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Detecting beyond-quantum nonlocality using standard local quantum observables
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We study the detection of beyond-quantum nonlocal states that can exist in a theoretical model whose
local systems are standard quantum theory in the framework of general probabilistic theories (GPTs). We
find that device-dependent detections are possible for beyond-quantum nonlocal states in GPTs even though
device-independent detections are not valid. We give a device-dependent detection based on local observables to
distinguish any beyond-quantum nonlocal state from all standard quantum states. In particular, we give a way to
detect any beyond-quantum nonlocal state of the two-qubit system by observing only spin observables on local
systems. Our results will help in the experimental detection of beyond-quantum nonlocality or justification of
standard quantum theory.
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Introduction. Bell’s inequality [1] (or CHSH inequality [2])
is one of the important ways to detect quantum nonlocality
in our physical systems. Bell-CHSH inequality (hereinafter
CHSH inequality) consists of bipartite players and their lo-
cal operations. It is especially important that the protocol
of CHSH inequality can be implemented by local observ-
ables. In other words, by implementing the protocol of CHSH
inequality as a bipartite communication task, we can experi-
mentally detect quantum nonlocality of our physical systems
when Bell-CHSH inequality is violated. Actually, the viola-
tion of CHSH inequality is confirmed in physical experiments
[3–9]. Moreover, CHSH inequality can be implemented with-
out certification of measurement devices. Such detection
without certification of measurement devices is called device-
independent (DI) detection [10–19]. These remarkable results
played an important role in the early studies of quantum
physics and quantum information theory to ensure that our
physical systems truly possess quantum nonlocality.

However, it is not sufficient for the strict verification
of quantum theory to detect standard quantum nonlocality
because there are many other theoretical models with nonlo-
cality than quantum systems. Such models can be described
as general probabilistic theories (GPTs) [21–44,47]. GPTs are
a framework for general theoretical models with states and
measurements, including classical and quantum theories. The
PR box [21–23] is a typical example of nonlocal models with
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beyond-quantum nonlocality. In the PR box, the CHSH value
attains four even though the bound in quantum theory is given
as 2

√
2, known as Tirelson’s bound [9]. In other words, the

CHSH inequality can detect the beyond-quantum nonlocality
in PR box.

In contrast to models that can be detected by CHSH in-
equality, there are models that cannot be detected by CHSH
inequality even though their local systems are completely
equivalent to standard quantum systems. Such models are
called entanglement structures (ESs) with local quantum
systems [34,39–42,47], including many models other than
the standard entanglement structure (SES), i.e., the standard
quantum model defined by the tensor product. Some ESs have
fewer nonlocal states than the SES [39,41], and some ESs
have beyond-quantum nonlocal states, i.e., nonlocal states that
do not belong to the SES [40,42,44,47]. In order to ensure that
our physical systems obey truly standard quantum theory, it
is also necessary to verify whether beyond-quantum nonlocal
states exist or not. However, preceding studies [45–47] have
revealed that all ESs satisfy Tirelson’s bound, i.e., CHSH
inequality cannot distinguish the SES from any beyond-
quantum nonlocal state in ESs.

What was worse, as we and some preceding studies [18,19]
mention, is that not only CHSH inequality but also any DI de-
tection cannot distinguish any beyond-quantum nonlocal state
from the SES. References [18,19] clarify that any DI detection
is impossible for any beyond quantum states in bipartite sys-
tems. Besides this, we simply point out that there exist some
beyond-quantum states that cannot be distinguished by any DI
detection even in multipartite cases (Theorem 1).

Therefore, to detect beyond-quantum states, we need to
consider device-dependent (DD) detection, which is based
on certified local measurements. Recently, pioneering works
[48,49] verified the mathematical dimension of standard
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TABLE I. Necessary number of certified measurement settings
for detection of beyond-quantum states. As known with the ad-
vantage of DI protocol over DD protocol, it costs many physical
resources to prepare certified objects. Our DD detection protocol in
the d-dimensional and �-parties setting needs

∏
λ∈�(d2

λ − 1) num-
ber of measurement settings for certified observables, which costs
many resources. However, in the two-qubit case, we give an efficient
protocol that works with a smaller number of measurement settings
than general cases.

Protocol No. certified measurement settings

DI detection Impossible
DD detection

∏
λ∈�

(
d2

λ − 1
)

(�-partite dλ-dimensional
quantum systems)
DD detection for two qubits 3 < 9 = ∏

λ∈�

(
d2

λ − 1
)

(� = {A, B}, dA = dB = 2)

quantum theory out of other models in GPTs based on DD de-
tection by simple full tomography from the experimental data
in quantum physics. However, the results cannot be applied
to ESs because they deal with only low-dimensional models
and any ES has the same dimension as standard quantum
theory. That is, the high cost of the full tomography made
them restrict their model in this way. Hence, this paper deals
with a more efficient DD detection of an arbitrary beyond-
quantum nonlocal state in ESs by an experimental protocol.
First, we give a DD detection separating an arbitrary given
beyond-quantum state from all standard quantum states as an
inequality defined by local observables even in multipartite
cases (Theorem 2). Next, we give a protocol to implement the
above detection. Our protocol consists of local operations by
local players (for example, Alice and Bob in bipartite cases)
and classical communication by them. In the protocol, local
players detect whether a target state is beyond-quantum or not.
If the target state is truly beyond-quantum, they conclude that
the target state is beyond-quantum with high probability.

Our criteria and protocol are implemented by a com-
plicated sequence of certified local observables for each
beyond-quantum states in general. Because DD detections
need certified observables, this protocol takes large costs even
without full tomography. However, in the two-qubit case,
i.e., in the bipartite 2 × 2-dimensional case, we give a more
efficient detection of a beyond-quantum nonlocal state by
observing Pauli’s spin observables in a specific order with
an uncertified unitary operation. It is known that maximally
entangled states are detected when Alice and Bob observe
Pauli’s spin observable σx, σy, σz in the same order with the
sequence of coefficients (1,−1, 1) [55,56]. Similar to this
result, we clarify that the sequence of coefficients (1,1,1)
detects any beyond-quantum “pure” state (Theorem 3) by
applying an uncertified unitary operation. As a result, we give
a detection for beyond-quantum pure states as an inequality
based on fixed certified observables and an uncertified unitary
operation in the two-qubit case. Comparing the necessary re-
sources of the two-qubit case with general cases, our protocol
in the two-qubit case needs a small number of certified objects
(Table I). This efficiency in the two-qubit case is convenient

for the future direction of actual experimental verification like
[48,49].

The setting of GPTs and entanglement structures. The cen-
tral postulate of GPTs is the condition that any state ρ in the
state space S and any measurement {Mi} in the measurement
space M satisfy Pr(ρ, Mi ) � 0, where Pr(ρ, Mi ) denotes the
probability to get an outcome i by {Mi} with ρ. This paper
deals with the detection of global states by local measure-
ments. For this aim, we consider a composite model of local
standard quantum systems given by the Hilbert spaces Hλ for
λ ∈ �, where � is the set of all labels of local systems. In this
case the probability is given as Pr(ρ, Mi ) = TrρMi.

In the setting of GPTs, a model of composite system is
not uniquely determined even if the local systems are fixed,
and a model of composite system is given by each measure-
ment space. Such a model is called an entanglement structure
[34,39–42,47], which is also introduced by operational pos-
tulates [34]. We give a more detailed explanation in the
Supplemental Material [50].

For the Bell scenario, this paper considers the case that
the measurement space M contains the product of any local
POVMs. Under this constraint of measurement space, the
largest state space Smax(�) consistent with the concept of
GPTs is given as

Smax(�) :=
{

ρ ∈ LH

( ⊗
λ∈�

Hλ

)∣∣∣∣∣Trρ = 1,

× TrρM � 0 for any M ∈ SEP(�)

}
. (1)

Here the set SEP(�) is defined as

SEP(�) := Conv

{⊗
λ∈�

xλ

∣∣∣∣∣xλ ∈ L+
H (Hλ)

}
, (2)

where Conv(X ) denotes the convex hull of a set X . In other
words, in the scenario of GPTs and the detection of global
states by local measurements, any state in Smax is available.
Due to the definition of Smax(�), there exist states in Smax(�)
that do not belong to the standard quantum state space, i.e.,
the set of density matrices denoted by Ssta (�). In this paper
we call such a state in Smax(�) \ Ssta (�) a beyond-quantum
state, and we denote the set of all beyond-quantum states as
BQS(�).

Here we remark that the above setting corresponds to the
well-considered setting of GPTs. In the terminology of gen-
eral settings of GPTs, the state space Smax(�) corresponds
to the state space given by the maximal tensor product of
positive cones [34]. The detailed explanation is given in the
Supplemental Material [50].

A beyond-quantum state σ can be regarded as an entan-
glement witness because any element σ ∈ BQS(�) satisfies
that Trσρ � 0 for any separable states ρ ∈ S (SEP(�)) and
Trσρ < 0 for a certain entangled standard quantum state ρ ∈
Ssta (�). Conversely, any linear witness f : LH(

⊗
λ∈� Hλ) →

R of an entangled state corresponds to a Hermitian matrix
σ satisfying f (ρ) = Trρσ because f (ρ) must be negative
for an entangled state ρ, which implies that σ must be an
element BQS(�) by normalization. We do not give concrete
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Alice’s System

Bob’s System

Uncer�fied
Local Measurement

Outcome

Target State

OutcomeInput

Input Uncer�fied
Local Measurement

FIG. 1. DI detection in bipartite case � = {A, B}. Alice and
Bob apply uncertified local measurements MA

ξA
:= {MA

ξA;iA
}iA∈IA and

MB
ξB

:= {MB
ξB ;iB

}iB∈IB to the bipartite system prepared in a given
nonlocal state ρ. Then Alice and Bob determine whether ρ is beyond-
quantum by the probability Trρ(MA

ξA;iA
⊗ MB

ξB ;iB
).

examples here, but we give an concrete example of beyond-
quantum states as (23) in the Supplemental Material [50].
Our interest is how we detect beyond-quantum states if they
exist.

Impossibility of device-independent detection for beyond-
quantum states. As we will see later, our detection is based
on device-dependent (DD) setting, which is different from
the setting of device-independent (DI) detection considered as
well. In order to emphasize the necessity of DD setting, we
see the impossibility of the DI detection of a beyond-quantum
state (Fig. 1). In the DI detection, we have no certificate of
measurement devices.

In the following discussion, every local quantum system
Hλ is controlled by the player labeled by λ ∈ �. When the
composite system is prepared in the target global state ρ,
depending on an input ξλ ∈ �λ, the player λ ∈ � applies the
local POVM Mλ

ξλ
:= {Mλ

ξλ;iλ
}iλ∈Iλ on the local quantum system

Hλ, where Iλ is the set of measurement outcomes of Mλ
ξλ

, and
iλ expresses a measurement outcome of Mλ

ξλ
. Here we choose

the set Iλ independently of the input ξλ ∈ �λ.
Definition 1. A tuple of a beyond-quantum state ρ0 and

a family of local POVMs ((Mλ
ξλ

)ξλ∈�λ
)λ∈� is called standard

quantum simulable when the following condition holds: There
exists a tuple of a standard quantum state ρ1 ∈ Ssta (�) and a
family of local POVMs ((M ′λ

ξλ
)ξλ∈�λ

)λ∈� such that the relation

Trρ0

⊗
λ∈�

Mλ
ξλ;iλ = Trρ1

⊗
λ∈�

M ′λ
ξλ;iλ (3)

holds for any ξλ ∈ �λ, iλ ∈ Iλ.
Then a beyond-quantum state ρ0 ∈ S (SEP∗(�)) is distin-

guished device independently by a family of local POVMs
((Mλ

ξλ
)ξλ∈�λ

)λ∈� from all standard quantum states if and only
if the tuple of ρ0 and ((Mλ

ξλ
)ξλ∈�λ

)λ∈� never satisfies standard

quantum simulability. In other words, the possibility of DI
detection is equivalent to the impossibility of the simulation
by a pair of a standard quantum state and a family of local
POVMs.

However, the following theorem implies the impossibility
of DI detections of beyond-quantum states.

Theorem 1. For any �, there exists a beyond-quantum
state ρ such that the tuple of the state ρ and any local
POVMs satisfies standard quantum simulability. Especially,
in the bipartite case, i.e., � = {A, B}, any tuple of any
beyond-quantum state ρ0 ∈ BQS(�) and a family of local
POVMs ((MA

ξA
)ξA∈�A , (MB

ξB
)ξB∈�B ) satisfies standard quantum

simulability.
Here we remark that similar results to Theorem 1 are

shown by Refs. [18,19]. Although Refs. [18,19] proved a
similar statement, it does not formulate the problem with
GPTs. Besides, Refs. [18,19] focused on the impossibility for
any beyond-quantum states in bipartite cases, but they did not
focus on the impossibility in multipartite cases. Further, while
the proof in [18] has a problem caused by an inverse of a key
operator, our proof does not have such a problem because our
proof is straightforward and different from that of Ref. [18],
as shown in the Supplemental Material [50].

Due to Theorem 1, it is impossible to distinguish a beyond-
quantum state from all standard quantum states. To resolve
this problem, instead of measurement devices without cer-
tification, we need to employ measurement devices that are
identified with certifications. This problem setting is called
DD detection.

Device-dependent detection of beyond-quantum state and
its implementation. Now we discuss a DD detection of an
arbitrary given beyond-quantum state in ESs. In the following
analysis, instead of the joint distribution, as a simple indi-
cator, we focus on the sum of an expectation of a function
f ((ξλ)λ, (iλ)λ), i.e.,

∑
(ξλ )λ,(iλ )λ f ((ξλ)λ, (iλ)λ)Trρ

⊗
λ∈� Mλ

ξλ;iλ
so that the magnitude relationship of this indicator makes
the required discrimination. For our simple analysis, we as-
sume f ((ξλ)λ, (iλ)λ) = �λ∈� f (ξλ, iλ). Then this value can be
rewritten as∑

(ξλ )λ,(iλ )λ

f ((ξλ)λ, (iλ)λ)Trρ
⊗
λ∈�

Mλ
ξλ;iλ =

∑
(ξλ )λ

Trρ
⊗
λ∈�

Oλ
ξλ

,

(4)

where Oλ
ξλ

:= ∑
iλ

f (ξλ, iλ)Mλ
ξλ;iλ

. The Hermitian matrices
Oλ

ξλ
can be regarded as standard quantum observables with

the POVMs Mλ
ξλ

and outcomes f (ξλ, iλ), respectively. There-
fore, the value Trρ

⊗
λ∈� Oλ

ξλ
corresponds to the expectation

value of the standard quantum observable Oλ
ξλ

with the
state ρ. Hereinafter, we abbreviate the pair of POVMs
and outcomes in the left-hand side of (4) to the right-
hand side of (4) by using observables, according to this
correspondence.

Based on the sum of the expectation of standard quantum
local observables, the following theorem gives a DD detec-
tion of any beyond-quantum state from all standard quantum
states.

Theorem 2. Given an arbitrary beyond-quantum state ρ0 ∈
BQS(�), there exist families of local observables {Oλ

k }m
k=1 and
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a real number α satisfying the following two properties:

(1) Trρ0

m∑
k=1

⊗
λ∈�

Oλ
k > α.

(2) sup
ρ1∈Ssta (�)

Trρ1

m∑
k=1

⊗
λ∈�

Oλ
k � α.

The proof of Theorem 2 is written in the Supplemental
Material, but we remark that we can find {Oλ

k }m
k=1 and α

as follows. The tuple of all generalized Pauli’s observables
on Hλ with multiplying certain real numbers works as the
operators {Oλ

k }m
k=1 in Theorem 2. When the dimension of Hλ

is dλ, we have the identity matrix on Hλ and d2
λ − 1 number

of generalized Pauli’s observables σλ
i (i = 0, . . . , d2

λ − 1). In
general, the set {Oλ

k }m
k=1 is given as the tuple of all products of

σλ
i with certain scalar times, and the number of observables m

in Theorem 2 is given as m = ∏
λ∈� d2

λ . However, when the
local observables composing the product observable contain
a number of the identity matrices, the systems having the
identity matrix are not required to be measured. That is, a local
system Hλ is required to be measured by d2

λ − 1 number of
generalized Pauli’s observables so that the actual total number
of necessary measurement settings is given as

∏
λ∈�(d2

λ − 1).
Theorem 2 guarantees that the joint distribution with ρ0

cannot be simulated by the joint distribution with any standard
quantum state ρ1 under the common local measurements.
The above discussion can be understand in terms of the
semidefinite programming (SDP) with the target function
maxρ1∈LH(

⊗
λ∈� Hλ ) Trρ1

∑m
k=1

⊗
λ∈� Oλ

k and the conditions
Trρ1 = 1 and ρ1 � 0. The second relation in Theorem 2
shows that the solution of the SDP is upper bounded by α.
The first relation in Theorem 2 states that ρ0 attains a strictly
larger value than the solution, and therefore, ρ0 is not posi-
tive semidefinite, i.e., beyond-quantum. In the setting of DD
detection, we focus the set of all pairs of a beyond-quantum
state and local POVMs. This set is more complicated than the
set of quantum correlations even though they are equivalent in
DI setting.

Next, we see that the detection given by Theorem 2 is
implemented as the following DD detection protocol on the
bipartite scenario (Fig. 2):

Aim and Strategy
(1) Local players aim to determine whether a given target

global state ρ is beyond-quantum or not.
(2) Players choose {⊗λ∈� Oλ

k }m
k=1 and α given in Theorem

2 based on their prediction that the target state ρ is close to a
beyond-quantum state ρ0.

(3) Players repeat the following protocol by nm-times for
sufficiently large n.

The Whole Protocol
(1) Setup: We assume that a generator can prepare the

composite system with the same target state ρ, repetitively.
(2) lth Round: The generator prepares the composite

system with the target state ρ. They measure their local ob-
servables Oλ

k with l = qn + k (1 � k � m, q is the integer
part of the quotient l/n). As a result, they get outcomes oλ

l ,
respectively.

(3) Determination: They share their outcomes with
classical communication. They then calculate the value
1
n

∑nm
l=1 �λ∈�oλ

l . If the inequality 1
n

∑nm
l=1 �λ∈�oλ

l > α

Alice’s System

Bob’s System

Outcome

OutcomeInput

Input Cer�fied
Local Observable

Cer�fied
Local Observable

Target State

FIG. 2. The lth round of the detection protocol of the criterion
given in Theorem 2 in the case of � = {A, B}. Local players Alice
and Bob aim to detect whether ρ is beyond-quantum. Alice and
Bob prepare only their certified local observables with a certain
order given in Theorem 2, and they estimate the expectation value
in Theorem 2 as the average of all outcomes gotten in nm rounds of
observation.

holds, they conclude that the target state ρ is
beyond-quantum.

Justification
(1) On the limit n → ∞, the value 1

n

∑nm
l=1 �λ∈�oλ

l ap-
proximates the expectation value

∑m
k=1 Trρ

⊗
λ∈� Oλ

k .
(2) If n is sufficiently larger and the inequality

1
n

∑nm
l=1 �λ∈�oλ

l > α holds, Theorem 2 ensures that the
target state ρ is beyond-quantum with sufficiently large
probability.

(3) If 1
n

∑nm
l=1 �λ∈�oλ

l � α holds for sufficiently large n,
their prediction ρ0 is sufficiently different from the target
state ρ.

In this way, any beyond-quantum state can be detected by
a finite number of certified local quantum observables with
large probability. In general cases, this detection require large
costs because we need to certify a number of local quantum
observables dependent on a target state. However, in the 2 × 2
dimensional bipartite case, we can reduce the number of cer-
tified devices for detection of all pure beyond-quantum states.

Let us consider the case � = {A, B} with dim(HA) =
dim(HB) = 2. First, we define the following function
APauli(·;UA,UB) using Pauli’s spin matrices and unitary
operations:

APauli(ρ;UA,UB) :=
∑

c=x,y,z

Tr(UA ⊗ UB)ρ(U †
A ⊗ U †

B )σc ⊗ σc,

(5)

where UA,UB and σx, σy, σz denote unitary matrices on
HA,HB, and Pauli’s spin observables are defined as

σx :=
(

0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
,

(6)

respectively.
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The function APauli(·;UA,UB) satisfies the following
properties.

Theorem 3. The following two properties hold:
(1) For any beyond-quantum pure state ρ0 ∈

BQS(A; B), there exist unitary matrices UA,UB such that
APauli(ρ0;UA,UB) > 1.

(2) sup
UA,UB: unitary

ρ1∈Ssta (A;B)

APauli(ρ1;UA,UB) � 1.

The proof of Theorem 3 is given in the Supplemental
Material [50]. Theorem 3 implies that in 2 × 2-dimensional
case, if a target state ρ0 is beyond-quantum pure, there exists
a pair of unitary matrices UA and UB such that the function
APauli(·;UA,UB) detects the beyond-quantum pure state ρ0

from all standard quantum states ρ1. If we can apply the
unitary operations in the whole protocol, it is not necessary
to certify the description of unitary matrices. As a result, we
only need to prepare the measurement settings to certify the
observables σx, σy, σz in the tuple of σk ⊗ σk for k = x, y, z
without the tuple of σi ⊗ σ j for i 	= j. The criterion given in
Theorem 3 is approximately implemented by a reiteration of
the protocol in Fig. 2 without the certification of unitary op-
erations. As a result, this protocol takes less costs than that of
Theorem 2 because we need only three types of measurement
settings of certified observables instead of

∏
λ∈�(d2

λ − 1) = 9.
Conclusion. In this paper we have discussed the detection

of a beyond-quantum state in ESs of GPTs. Even though local
systems of ESs are equivalent to standard quantum systems,
we have shown that any DI detection, including CHSH in-
equality, cannot separate any beyond-quantum state in ESs
from the standard quantum states even in multipartite cases. In
contrast to DI detection, we have given a DD detection of an
arbitrary given beyond-quantum state in any ES from all states

in the SES based on local standard quantum observables.
Also, we have given an experimental implementation of the
detection as a protocol with local players. The detection needs
a large number of observables in general. However, in the two-
qubit case, we have given a more efficient detection based on
Pauli’s spin observables. The detection can be implemented
only by a smaller number of certified Pauli’s spin observables
and uncertified unitary operations.

An interesting remaining study is actual verification of
beyond-quantum states based on our detection by exper-
imental datum similar to Refs. [48,49]. The detection in
Refs. [48,49] is based on the full tomography, which restricts
their model due to the high cost. Our detection is a more
efficient way than full tomography, which implies that our
detection can extend the studies of [48,49]. Therefore, our
detection enables us to design better experiments than that of
preceding studies [48,49]. Another remaining study is a strict
estimation of the error probability of the detection protocol.
In order to discuss how surely our models contain beyond-
quantum nonlocal states, we need to discuss the protocol in
the context of hypothesis testing. This study is also helpful for
the above actual verification. As well, from the viewpoint of
foundations, it is also interesting to generalize our detection
to general composite models in GPTs. The difficulty in deter-
minIng composite systems in GPTs is a well-considered open
problem, and the above generalization has the potential to give
a new perspective on it.
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