-
degenerate or, equivalently, has nonzero area, if and only if the
tripartite state, either pure or mixed, is genuinely entangled.

Our second main result is a class of faithful measures for
genuine tripartite entanglement. Particularly, the triangle area,
induced by the above relation (1),

A(|ψ〉i jk ) =
√

Q
(
Q − Eα

i| jk

)(
Q − Eα

j|ik
)(

Q − Eα
k|i j

)
, (2)
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FIG. 1. The faithful geometric interpretation for genuine tri-
partite entanglement of discrete, continuous, and hybrid quantum
systems. Following the triangle relation (1) for any pure state |ψ〉i jk

shared by three parties, i, j, k = A, B,C, three bipartition entangle-
ment, measured by Eα

i| jk with α ∈ [0, 1], can be interpreted as the
side of a triangle. The faithfulness is obtained in Proposition 2 for
generic tripartite states and Theorem 2 for three-qubit states that
the triangle has nonzero area if and only if the state is genuinely
entangled. Depending on whether the condition (9) is satisfied, the
triangle can be categorized into (a) obtuse, e.g., Tsallis entropy (3)
with α > 1/2 for some state; (b) right angled, e.g., Schmidt weight
with α = 1/2 for a class of W-class states; and (c) acute, e.g., all
subadditive measures with α ∈ [0, 1/2) for all pure states. In the last
two cases, the triangle area (2) satisfies LOCC monotonicity as per
Theorems 1 and 3.

with the semiperimeter Q = (Eα
i| jk + Eα

j|ik + Eα
k|i j )/2, is a

natural quantifier for genuine tripartite entanglement. We
analytically prove that for any subadditive measure E with
α ∈ (0, 1/2], the area is monotonic under local operations
and classical communication (LOCC), thus being a reliable
entanglement measure. Importantly, since the proof of LOCC
monotonicity is independent of measure and state, it is widely
applicable to the discrete and/or continuous systems. Useful
lower and upper bounds are derived for these geometric mea-
sures, related to the well-known multipartite entanglement
measures, such as genuinely multipartite concurrence [31] and
global entanglement measure [32,33].

Finally, our results are significantly strengthened for
qubits, in the sense that given a set of entanglement measures,
some state is always found to violate the triangle relation
(1) with any α > 1 and to violate the LOCC monotonicity
of triangle area (2) with any α > 1/2. As a byproduct, our
results confirm the concurrence fill [34–36] and the ergotropic
fill [37] as feasible entanglement measures, and overcome
an incompleteness in the proof in [36] to show the LOCC
monotonicity of the concurrence area. Generalizations of our
results are also discussed.

Entanglement measures. The resource theory of entangle-
ment [38,39] is first briefly recapped. Within this framework,
nonentangled states correspond to free states, while entangled
ones can be recognized as essential resources to accomplish
impossible tasks in the classical realm. In order to quantify
these resources, an entanglement measure E is typically in-
troduced as some function which maps any quantum state to

a non-negative number, i.e., E (ρ) � 0 for state ρ. Further, it
needs to meet the following extra requirements [3,4,40,41]:
(1) faithfulness, i.e., E (ρ) = 0 if and only if ρ is separa-
ble or nonentangled; (2) LOCC monotonicity, i.e., E (ρ) �∑

m pm E (ρm) for any ρ and its LOCC ensemble {pm, ρm},
requiring that entanglement never increases under free oper-
ations of LOCC; and (3) symmetry, i.e., given a pure bipartite
state |ψ〉i j , global entanglement is determined by the local
state, i.e., E (|ψ〉i j ) ≡ E (ρi ) = E (ρ j ), where E is properly
defined on states ρi( j) = Tr j(i)(|ψ〉i j〈ψ |).

One notable example satisfying the above conditions is
Tsallis entropy [17],

T (|ψ〉i j ) = T (ρi ) ≡ 1 − Tr
(
ρ

q
i

)
q − 1

, q � 1, (3)

for any pure bipartite state |ψ〉i j . It recovers von Neumann
entropy in the limit q → 1 and reduces to linear entropy or
generalized concurrence [25,26] by q = 2, both of which also
admit the subadditivity (see [42–44], including the Supple-
mental Material),

E (ρi j ) � E (ρi ) + E (ρ j ), (4)

for any ρi j in discrete and continuous systems. Indeed,
whether all these requirements can be satisfied depends on
both the state space and the measure, and there exist mea-
sures without subadditivity [45]. For example, the measure
of Rényi-2 entropy is not subadditive for qudits [46], while
it is for the Gaussian [47]. In the following, we discuss how
to use bipartite entanglement measures to study multipartite
entanglement.

Triangle relations and geometric picture for tripartite
entanglement. Any pure tripartite state |ψ〉i jk admits three bi-
partition among parties i, j, k, of which bipartite entanglement
is quantified by Ei| jk, E j|ik, Ek|i j , respectively, with a bipartite
entanglement measure E . We can obtain the following result.

Proposition 1. For any subadditive measure E , the triangle
relation (1) holds for all pure tripartite states, all permutations
under three parties, and all α ∈ [0, 1].

The proof is as follows. First, note from the symmet-
ric property that Ek|i j ≡ E (ρi j ) = E (ρk ) holds, with ρi j(k) =
Trk(i j)(|ψ〉i jk〈ψ |). It then follows from the subadditivity
that Ek|i j = E (ρi j ) � E (ρi ) + E (ρ j ) = Ei|k j + E j|ki, proving
Eq. (1) with α = 1. Finally, we have

Eα
i| jk � (E j|ik + Ek|i j )

α � Eα
j|ik + Eα

k|i j, ∀α ∈ [0, 1). (5)

The first inequality follows from xr � yr for non-negative
x � y and r < 1, and the second from (x + y)r � xr + yr for
non-negative x, y and r < 1. Thus, the triangle relation (1)
holds for all pure states and all α ∈ [0, 1], and its permutations
can be obtained similarly. We further prove in the Supplemen-
tal Material [44] that in terms of the Tsallis entropy as per (3),
Eq. (1) is valid for all discrete, all Gaussian, and all discrete-
discrete-continuous pure tripartite states, and also generalized
to a polygon relation for pure discrete and Gaussian multipar-
tite states, significantly generalizing previous results derived
for qubits [18–20].

As illustrated in Fig. 1, the triangle relation (1) yields a
geometric description of |ψ〉i jk that bipartite entanglement
corresponds to the side of a triangle. If the state is biseparable,
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i.e., at least one zero Eα
i| jk , then its triangle degenerates to a line

or a point. Next, we show the converse is also true.
Proposition 2. For any subadditive measure E , the triangle

area (2) enclosed by the relation (1) with α ∈ (0, 1) is nonzero
if and only if the pure tripartite state is genuinely entangled.

We prove Proposition 2 by contradiction. Indeed, it equates
to proving that the triangle relation (1) with α ∈ (0, 1) can
never be saturated by genuinely entangled states with three
nonzero Eα

i| jk . If Eα
i| jk = Eα

j|ik + Eα
k|i j holds for some α ∈ (0, 1)

and nonzero Eα , then

Ei| jk = (
Eα

i| jk

)1/α = (
Eα

j|ik + Eα
k|i j

)1/α

>
(
Eα

j|ik
)1/α + (

Eα
k|i j

)1/α = E j|ik + Ek|i j . (6)

The first inequality follows from (x + y)r > xr + yr for posi-
tive x, y and r = 1/α > 1. It is obvious that Eq. (6) contradicts
the triangle relation (1). Thus, we complete the proof of
Proposition 2, which provides a faithful geometric picture for
genuinely entangled states.

It is remarked that whether the triangle inequality (1)
with α = 1 can be saturated depends on the state space and
the measure. For example, there is SA|BC = 2 and SB|AC =
SC|AB = 1 for genuinely entangled state (|000〉 + |101〉 +
|210〉 + |311〉)/2 and von Neumann entropy S , while equality
can never be achieved by genuinely entangled three-qubit
states and Tsallis entropy (3) with q > 1 (see the Supplemen-
tal Material [44]).

Proposition 2 indicates that the triangle area (2) is a natural
quantifier for pure tripartite entanglement. For a general state
ρ, using the convex-roof construction,

A(ρ) := inf {pm,|ψm〉}
∑

m

pm A(|ψm〉), (7)

where the infimum is over all pure decompositions ρ =∑
m pm|ψm〉〈ψm|, one can show that A(ρ) = 0 if and only if

ρ is biseparable, admitting a decomposition of which all pure
states are biseparable. This implies that the triangle area is a
faithful quantifier of genuine tripartite entanglement for both
pure and mixed states.

Triangle area as an entanglement measure. We continue to
derive a stronger result that the triangle area is a measure for
genuine tripartite entanglement.

Theorem 1. For any subadditive measure E , the triangle
area (2) with α ∈ (0, 1/2] admits LOCC monotonicity and
hence is a reliable entanglement measure.

Before proceeding to prove Theorem 1, we first
introduce the parametrized vector x = (x1, x2, x3)� =
(E2α

i| jk, E2α
j|ik, E2α

k|i j )
�. Correspondingly, the area (2) can be

rewritten as (see the Supplemental Material [44])

f (x) = 1
4

√
−x2

1 + 2x1(x2 + x3) − (x2 − x3)2 . (8)

Evidently, the function f is continuous and permutation in-
variant under parameters xi. Moreover, we have

Lemma 1. For α ∈ [0, 1/2], Eq. (8) is nondecreasing and
concave as a function of (x1, x2, x3)� = (E2α

i| jk, E2α
j|ik, E2α

k|i j )
�.

FIG. 2. LOCC monotonicity of the triangle area (2) with α ∈
(0, 1/2], which is proven in Theorem 1. It indicates that the triangle
area is a measure for genuine tripartite entanglement. This is further
strengthened for qubits in Theorem 3 that given a set of measures,
the LOCC monotonicity can be violated by three-qubit states for
α > 1/2.

The nondecreasing tendency of f over each xi is deter-
mined by its non-negative first derivatives,

∂ f

∂xi
= ∂A

∂E2α
i| jk

= E2α
j|ik + E2α

k|i j − E2α
i| jk

16A � 0. (9)

The inequality follows from Proposition 1 that x1 � x2 +
x3, x2 � x1 + x3, and x3 � x1 + x2 for α � 1/2. It immedi-
ately yields that the triangle enclosed by (1) with α ∈ [0, 1/2]
is nonobtuse, as its interior angles obey cos θi = (E2α

j|ik +
E2α

k|i j − E2α
i| jk )/2Eα

j|ikEα
k|i j � 0. The concavity of f is determined

by its Hessian matrix, which is nonpositive definite (see the
Supplemental Material [44]).

We then use Lemma 1 to obtain the proof of LOCC mono-
tonicity of the triangle area, as displayed in Fig. 2. Being
restricted to the pure state |ψ〉 and any pure LOCC ensemble
{pm, |ψm〉}, we have∑

m

pm A(|ψm〉) =
∑

m

pm f (xm) � f

( ∑
m

pm xm

)

= f

( ∑
m

pm xm
1 ,

∑
m

pm xm
2 ,

∑
m

pm xm
3

)

� f (x1, x2, x3) = f (x) = A(|ψ〉). (10)

All equalities follow directly from Eq. (8) by associating each
pure state with a parametrized vector xm, the first inequality
from Lemma 1, and the second from Lemma 1 and the fact
that E2α

i is a measure of bipartite entanglement for α � 1/2,
i.e., xi � ∑

m pm xm
i for i = 1, 2, 3. For a general state and its

general LOCC ensemble, using the convex-roof rule (7) and
thus convexity of the area leads to a similar proof of LOCC
monotonicity. Thus, we complete the proof of Theorem 1. It
is worth noting that as the proof is independent of both state
and measure, Theorem 1 is widely applicable to the discrete,
continuous, and even hybrid quantum systems.
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TABLE I. Genuine tripartite entanglement measured by triangle
areas and GMC. A1 describes the triangle area of Tsallis entropy
with q = 1 and A2 the area of Tsallis entropy with q = 2, with α =
1/2. The concurrence is used in GMC. A normalization coefficient
(16/3)1/2 is applied to the triangle area to guarantee A1,A2 � 1 for
all three-qubit states.

|ψ1〉 |ψ2〉 |ψ3〉
GMC 0.5878 0.7071 0.7071
A1 0.7329 0.6009 0.8251
A2 0.6487 0.5 0.7638

For α > 1/2, neither the nonobtuse condition (9) nor con-
cavity of f can always be satisfied, signaling the possibility
of violating LOCC monotonicity and thus not being a mea-
sure. This is confirmed in the Supplemental Material [44] that
with Tsallis entropy, the triangle area with α > 1/2 can be
increased by LOCC on a family of W-class states.

Upper and lower bounds. Following again from Lemma 1
that the area is nondecreasing under each Eα

i| jk , we can obtain
a lower bound,

A(|ψ〉i jk ) � min

√
3

4

{
E2α

i| jk, E2α
j|ik, E2α

k|i j

}
, (11)

which can be interpreted as proportional to the squared small-
est side of the triangle. This bound is also a measure for
genuine tripartite entanglement. In particular, if Eα is Tsallis-2
entropy with α = 1/2, then it recovers the well-known gen-
uinely multipartite concurrence (GMC) [31]. Additionally, the
triangle area is upper bounded by

A(|ψ〉i jk ) �
√

Q

(
3Q − 2Q

3

)3

�
E2α

i| jk + E2α
j|ik + E2α

k|i j

4
√

3
,

(12)
proportional to the average of the squared sides. The first
inequality follows from xyz � ( x+y+z

3 )3 and the second from
(x + y + z)2 � 3(x2 + y2 + z2) for non-negative x, y, z. In
terms of Tsallis-2 entropy, it reduces to the global entangle-
ment measure for α = 1/2 [32,33], which, however, can be
nonzero even if the state is biseparable.

We exemplify the main differences between the geometric
measures and GMC for genuine tripartite entanglement.
Denote A1 by the triangle area of Tsallis entropy with q = 1,
equivalent to von Neumann entropy, and A2 by the area
of Tsallis entropy with q = 2, with α = 1/2. The bipartite
measure in GMC refers to concurrence. We, in particular,
consider three states |ψ1〉 = (sin π

5 |000〉 + cos π
5 |100〉 +

|111〉)/
√

2 , |ψ2〉 = cos π
8 |000〉 + sin π

8 |111〉, |ψ3〉 =
1
2 |000〉 + 1

2 |100〉 + 1√
2
|111〉. It is shown in the rows of

Table I that two triangle areas have different entanglement
orderings of three states, in comparison to GMC, while
different columns of Table I indicate that these three measures
lead to different entanglement orderings of three states.

Strengthened results for qubits. When it is restricted to
three-qubit states, all of the above results can be significantly
strengthened. Here we consider the subadditive measures such
as von Neumann entropy S , Tsallis entropy T , squared con-
currence C2, and squared negativity N 2, and nonsubadditive

ones, including Schmidt weight W and Rényi-2 entropy R.
They can be unified via some function on the smallest eigen-
value λ of the reduced state for any pure two-qubit state (see
the Supplemental Material [44]),

S (λ) = −λ log2 λ − (1 − λ) log2(1 − λ),

T (λ) = 1 − λq − (1 − λ)q

q − 1
, C2(λ) = N 2(λ) = 4λ(1 − λ),

W (λ) = 2λ, R(λ) = − log2 [λ2 + (1 − λ)2]. (13)

Consequently, we can derive the following results, for
which the proofs are deferred to the Supplemental Material
[44].

Theorem 2. For the measure set {S, T , C2,N 2,W,R},
the triangle relation (1) holds for any α ∈ [0, 1] on all pure
three-qubit states, and can be violated by some state for any
α > 1. Moreover, the triangle area (2) is nonzero if and only
if the three-qubit state is genuinely entangled, except for
Schmidt weight with α = 1.

Theorem 2 immediately yields that the nonsubadditive
measures, such as Schmidt weight and Rényi-2 entropy, are
subadditive on all two-qubit states with rank no larger than
2. It also strengthens Proposition 2, in the sense that α = 1
optimally upper bounds the triangle relation (1) for three-qubit
states, and the faithful geometric picture is extended to the
bound α = 1 for Tsallis entropy. Additionally, the triangle
relation with α = 1 recovers the ones already obtained in
[18,19], and reduces to the entanglement polytopes [13,14]
in the context of Schmidt weight.

Theorem 3. For the measure set {W, C2,N 2,S, T ,R},
the triangle area (2) with α ∈ (0, 1/2] is an entanglement
measure for three-qubit states, while it is not for α > 1/2.

We note that violating the LOCC monotonicity by the
area induced by subadditive measures with α > 1/2 naturally
implies the same violation for generic tripartite systems in
Theorem 1. Moreover, Theorem 3 rigorously confirms the
concurrence fill [35,36] and the ergotropic fill [37] as feasible
entanglement measures. It is also found in the Supplemental
Material [44] that the proof in [36] is incomplete to guarantee
the LOCC monotonicity of the concurrence area.

Discussion. We have presented a unified geometric picture
suitable to characterize tripartite entanglement of discrete,
continuous, and even hybrid quantum systems, and then pro-
posed using the triangle area as a faithful measure for genuine
tripartite entanglement. We have also obtained useful lower
and upper bounds for these geometric measures, and explored
their connections and differences with the well-known mea-
sures for multipartite entanglement. In particular, our results
are significantly strengthened for qubits, which also general-
ize previous results and solve open questions left in previous
works.

Generalizations of our results are given as follows. With re-
gard to LOCC monotonicity, it follows from the convexity that
the triangle area (2) with α ∈ (0, 1/2] also admits a weaker
monotonicity in the form of A(ρ) � ∑

m A(
∑

m pmρm). It
is thus interesting to investigate whether our results can be
applied to the measures only satisfying this weaker LOCC
monotonicity, i.e., E (ρ) � ∑

m E (
∑

m pmρm). If the measure
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is nonfaithful, i.e., E (ρ) = 0 for some entangled state ρ, the
corresponding triangle area can still be a measure for tri-
partite entanglement, but may no longer be faithful. For any
nonsubadditive measure E , it has been shown in [48] that it
always satisfies the triangle relation (1) for some 0 < β <

+∞, implying Eβ is subadditive. It follows from Lemma 1
that Eα with α ∈ (0, β/2] satisfies the nonobtuse condition
(9) and the enclosing area is a measure for genuine tripartite
entanglement. However, it could be challenging to obtain a
proper β for the nonsubadditive measure.

Finally, we point out that the triangle relation (1) can be
generalized to a polygon relation for both discrete and con-
tinuous multipartite states [44]. Hence, we expect our results
to aid significant progress in studying entanglement of multi-
partite systems [49]. Furthermore, on the basis of our faithful
measure for genuine tripartite entanglement in Theorem 1, it is

interesting to study the classification of multipartite entangled
states. We also hope our results find applications in studying
other multipartite quantum resources, such as genuine nonlo-
cality [50] and steering [51].
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