
PHYSICAL REVIEW A 110, L010202 (2024)
Letter

Dissipative Dicke time crystals: An atom’s point of view
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We develop and study an atom-only description of the Dicke model with time-periodic couplings between
atoms and a dissipative cavity mode. The cavity mode is eliminated, giving rise to effective atom-atom
interactions and dissipation. We use this effective description to analyze the dynamics of the atoms that undergo
a transition to a dynamical superradiant phase with macroscopic coherences in the atomic medium and the light
field. Using Floquet theory in combination with the atom-only description we provide a precise determination
of the phase boundaries and of the dynamical response of the atoms. From this we can predict the existence of
dissipative time crystals that show a subharmonic response with respect to the driving frequency. We show that
the atom-only theory can describe the relaxation into such a dissipative time crystal and that the damping rate
can be understood in terms of a cooling mechanism.
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Time-periodic driving of quantum systems allows for the
creation of tailored out-of-equilibrium structures including
quantum states with topological order [1,2] and self-organized
coherent patterns [3–9]. Here, one distinguishes between off-
resonant driving and resonant driving. In the high-frequency
limit, the former results in a quasistatic quantum system that
experiences an engineerable and time-averaged Hamiltonian
[10,11]. Resonant driving, instead, enables strong dynamical
coherences between otherwise weakly coupled quantum states
which can force the quantum system in exotic spatiotem-
poral patterns. This is exciting as it allows the controlled,
on-demand generation of purpose-oriented quantum states but
comes at the cost of dealing with an energetically open sys-
tem, which requires a full understanding of relaxation and
decoherence mechanisms to avoid heating by using engi-
neered dissipation [12,13]. Such active open system control is
in fact one of the main challenges for technological progress
in the design of quantum matter. While the Lindblad for-
malism works well for photonic systems, the description of
dissipation in condensed matter with massive particles is often
fitted by phenomenological models, with limited understand-
ing and tunability.

We now want to analyze a strongly correlated model of
atoms where dissipation is derived microscopically from the
interactions with the environment in order to pave the way
for quantum state engineering far from equilibrium. For the
dissipative Dicke model significant progress has been made
to eliminate the cavity in order to derive an effective atom-
only master equation [14,15] which is of Lindblad form [16],
i.e., the relaxation is directly linked to the interactions of
the atoms with photons. However, it is so far unclear if this
derivation is valid for time-dependent or periodically driven
systems, which are far from equilibrium where the dissipation
of large amounts of energy is required. We will derive the
atom-only description for the time-periodic dissipative Dicke
model which is of large fundamental and prototypical interest.
Here, resonant periodic driving can induce the formation of
subharmonic spatiotemporal patterns, a so-called dissipative

time crystal (DTC). This phase is accompanied by superradi-
ant light emission into the cavity and was recently the focus
of several experimental and theoretical works [13,17–24].

Photon elimination is highly nontrivial in this case [25–27]
since a strong coupling to the cavity is crucial for two separate
mechanisms [28–30]: (i) It mediates tunable time-periodic
atom-atom interactions which are essential for the pattern
formation via parametric driving [17,31–33]. (ii) The cavity
generates dissipation that is required for stabilizing the emerg-
ing patterns. In the limit of strong atom-photon interaction the
usual approach is therefore to treat the dynamics of atoms and
cavity on equal footing.

As we demonstrate in this Letter, the elimination of pho-
tons is nonetheless possible and highly successful in the
prediction of the full time evolution and the nonequilibrium
phase diagram, underlining the advantages of an atom-only
description. Analytic predictions of the lower stability thresh-
old and a full analysis of the spectral features and gaps are
now possible, hence paving the way for future engineering
of tailored dynamic atomic models, which can be used as
quantum simulators of complicated interacting systems.

Model. We consider the time-periodic dissipative Dicke
model and eliminate the cavity in order to derive an effective
atom-only master equation which is of Lindblad form [16].
The dynamics of the density operator ρ̂ describing the atoms
and one coupled cavity mode with loss rate κ is governed by
the master equation (h̄ = 1)

∂ρ̂

∂t
= −i[Ĥ , ρ̂] − κ (â†âρ̂ + ρ̂â†â − 2âρ̂â†). (1)

The coupling to N two-level atoms that are driven by an
external laser is described by the Hamiltonian [34–36]

Ĥ = δcâ†â + �n̂↑ + g(t )√
N

(â + â†)(b̂†
↑b̂↓ + b̂†

↓b̂↑), (2)

where δc is the detuning between the cavity resonance and the
external laser drive, â† and â are the cavity field creation and
annihilation operators, and the product of bosonic operators
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FIG. 1. Time-averaged superradiance order parameter 〈X̂ 2〉tav

calculated from the mean-field Eqs. (8) and (9) and evaluated at κt =
104 as a function of the driving frequency ω/(2ωres ) and modulation
strength g1/g0. Solid lines mark the threshold to superradiance found
by γmax = 0. The horizontal gray solid line indicates the threshold
gc

1/g0 given by Eq. (12). The red cross (g1 = 0.05g0, ω = 2ωres) and
star (g1 = 0.2g0, ω = 2ωres) correspond to the parameters used in
Figs. 2(a) and 2(b), respectively. The dashed horizontal line shows
the parameters visible in Fig. 3, g1 = 0.75g0. We used δc = κ , � =
0.1κ , g0 = 0.5gc. DTC indicates where superradiant phases with
subharmonic responses are found.

b̂†
↑b̂↓ change one atomic state from the ground state |↓〉 to

the metastable excited state |↑〉 of energy �. The operators
n̂↑ = b̂†

↑b̂↑ and n̂↓ = b̂†
↓b̂↓ measure the number of atoms in

each state such that N = n̂↑ + n̂↓. A modulation of the exter-
nal driving laser leads to a time-periodic collective coupling
g(t ) = g0 + g1 cos ωt , corresponding to two sidebands of the
drive.

In the static limit, g1 = 0, the dissipative Dicke model
[Eq. (1)] shows a transition from a normal state to super-
radiance at g = gc = [�(δ2

c + κ2)/(4δc)]1/2 [37,38]. Superra-
diance is signaled by macroscopic coherences in the atomic
medium 〈X̂ 2〉 ∝ N2, X̂ = b̂†

↑b̂↓ + b̂†
↓b̂↑, and a large cavity

field 〈â†â〉 ∝ N . In this Letter, we focus on the subcritical
regime to study the influence of time-periodic driving with
g(t ) < gc at all times. In this situation, a dynamical super-
radiant configuration can still be found depending on the
modulation strength g1 when the driving frequency ω is close
to a parametric resonance [17], nω = 2ωres (n = 1, 2, . . . )
with resonance frequency

ωres = �

√
1 − g2

0

g2
c

. (3)

In Fig. 1 we show results for the time-averaged superradiance
order parameter 〈X̂ 2〉tav = ∫ t+T

t dτ 〈X̂ 2(τ )〉/T as indicated by
the color bar. The derivation of the phase transition lines of the
superradiant region in the parameter space of g1 and ω is given
at a later point in this Letter. This superradiant phase features
a time-oscillatory superradiant order parameter 〈X̂ 2〉. DTC
order appears if additionally the two-time correlation function
C1(t, t0) = 〈X̂ (t + t0)X̂ (t0)〉 is periodic in t with period 2T ,
T = 2π/ω. This requires the breaking of a discrete time-
translational symmetry which happens whenever n is odd (see
DTC in Fig. 1). The breaking of this symmetry implies the

existence of a many-body mode oscillating with ω/2 whose
lifetime approaches infinity for increasing atom numbers. We
remark that the driving sequence we employ is different from
the one in Ref. [19], however, the consequences of breaking
the time-translational symmetry are the same.

Atom-only description. First, we will derive the atom-
only description, by extending the theory of Ref. [16] and
applying it to a time-dependent problem. In the limit of a
short cavity relaxation time, |δc − iκ| � �,ω, g, we apply a
Schrieffer-Wolff transformation D̂(t ) = exp[â†β̂(t ) − β̂†(t )â]
to eliminate the photonic degrees of freedom. The condition
for decoupling the atoms from the cavity modes in the master
equation leads to a time-dependent equation of the transfor-
mation operators β̂(t ),

i
∂β̂

∂t
= (δc − iκ )β̂ + g(t )√

N
(b̂†

↑b̂↓ + b̂†
↓b̂↑) + [�n̂↑, β̂], (4)

which is solved by β̂(t ) = c+(t )b̂†
↑b̂↓ + c−(t )b̂†

↓b̂↑ in the
steady state. It is one major ingredient of this theory that we
also include the commutator with �n̂↑ that adds retardation
effects due to the time evolution of the atoms. Without this
term the dynamical stabilization of the atomic state is not
possible. The resulting differential equation is discussed in the
Supplemental Material (SM) [39], which yields an expansion

c±(t ) ≈ − 1√
N

(
g(t )

δc − iκ
+ iġ(t )

(δc − iκ )2
∓ � g(t )

(δc − iκ )2

)
, (5)

where the first term corresponds to the quasistatic solution.
With β̂ we can then write the effective master equation for the
atomic density operator ρ̂at = Trcav[D̂†ρ̂D̂] by tracing over the
cavity degrees of freedom

∂ρ̂at

∂t
= −i[Ĥat, ρ̂at] − κ (β̂†β̂ρ̂at + ρ̂atβ̂

†β̂ − 2β̂ρ̂atβ̂
†). (6)

This atom-only description includes the coherent time evolu-
tion of the atoms governed by the Hamiltonian

Ĥat = �n̂↑ + g(t )

2
√

N
(β̂†[b̂†

↑b̂↓ + b̂†
↓b̂↑] + H.c.). (7)

The nontrivial time dependence of β̂(t ) therefore enters both
the (i) cavity-mediated interactions in the second term of
Eq. (7) and the (ii) cavity-generated dissipation proportional
to κ in Eq. (6). In the SM [39] we provide a comparison of the
atom-cavity and atom-only theory described by Eqs. (1) and
(6), respectively.

Formation of a stable DTC. The resulting atomic theory
described by Eqs. (6) and (7) is a full quantum mechanical
description of the dynamics of the atomic state, which is
the main tool in this Letter. The massively reduced Liou-
ville space dimension allows us to study spectral features of
the time-crystalline phase for atom numbers that cannot be
accessed with a full atom-cavity description. Given a time-
periodic Liouvillian [i.e., the right-hand side of Eq. (6)] we
can calculate the eigenmodes ρ̂λ = eλt ̂λ with a time-periodic
̂λ(t + T ) = ̂λ(t ). The eigenvalues λ have in general a neg-
ative or zero real part, Re(λ) � 0, and because of the time
periodicity their imaginary value Im(λ) can be chosen within
an interval of length ω. The emergence of DTC is marked by
the breaking of a discrete time-translational symmetry. This
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FIG. 2. Gap γ in units of κ as function of N for (a) g1/g0 = 0.05
and (b) g1/g0 = 0.2. Different markers indicate different cutoffs in
Floquet space (see SM [39], black circles Mcut = 3, gray stars Mcut =
4, light gray crosses Mcut = 2). The dashed line corresponds to (a) the
mean-field γFl and (b) an exponential fit ∝ exp(−0.005N ).

results in a closing gap γ := Re(λ) in the spectrum for in-
creasing atom number N at a subharmonic frequency response
Im(λ) = ω/2. The theory described by Eq. (6) enables the
study of a decreasing |γ | in the time-periodic Dicke model
with only atomic degrees of freedom. In Figs. 2(a) and 2(b)
we show γ as a function of N outside of the DTC phase (see
the red cross in Fig. 1) in Fig. 2(a) and in the DTC phase (see
the red star in Fig. 1) in Fig. 2(b). In Fig. 2(a) we find that
γ converges to a constant highlighting that this mode remains
gapped. In Fig. 2(b), instead, we find an exponential closing of
the gap therefore indicating time-crystalline behavior (further
details in SM [39]). Our finding of an exponentially closing
gap is consistent with previous claims [19] and enabled by our
atom-only description that can access atom numbers in a range
which is elusive for a full quantum atom-cavity description.

For very large atom numbers N we can further simplify the
full quantum description of the atom-only master equation to
a mean-field description of ϕs = 〈b̂s〉, s = ↓,↑ (see SM [39]),

dϕ↓
dt

= i
V0 − iV1

N
|ϕ↑|2ϕ↓ + i

V0 + iV1

N
ϕ2

↑ϕ∗
↓, (8)

dϕ↑
dt

= −i

(
� − V0 + iV1

N
|ϕ↓|2

)
ϕ↑ + i

V0 − iV1

N
ϕ2

↓ϕ∗
↑. (9)

This mean-field description includes (i) coherent interac-
tions and (ii) dissipations that are described as nonlinear
terms proportional to V0 = −√

Ng(t )Re(c+ + c−) and V1 =
Nκ (|c−|2 − |c+|2), respectively. The amplitude c− (c+) de-
scribe the likelihood of atoms undergoing a transition from
|↑〉 to |↓〉 (|↓〉 to |↑〉). Note that V1 �= 0 is a consequence
of including retardation effects described by the commu-
tator with �n̂↑ in Eq. (4). An imbalance, in our case
N (|c−|2 − |c+|2) = 4δc�g2(t )/(δ2

c + κ2)2 > 0 for �, δc > 0,
leads to a preferential reduction of atomic excitations. Con-
sequently, dissipation described by V1 has a nice physical
interpretation: It is a cooling rate which is crucial for the
stabilization of the system over long timescales. The efficient
description given by Eqs. (8) and (9) allows us to map out the
whole phase diagram visible in Fig. 1.

Threshold. We will now show that it is possible to derive
analytical results for the onset of superradiance. We assume

that all atoms are initially in the ground state and explore
when driving induces an instability towards superradiance.
With most bosons in |↓〉, we eliminate fluctuations in the
ground state using ϕ↓ ≈ √

N , which linearizes Eq. (9). The
resulting complex differential equation for ϕ↑ = (ϕ↑, ϕ∗

↑) can
be solved using Floquet theory by making the ansatz ϕ↑(t ) =
eλFlt u(t ) with a T = 2π/ω periodic vector u and the Flo-
quet eigenvalue λFl = γFl − iνFl, γFl, νFl ∈ R. Details of this
derivation are reported in the SM [39]. The stability of the
fluctuations is determined by γmax which is the maximum
of all possible real parts γFl. Whenever γmax � 0 (γmax > 0)
we expect the system to be nonsuperradiant (superradiant).
In the nonsuperradiant regime, the Floquet eigenvalues λFl

represent the low-frequency modes λ that are found using
Floquet theory for the full Lindbladian in Eq. (6) for N → ∞.
To demonstrate this we show γFl as dashed line in Fig. 2(a)
which appears to be the thermodynamic limit of γ . Above
threshold, for γFl > 0, such a comparison is not possible as
λFL can only describe the short-time dynamics. The threshold
to superradiance is marked by γFl = 0 and shown as a black
line in Fig. 1. To get analytical expressions, we reformulate
the coupled complex differential equation as a real second-
order differential equation for x↑ = ϕ↑ + ϕ∗

↑,

d2x↑
dt2

+ 2V1(t )
dx↑
dt

+ �[� − 2V0(t )]x↑ = 0. (10)

In this differential equation V0 modifies the resonance fre-
quency � originating from (i) cavity-mediated interactions
and V1 serves as a damping of fluctuations coming from
(ii) the cavity-generated dissipation. If we perform a first-
order perturbation theory in g1/g0 ∼ �/

√
δ2

c + κ2, Eq. (10)
becomes a Mathieu equation [40] with V1(t ) ≈ γ0 and
�[� − 2V0(t )] ≈ ω2

res − 8�δcg0g1/[δ2
c + κ2] cos(ωt ). Here,

we have introduced the time-independent damping

γ0 = 4κδc�g2
0[

δ2
c + κ2

]2 , (11)

and resonance frequency in Eq. (3). The Mathieu equa-
tion without damping is known to exhibit instabilities around
the parametric resonances nω = 2ωres [40]. In the presence
of damping γ0, instabilities require sufficiently strong driving,
provided by the time-periodic term [40]. Accordingly, we ob-
serve in Fig. 1 superradiance close to the resonance condition
nω = 2ωres for pump power in the sidebands ∝ g1/g0 above a
certain threshold. This finding is in agreement with previous
works where dynamical superradiance has been connected to
the Mathieu equation [17,31], which again shows that the
atomic quantum theory in Eq. (6) gives the correct behavior
without describing explicitly the cavity. Moreover, this allows
us to obtain simple results for the damping rate (11) and reso-
nance frequency (3) and enables us to calculate the threshold
in g1. For this we perform a perturbative analysis around the
first instability at ω = 2ωres reported in the SM [39]. We show
that the instability occurs at

gc
1 = 2κωresg0

δ2
c + κ2

. (12)

The result given by Eq. (12) is visible as a gray solid line in
Fig. 1. It agrees well with the threshold found using Floquet
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FIG. 3. (a) Superradiance order parameter 〈X̂ 2〉 obtained from
stochastic simulations as a function of time in units of 1/κ and
of ω/(2ωres ). The vertical black solid lines mark the threshold
of superradiance obtained from the atom-only stability analysis.
(b) Time-averaged superradiance order parameter 〈X̂ 2〉tav as a func-
tion of ω/(2ωres ) evaluated after a time κt = 104. Solid black lines
(black circles) are obtained from the mean-field (semiclassical) sim-
ulations. (c) Spectrum S1(ν ) calculated from stochastic simulations
as a function of ν/ω and ω/(2ωres ) with κt0 = 5 × 103 and tmax = t0.
The red dashed lines in (c) are νFl. The remaining parameters are
δc = κ , � = 0.1κ , g0 = 0.5gc. The simulations are averaged over
104 trajectories.

theory at ω = 2ωres and its dependence on κ highlights the
effect of dissipation.

Dynamical response of the atoms. For a more comprehen-
sive test of the atom-only theory and the resulting Floquet
theory, we turn to semiclassical simulations of atoms and
cavity (see SM [39]) for the same parameters as in Fig. 1,
g1 = 0.75g0, and different values of ω (the black dashed line
in Fig. 1). For these parameters we expect three superradiant
regimes around the parametric resonance ω = 2ωres, 2ω =
2ωres, and 3ω = 2ωres. We use the semiclassical simulations
to calculate 〈X̂ 2(t )〉 shown as a function of time t and driv-
ing frequency ω in Fig. 3(a). The atom-only theory predicts
the borders of the superradiant regimes (black vertical lines),
which fully agrees with large values 〈X̂ 2〉 ∝ N2. In Fig. 3(b),
to compare the stationary state, we show the time-averaged
superradiant order parameter 〈X̂ 2〉tav for both the semiclassical
simulation of atoms and field (circles) and the atom-only

mean-field theory (black solid line) at steady state. Both show
a remarkable asymmetry of 〈X̂ 2〉tav where at each resonance
the lower threshold to superradiance is a continuous transition
while the upper threshold is marked by a sudden jump of
〈X̂ 2〉tav. Our semiclassical simulations provide a powerful tool
in its own right for studying the dynamics. The perfect quanti-
tative agreement with the atom-only model demonstrates that
the nontrivial microscopic derivation of an effective quantum
damping mechanism can be used far from equilibrium. This
agreement paves the way for studies of atomic quantum cor-
relations and gaps as well as more involved time-dependent
protocols with the full quantum model.

To understand the dynamical response of the atoms, which
is crucial to determine whether one finds a subharmonic and
time-crystalline order, we employ the two-time correlation
function C1(t, t0) and calculate its Fourier transform S1(ν) =∫ tmax

0 dteiνtC1(t, t0). Here, t0 is a long time after which the
dynamics of the system becomes independent of its initial
condition and tmax is a long-time cutoff. The numerical result
of S1(ν) is shown in Fig. 3(c) as a function of ν and driving
frequency ω. The spectrum S1(ν) spikes in ν for all values
of ω that highlight resonances in the atomic medium. These
resonances are in agreement with the Floquet frequencies
νFl that are visible as red dashed lines in Fig. 3(c). We find
νFl = nω/2 in the dynamical superradiant phase correspond-
ing to the parametric resonance nω = 2ωres. This implies that
the response of the atoms is flat with respect to the driving
frequency which highlights its robustness. Moreover, the re-
sponse is subharmonic whenever n is odd, which becomes
clear when considering that the underlying model is a single-
mode theory of ϕ↑ that oscillates with ωres = nω/2.

Conclusions. In conclusion, we have derived and verified
an atom-only theory for the time-periodic dissipative Dicke
model. With this theory we studied the onset of superra-
diance including the dynamical response and the threshold
determined by the cavity-generated dissipation, the driving
frequency, and amplitude. Besides the numerical efficiency
and maybe most remarkably, this atom-only theory allows
us also to describe the long-time relaxation into the DTC
that we can understand from an effective cooling mechanism.
We remark that all studied quantities in this Letter includ-
ing the superradiance order parameter and spectrum can be
measured from the cavity output. Future theoretical avenues
that build on the presented theory could use the atom-only
theory to derive quantum fluctuations and low-energy exci-
tations of the DTC. This can be used to determine if the
emergent states are quantum entangled [41]. In addition, one
can apply the atom-only theory to more complicated systems
with many and eventually infinitely many cavity modes. This
paves the way to the efficient theoretical description of the
atomic medium under periodic driving, which can be used
to analyze the generation of squeezed and entangled atomic
states with quantum information and metrology applications
[42,43].
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