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We study the self-testing problem of quantum correlations in the context of a multipartite scenario, a task
that becomes increasingly complex compared to the bipartite systems. Recently, [Šupić et al., Nat. Phys. 19, 670
(2023)] introduced a novel self-testing method for pure multipartite entangled states, which leverages network as-
sistance and relies on bipartite entangled measurements. Hence, their scheme loses the ideal device-independent
nature of self-testing. To address this, we provide a self-testing scheme for genuine multipartite entanglement
in the true sense. Our approach utilizes a generalized Hardy-type nonlocality argument and requires only local
operations, eliminating the need for network assistance or bipartite entangled measurements. Furthermore, we
establish a device-independent bound for the maximum probability of success for a generalized Hardy-type
argument. This paves the way for reliable and efficient self-testing of quantum correlations without relying on
additional resources.
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I. INTRODUCTION

Certifying the state of a quantum system constitutes a
pivotal stage in numerous quantum information endeavors.
Quantum simulation and computing represent sophisticated
objectives within various quantum information pursuits ne-
cessitating validation. An established approach to tackle this
issue involves making use of tomographic protocols. Con-
ventional state tomography methods [1–3] involve conducting
measurements on a system in order to validate and compare
the outcomes against predictions made by the Born rule. This
approach is referred to as device dependent since it assumes
that measurements are perfectly characterized, a premise that
is often impractical in numerous scenarios. Moreover, mea-
surements can also be certified device dependently, through
the preparation of, in turn, perfectly characterized quantum
states, introducing a form of circularity in the procedure.

The strongest form of device certification should then min-
imize the assumptions being made. The device-independent
approach [4–6], where a device is treated simply as a black
box [7–9], characterizes an experiment based on observed
input-output measurement statistics, except for acknowl-
edging the validity of the quantum theory. Thus, in a
device-independent scenario, one can guarantee the function-
ality of the devices without making any assumptions about
their inner workings. The feasibility of self-testing arises from
the presence of nonlocal correlations within quantum the-
ory. While correlations generated by classical entities remain
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confined to local domains, the capability to generate nonlocal
correlations stems from the measurement of entangled states
[10]. It is widely recognized that specific entangled states
can be self-tested. This means that a classical verifier can
confirm the presence of such a state among the participants
by detecting the highest violation of a Bell inequality, the
optimal success probability in a nonlocal game played by
those involved, or by observing correlations that uniquely
arise from measurements on that particular state. The most
renowned illustration of a self-tested state is the maximally
entangled qubit pair, often referred to as the singlet state. A
prime method for self-testing this state involves measuring the
Clauser-Horne-Shimony-Holt (CHSH) inequality to identify
its maximal violation [11,12].

The concept of self-testing was first introduced by Mayers
and Yao [13], and since then, there has been an increasing in-
terest in developing self-testing techniques [14–29]. In 2017,
Coladangelo et al. [30] provided a generalized scheme of
self-testing for all bipartite pure entangled states with arbitrary
local dimensions. It is noteworthy that the majority [31] of
the presently known self-testing methods are tailored to bi-
partite states, and the multipartite scenario has been relatively
unexplored. This is not surprising given the complexity of
entanglement in the multipartite scenario. The known exam-
ples cover only the tripartite W state, a class of partially
entangled tripartite states [32,33], graph states [28,34], and
Dicke states [27,35]. Recently, Šupić et al. [36] proposed
a network-assistant scheme to certify all the pure entangled
states. In the context of a network scenario, the assumption
is made that the configuration entails multiple independent
sources. Their scheme requires the preparation of a number
of singlets that scale linearly with the number of systems, and
the implementation of standard projective Bell measurements.
The practical implementation of this scheme can be hindered
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by various realistic limitations, making them difficult to exe-
cute in experiments.

Therefore, discovering network-assist free device-
independent certification schemes that are experimentally
convenient and require minimal resources and effort for
practical implementation is a crucial issue of interest. In this
regard, we evaluate Hardy’s test of nonlocality in a n-party
scenario, which measures the highest possible violation
of locality constraints permitted by quantum formalism,
regardless of the system’s dimension. We discover that the
obtained value matches the maximum achievable violation
with n-qubit systems. Additionally, we demonstrate that only
a particular class of states can yield such a maximal value,
emphasizing Hardy’s test as a device-independent self-test
protocol specifically designed for these states. Note that these
states are genuine multipartite entangled states [37]. We also
demonstrate that our scheme is venerable against the realistic
noise scenario and as an example we provide detailed analysis
of a tripartite system in the nonideal noise case.

The subsequent sections of this Letter are structured as
follows. In Sec. II, we initially present Hardy’s nonlocality
argument, along with its extension for multipartite systems.
In Sec. III, we characterize all pure n-qubit states capable
of passing the Hardy-type nonlocality test. Additionally, we
derive the device-independent bound for Hardy’s nonlocality
argument and demonstrate the self-testing property of quan-
tum states that achieve this bound. Moving on, in Sec. IV,
we introduce a modified version of Hardy’s test, which is
experimentally feasible in a realistic noise scenario. We study
this in the context of a tripartite system. We derive the corre-
sponding results and outline their implementation. Lastly, we
summarize our Letter in the concluding Sec. V.

II. HARDY’S NONLOCALITY ARGUMENT

We will first briefly discuss the Hardy paradox [38]. Con-
sider two parties, say Alice and Bob share a bipartite system.
Both of them have a choice of two dichotomic observables
Ux and Dx, x ∈ {1, 2}, with binary outcomes {+1,−1}. Let
P(y1, y2|Y1,Y2) be the joint probability that Alice and Bob
have outcomes (y1, y2) conditioning on the measurement set-
ting (Y1,Y2). Hardy showed that if the four conditions

P(+1,+1|U1,U2) = p > 0,

P(+1,+1|D1,U2) = 0,

P(+1,+1|U1, D2) = 0,

P(−1,−1|D1, D2) = 0

(1)

are satisfied, then the resulting behavior is necessarily non-
local. The degree of nonlocality is characterized by the
probability denoted as P(+1,+1|U1,U2). In the context
of quantum mechanics, the maximum achievable value of
P(+1,+1|U1,U2) is −11+5

√
5

2 . The maximum can be achieved
with projective measurements on a pure two-qubit state [39].

Now we will extend the argument for a multipartite system.
Consider that n distant parties share a multipartite system and
each of them has a choice of two dichotomic observables Ui

and Di, with binary outcomes {+1,−1}. Here, out of many

possible generalizations, we consider the following one [37]:

P(+1,+1, . . . ,+1|U1,U2, . . . ,Un) = p > 0,

for i = 1, 2, . . . , n, P(+1,+1|Di,Ui+1) = 0,

P(−1,−1, . . . ,−1|D1, D2, . . . , Dn) = 0,

(2)

with the convention n + 1 ≡ 1. Similarly to the earlier set of
conditions (1), this set of conditions cannot be satisfied by any
local realistic theory but can be satisfied in quantum theory.
In fact, only a unique pure n-qubit genuine entangled state
satisfies all these conditions (2) [37].

III. n-QUBIT STATES SHOWING HARDY’S
NONLOCALITY

Let us denote the eigenstates of Uj (Dj ) with eigenvalue +1
and −1 by |0 j〉(|+ j〉) and |1 j〉(|− j〉), respectively and define
2n + 1 product states of the n-qubit system H(= C2 ⊗ C2 ⊗
· · · ⊗ C2) of dimension 2n as follows:

|φk〉 = |x1x2 . . . xn〉, xi ∈ {0,+}, for i = 1, 2, . . . n,

and

|φ−〉 = |− − · · ·−〉,
(3)

where k = ∑n
i=1 bi2i−1 with bi = {0, if xi = +

1, if xi = 0 . Now, the ob-
servables Dj can be expressed in terms of the eigenstates of
the observables Uj for each j = 1, 2, . . . n as follows:

|+〉 j = α j |0〉 j + β j |1〉 j,

|−〉 j = β∗
j |0〉 j − α∗

j |1〉 j,
(4)

where |α j |2 + |β j |2 = 1 and 0 < |α j |, |β j | < 1. The last con-
dition is due to the noncommutativity of Uj and Dj . One can
easily check that |φ−〉 ⊥ |φk〉 for k = 0, 1, . . . , 2n − 2 and
|φ1〉, |φ2〉, . . . , |φ2n−1〉 and |φ−〉 are 2n linearly independent
vectors of the Hilbert space H = C2n

of dimension 2n. Hence,
{|φ−〉, |φ1〉, |φ2〉, . . . , |φ2n−1〉} forms a basis of H, i.e., H =
Span(|φ−〉, |φ1〉, |φ2〉, . . . , |φ2n−1〉).

State ρ, that corresponds to conditions (2), has to be con-
fined to a subspace of H, which is orthogonal to the subspace
S = Span(|φ−〉, |φ1〉, |φ2〉, . . . , |φ2n−2〉) in view of the last
two conditions of (2). However, it is nonorthogonal to the
product state |φ2n−1〉 according to the first condition of (2).
The subspace S has dimension 2n − 1, so ρ must be a pure
genuine n-qubit entangled state, which we denote as |ψn〉.
Using the Gram-Schmidt orthonormalization procedure one
can construct an orthonormal basis {|φ′

i〉}2n−1
i=0 for H from the

basis {|φ0〉, |φ1〉, . . . , |φ2n−2〉, |φ−〉}, in which state |ψn〉 is its
last member, with i = 2n − 1:

|φ′
0〉 = |φ−〉,

|φ′
1〉 = |φ1〉,

|φ′
i〉 = |φi〉 − ∑i−1

j=0〈φ′
j |φi〉|φ′

j〉√
1 − ∑i−1

j=0 |〈φ′
j |φi〉|2

, for i = 2, 3, . . . , 2n − 1.
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The probability p in the conditions (2), for the Hardy state,
reads

p = |〈ψn|φ2n−1〉|2

= 1 −
2n−2∑
i=0

|〈φ′
i |φ2n−1〉|2 =

∏n
i=1 |αi|2|βi|2

1 − ∏n
i=1 |αi|2 .

The maximum probability of success of Hardy’s argument
(2) for the n-qubits system is bounded by pmax = t n(1−t )n

1−t n ,
where t is the positive root of the polynomial xn+1 − 2x + 1
other than 1. And in this optimal case, i.e., for p = pmax,
t = |αi|2 for i = 1, 2, . . . , n, i.e., Ui = U , Di = D and αi = α,
βi = β for i = 1, 2, . . . , n. Let |+〉 = α|0〉 + β|1〉 and |−〉 =
β∗|0〉 − α∗|1〉, where |α|2 + |β|2 = 1, 0 < |α| < 1. Let us
denote the unique n-qubit Hardy state associated with this
optimal case by |ψH

n 〉.
For the new observables settings (U, D) on each side, the

unique Hardy state for a three-qubit system can be expressed
as

|ψ3〉 = c0|000〉 + c1[|001〉 + |010〉 + |100〉]
+ c2[|011〉 + |101〉 + |110〉] + c3|111〉, (5)

where c0 = |α|3|β|3√
1−|α|6 , c1 = −β|α|4|β|√

1−|α|6 , c2 = β2|α|5
|β|

√
1−|α|6 , and c3 =

β3
√

1−|α|6
|β|3 . The success probability p attains its maxi-

mal value 0.018 193 8, if and only if |α|2 = 1 − |β|2 =
(17+3

√
33)2/3−(17+3

√
33)1/3−2

3(17+3
√

33)1/3 .
We now state the following theorem, which is an immedi-

ate extension to a n-partite system of the theorem proved by
Rabelo et al. [39] for a bipartite case.

Theorem 1. In an n-partite Hardy test (2), if the success
probability attains its maximum value pmax, then the state of
the system is equivalent up to local unitaries to |ψH

n 〉〈ψH
n | ⊗

�′, where �′ is an arbitrary n-partite junk state.
Here we only present the outline of the proof as the details

are quite similar to the proof given in Ref. [39]. Let us denote
the projectors of eigenstates of the operator X for eigen-
values +1 and −1 as �+|X = |x〉〈x| and �−|X = |x⊥〉〈x⊥|,
respectively. Take two dichotomic Hermitian operators A1 and
A2 acting on a Hilbert space H. There exists, a decompo-
sition of H as a direct sum of subspaces Hμ of dimension
d � 2 each, such that At = ⊕μAμ

t (t = 1, 2) act within each
Hμ [40]. Therefore, Aμ

t = �+|Aμ
t

− �−|Aμ
t

and the projector
�

μ
At

= �+|Aμ
t

+ �−|Aμ
t
, where each �±|Aμ

t
and �

μ
At

act on Hμ,
for t = 1, 2. For this notation on each side, all joint probabili-
ties can be reexpressed as

P(a, b, . . . , c|X,Y, . . . , Z )

= Tr[ρ(�a|X �b|Y . . . �c|Z )]

=
∑

μ,ν,...,γ

αμν...γ P(a, b, . . . , c|X μ,Y ν, . . . , Zγ ), (6)

where αμν...γ = Tr(ρ�
μ
X �ν

Y . . . �
γ
Z ) � 0 with

∑
μ,ν,...,γ

αμν...γ = 1 and P(a, b, . . . , c|X μ,Y ν, . . . , Zγ ) =
Tr[ρμν...γ (�a|X μ�b|Y ν . . . �c|Zγ )] with ρμν...γ =
(�μ

X �ν
Y ...�

γ
Z )ρ(�μ

X �ν
Y ...�

γ
Z )

αμν...γ
. All the joint probabilities P(a, b, . . . ,

c|X,Y, . . . , Z ) will satisfy Hardy’s conditions (2) only if each

decomposed probability set P(a, b, . . . , c|X μ,Y ν, . . . , Zγ )
satisfies all the conditions (2) for their associ-
ated subspace. For the maximal probability of
success P(+,+, . . . ,+|U1,U2, . . . ,Un) of Hardy’s
argument (2), each decomposed probability set
P(a, b, . . . , c|X μ,Y ν, . . . , Zγ ) must also attain the maximum
value for its own n-qubit Hardy’s argument:

P
( + 1,+1, . . . ,+1

∣∣U μ
1 ,U ν

2 , . . . ,U γ
n

) = pμν...γ > 0,

P
(+1,+1

∣∣Dμ
r ,U ν

r+1

) = 0, (7)

P
(−1,−1, . . . ,−1

∣∣Dμ
1 , Dν

2, . . . , Dγ
n

) = 0,

where r = 1, 2, . . . , n and U μ
1 , Dμ

1 , etc., are 2 × 2 dimen-
sional observables. The state ρμν...γ , which satisfies conditions
(7), must be a unique genuinely entangled pure n-qubit state
|χμν...γ 〉〈χμν...γ | [37]. Therefore, a state ρ which satisfies all
the conditions of (2) is of the form

ρ =
⊕

μ,ν,...,γ

aμν...γ |χμν...γ 〉〈χμν...γ |, (8)

where coefficients aμν...γ are arbitrary probabilities. A state ρ

can lead to a maximum value of p = pmax(= pHardy, say) if
and only if all |χμν...γ 〉s’ also lead to the maximal value of
their corresponding pμν...γ = pmax. When each pμν...γ reaches
its own maximum pmax then the associated Hardy state
|χμν...γ 〉 must be equal to |ψH

n 〉 for all μ, ν, and γ . Therefore,
for the maximum value of p, the state ρ always satisfies

(O1 ⊗ · · · ⊗ On)(ρn ⊗ �1′2′...n′ )(O†
1 ⊗ · · · ⊗ O†

n)

= ∣∣ψH
n

〉〈
ψH

n

∣∣ ⊗ �′
1′2′...n′ , (9)

where Oi’s are the local unitaries for i = 1, 2, . . . , n with

Oi|2m, 0〉X iX ′
i → |2m, 0〉X iX ′

i ,

Oi|2m + 1, 0〉X iX ′
i → |2m, 1〉X iX ′

i ,

where m ∈ {0, 1, 2, . . .} [14,41].
Theorem 2. Only a genuine multipartite entangled state

satisfies the Hardy-type conditions (2) [37].

IV. TRUE HARDY ARGUMENT IN A REALISTIC
NOISE-TOLERANCE SCENARIO

In an ideal Hardy argument, for the tripartite case, the
constraints demand that four of the joint probabilities should
be zero. However, in any real experiment, this may be very
difficult to ensure. So we take a more realistic approach by
considering that the constraints have the following form:

P(+1,+1,+1|U1,U2,U3) � p −
4∑

i=1

εi,

for i = 1, 2, P(+1,+1|Di,Ui+1) � εi,

P(+1,+1|U1, D3) � ε3,

P(−1,−1,−1|D1, D2, D3) � ε4,

(10)

where εi � 0 is some small error bound. For the sake of sim-
plicity, we are considering εi = ε for all i. Now the modified
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Hardy argument becomes

Maximize: P(+1,+1,+1|U1,U2,U3),

Subject to: for i = 1, 2, P(+1,+1|Di,Ui+1) � ε,

P(+1,+1|U1, D3) � ε,

P(−1,−1,−1|D1, D2, D3) � ε,

P(abc|xyz) = Tr(ρ �a|x �b|y �c|z ).

(11)

One can easily verify that under the local realistic model
P(+1,+1,+ 1|U1, U2, U3) � P(−1,−1,−1|D1, D2, D3)
+ P(+1,+1|D1,U2) + P(+1,+1|D2,U3) + P(+1,+1|U1,

D3). So if we consider that each probability on the right side is
less than or equal to ε, then P(+1,+1,+1|U1,U2,U3) � 4ε.
Hence the local bound on Hardy’s probability of success
becomes P(+1,+1,+1|U1,U2,U3) � 4ε with the constraints

for i = 1, 2, P(+1,+1|Di,Ui+1) � ε,

P(+1,+1|U1, D3) � ε, (12)

P(−1,−1,−1|D1, D2, D3) � ε.

When ε � 1
4 , the bound is easily satisfied, and quan-

tum physics cannot violate it. However, for values 0 �
ε < 1

4 , quantum physics may lead to a violation of the
local bound. In the following discussion, we demon-
strate that for sufficiently large values of the error
bound ε, the maximum value of the probability pHardy =
max0<|α1|,|α2|,|α3|<1 P(+1,+1,+1|U1,U2,U3) can still be
achieved using pure three-qubit states and projective mea-
surements. The analytical technique to prove the result in the
ideal scenario cannot directly infer the realistic noise case.
Therefore, we consider a numerical approach. In this view,
we first derive the maximal quantum violation in a device-
independent context, i.e., we do not make any assumptions
about the Hilbert-space dimension and the measurement di-
rections. To accomplish this, we utilize semidefinite programs
to obtain an upper bound on Hardy’s probability, following
the methodology developed by Navascués, Pironio, and Acín
[42]. Consider the set Q comprising quantum joint probability
distributions. Instead of optimizing Hardy’s probability over
this quantum set Q directly, which can be challenging due
to its complex characterization, we optimize it over a more
manageable set of probabilities. This alternative set, part of an
infinite hierarchy of sets denoted as Q1 ⊃ Q2 ⊃ · · · ⊃ Qn ⊃
. . . , is defined using semidefinite programs. Importantly, it
is proven that as these sets become progressively more re-
strictive, they converge to the quantum set, mathematically
expressed as limn→∞ Qn = Q [42,43]. For various values of
ε within the interval 0 � ε � 1

4 , we perform the optimization
of Hardy’s probability over the set Q3, while adhering to
the constraints (12). To derive the maximum probability of
success by a quantum state (call it the quantum lower bound)
we considered the following class of three-qubit states,

|ψ〉ABC = c000e−i(φ+ξ+θ )|000〉 + c001(e−i(φ+θ )|010〉
+ e−i(ξ+θ )|100〉 + e−i(φ+ξ )|001〉)

+ c011(e−iφ |011〉 + e−iξ |101〉 + e−iθ |110〉)

+ c111|111〉,

FIG. 1. Plot of maximum probability of success (pHardy) of the
tripartite Hardy argument against the noise parameter ε under differ-
ent scenarios.

and the following projective measurements:

U1 ≡
{|U1 = +1〉 = |0〉,
|U1 = −1〉 = |1〉

}
,

D1 ≡
{

|D1 = +1〉 = cos
(

α
2

)|0〉 + eiφ sin
(

α
2

)|1〉,
|D1 = −1〉 = − sin

(
α
2

)|0〉 + eiφ cos
(

α
2

)|1〉

}
,

U2 ≡
{|U2 = +1〉 = |0〉,
|U2 = −1〉 = |1〉

}
,

D2 ≡
{

|D2 = +1〉 = cos
(

β

2

)|0〉 + eiξ sin
(

β

2

)|1〉,
|D2 = −1〉 = − sin

(
β

2

)|0〉 + eiξ cos
(

β

2

)|1〉

}
,

U3 ≡
{|U3 = +1〉 = |0〉,
|U3 = −1〉 = |1〉

}
,

D3 ≡
{

|D3 = +1〉 = cos
(

γ

2

)|0〉 + eiθ sin
(

γ

2

)|1〉,
|D3 = −1〉 = − sin

(
γ

2

)|0〉 + eiθ cos( γ

2 )|1〉

}

where 0 < α, β, γ < π and 0 � φ, ξ, θ < 2π . We pro-
ceeded to perform numerical optimization for P(+1,

+1,+1|U1,U2,U3) across all potential states and measure-
ment parameters while adhering to the constraints outlined
in Eq. (12). This process allowed us to establish quantum
lower limits for various error thresholds ranging from 0 to 1

4 .
The quantum upper and lower bounds, along with the bounds
imposed by locality, are depicted graphically in Fig. 1. No-
tably, the disparities between the computed lower and upper
bounds for Hardy’s probability do not exceed values on the
order of 10−6 for ε � 0.08. Consequently, this demonstrates
that utilizing systems with higher dimensions does not confer
an advantage over three-qubit systems, even when confronted
with imperfections.

The implementation of Navascués-Pironio-Acín (NPA) hi-
erarchy [42] was done [44] in PYTHON using CVXPY and the
quantum lower bound has been obtained using MATHEMATICA.
The upper bound forms the blue dotted line and the quantum
lower bound forms the magenta solid line in Fig. 1. We have
also included the no-signaling (black dash-dot line) and local
(teal dashed line) scenarios in Fig. 1.
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FIG. 2. Fidelity plot for robust self-testing. The blue curve is the
plot of the fidelity between the quantum state linked to the maximum
violation of Hardy’s argument in the nonideal case [Eq. (10)] and
the corresponding ideal Hardy state [Eq. (5)] with respect to noise
parameter ε. The fidelity curve is lower bounded by 1 − ε

2
3 (black

dotted curve).

In the context of robust self-testing, we have provided a
partial result, specifically showcasing that the fidelity between
the Hardy state linked to the ideal case and the one associated
with a nonideal scenario is lower bounded by 1 − ε

2
3 . It is

noteworthy that we consider the quantum state related to the
nonideal scenario as a three-qubit state. The numerical data
that provide the substance for the aforementioned claim have
been plotted in Fig. 2.

Experimental demonstration of the bipartite Hardy argu-
ment is well established [45–47]. In a similar fashion, one may
demonstrate the multipartite Hardy argument and the self-test
of Hardy’s state. In this regard, our Hardy argument [Eq. (10)]
for the realistic noise case will be the key ingredient. An
experimental proposal for a tripartite system is discussed here
and its generalization to the n party is quite straightforward.
Our experimental setup is divided into two parts, namely,
reference and physical experiments.

A. Reference experiment

This involves the reference state |ψH
3 〉 (a genuine three-

qubit Hardy state) along with the reference measurements
(Uj, Dj ), and utilizing Hardy’s argument (10) to self-test
|ψH

3 〉.

B. Physical experiment

This should certify the existence of a completely positive
trace-preserving (CPTP) map, which can extract the three-
qubit Hardy state |ψH

3 〉 unambiguously without knowing any
internal functioning of the physical experiment. This certifica-
tion relies solely on the measurement data and the assumption
that the experiment adheres to quantum theory. The shared
physical state is denoted as ρX1,X2,X3 = ρ, with measurement
operators �

( j)
a j |x j

for output a j given input x j , and dichotomic

observables defined as X ( j)
x j = ∑

a j
a j�

( j)
a j |x j

. In the physical
experiment, each party j ( j = 1, 2, 3) treats their measure-
ment device as a black box with inputs x j = 0 or 1, yielding

outcomes a j = ±1, where x j = 0(1) indicates the measure-
ment Xj = Uj (Dj ). If the physical measurement data satisfy

P
( + 1,+1,+1|X (1)

0 X (2)
0 X (3)

0

)
� pHardy − 4ε,

for i = 1, 2, 3, P
( + 1,+1|X (i)

1 X (i+1)
0

)
� ε,

P
( + 1,+1,+1|X (1)

0 X (2)
0 X (3)

0

)
� ε,

(13)

where 3 + 1 ≡ 1 and P(a1, a2, a3|X (1)
x1

X (2)
x2

X (3)
x3

) = Tr(ρ�
(1)
a1|x1

�
(2)
a2|x2

�
(3)
a3|x3

) with pHardy = 0.018 and ε = 0, then Theorems
1 and 2 infer the existence of a CPTP map � such that
�(ρ) = |ψH

3 〉〈ψH
3 | ⊗ ρ ′.

If the noise parameter ε � 0.08, Eq. (13) and Fig. 1 con-
firm that the physical state is very close to the reference state
|ψH

3 〉.

V. CONCLUSION

We have provided a self-testing scheme for genuine mul-
tipartite entangled states by employing Hardy’s nonlocality
argument. In contrast to the Šupić et al. [36] scheme our
Letter is based on local operations and does not depend on
bipartite entanglement measurement. Also, our scheme is in-
dependent of network assistance. Hence, it is a self-testing
scheme for genuine multipartite entangled states in the true
sense. Also, we have provided the analytic construction of
unique n-party Hardy states for a given n pair of noncom-
mutative local observables. In addition, we have provided the
device independent bound of the probability of success of the
generalized Hardy argument. As an example, we have given
the self-testing analysis in detail for the three-party scenario
both in ideal and realistic noise cases. Our result shows that
the maximum probability of success of the three-party Hardy
argument in a device independent scenario is 0.018.

Hardy states hold significant potential for applications in
quantum key distribution, random numbers generation, and
other secure quantum communication tasks due to their in-
herent entanglement structure. Additionally, the self-testing of
these states contributes to a deeper understanding of quantum
boundaries which itself enriches our fundamental knowledge
of quantum theory as the set of quantum correlations is not
closed [48]. In a recent work [49], it is shown that within
the framework of quantum nonlocality, it is not possible to
construct a unique measure of nonlocality; indeed, there are
infinitely many even in the simplest biparty two input two
output scenario. As a result, every different kind of nonlo-
cality argument demands special attention individually. This,
in turn, implies that despite having a long list of self-testing
results using Bell-type nonlocal argument, the importance of
the same using Hardy-type nonlocality cannot be ignored. We
believe that this Letter will help in solving or suggesting some
new problems in the area of quantum information theory, in
general, and quantum cryptography and quantum foundation,
in particular.
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[35] I. Šupić, A. Coladangelo, R. Augusiak, and A. Acín, Self-
testing multipartite entangled states through projections onto
two systems, New J. Phys. 20, 083041 (2018).
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