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Scaling enhancement of photon blockade in output fields
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Photon blockade enhancement is an exciting and promising subject that has been well studied for photons in
cavities. However, whether photon blockade can be enhanced in the output fields remains largely unexplored.
We show that photon blockade can be greatly enhanced in the mixing output field of a nonlinear cavity and an
auxiliary (linear) cavity, where no direct coupling between the nonlinear and auxiliary cavities is needed. We
uncover a biquadratic scaling relation between the second-order correlation of the photons in the output field
and intracavity nonlinear interaction strength, in contrast to a quadratic scaling relation for the photons in a
nonlinear cavity. We identify that this scaling enhancement of photon blockade in the output field is induced
by the destructive interference between two of the paths for two photons passing through the two cavities. We
then extend the theory to the experimentally feasible Jaynes-Cummings model consisting of a two-level system
strongly coupled to one of the two uncoupled cavities, and also predict a biquadratic scaling law in the mixing
output field. Our proposed scheme is general and can be extended to enhance blockade in other bosonic systems.
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I. INTRODUCTION

A single-photon resource [1–3] with simultaneously high
degrees of efficiency, single-photon purity, and photon in-
distinguishability is a crucial device in the implementation
of quantum communication [4], quantum computing [5], and
quantum metrology [6]. Photon blockade, preventing the reso-
nant injection/emission of more than one photon [7], provides
an efficient way for single-photon generation with high purity.
The field of photon blockade is extended to the high-order
[8–12], multimode [13], and multi-dimensional [14] correla-
tions, and its application is expanded from generating single
photons to demonstrating photonic quantum logic gate [15,16]
and fractional quantum Hall state [17].

Since the prediction of photon blockade [7], diverse ef-
forts have been made to observe and enhance the effect.
Strong coupling between light and matter at the single-
photon level enabled the observation of photon blockade
in experiments, including single atoms coupled to an opti-
cal resonator [18–20], a quantum dot coupled to a photonic
crystal resonator [21,22], and a superconducting qubit cou-
pled to a transmission line resonator [23,24]. Different
from the photon blockade based on strong nonlinearity
(conventional photon blockade), Liew and Savona showed
that photon blockade can also be achieved with weak
nonlinearity through quantum interference, known as uncon-
ventional photon blockade (UPB) [25,26]. Subsequently, UPB
has been predicted in different setups [27–33], and has been
observed for both optical [34] and microwave [35] photons.
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While the UPB with weak nonlinearity is interesting, the fact
that there is a very small amount of photon in the cavity
makes it inconvenient for applications [36]. Besides, photon
blockade is also predicted by nonlinear driving [37,38] and
nonlinear loss [39–42]. Moreover, photon blockade enhance-
ment is proposed based on multimode-resonant interaction
[43,44], non-Hermitian coupling [45–48], dynamical excita-
tion [49,50], and coupled-resonator chain [51–53].

We note that the previous studies mainly focus on the
photon blockade in the cavities, but photon statistics in
the output fields becomes even more complex, such as we
can observe photon antibunching for the reflected light but
bunching for transmitted light [20,54,55]. Photon statistics
for the mixing of two output channels has been investigated
in Ref. [56], and it shows that the photon antibunching in the
mixing output field is not suppressed but rather just displaced
in a different region of the system’s parameter space. Besides,
photon antibunching as well as bunching effect are observed
in the mixed field of a narrow band two-photon source and
a coherent field [57], and tunable photon statistics have been
proposed in the admixing of a coherent state with a squeezed
state [58,59]. Nevertheless, whether photon blockade can be
enhanced in the mixing fields output from two cavities has not
been studied thoroughly.

In this paper, we combine conventional and unconventional
photon blockade and show that photon blockade can be greatly
enhanced in the mixing fields output from a nonlinear cavity
and an auxiliary linear cavity. Different from the previous
studies on UPB in weakly nonlinear photonic molecules
[25–33], here the photon blockade enhancement in the
output fields is achieved without direct coupling between
the two cavities, which brings three advantages. Firstly,
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there is no time oscillation in the temporal second-order
correlation function. Secondly, the single-photon output
efficiency is relatively greater. Thirdly, there is no strict
relationship between the nonlinear strength and the coupling
strength of the two cavities to observe optimal photon
blockade.

We analytically identify that there is a biquadratic scal-
ing relation between the second-order correlation of the
photons in the output field and the intracavity nonlinear
interaction strength, in contrast to a quadratic scaling law
for the photons in a nonlinear cavity. Our scheme is general
and can be extended to other platforms. As an example, we
consider an experimentally feasible Jaynes-Cummings (JC)
model for two (uncoupled) cavities with a two-level system
(TLS) coupled to one of them, and demonstrate a biquadratic
scaling relation between the second-order correlation of
the photons in the output field and TLS-cavity interaction
strength.

II. χ(3) MODEL

Without loss of generality, we first consider the photon
blockade in the mixing fields output from a cavity contain-
ing χ (3) nonlinear medium and an auxiliary (linear) cavity
[Fig. 1(a)]. The total Hamiltonian of the system in the frame
rotating at the probe laser frequency ωp can be written as
(h̄ = 1)

H = �1a†
1a1 + Ua†

1a†
1a1a1 + iε(a†

1 − a1)

+�2a†
2a2 + iε(a†

2 − a2), (1)

where ai and a†
i are the annihilation and creation operators

of the ith cavity with frequency ωi (i = 1, 2), �i = ωi − ωp

is the laser detuning from the cavity resonance, δ = ω2 − ω1

is the detuning between the two cavities, U is the nonlinear
interaction strength, and ε is the pumping strength on each
cavity. According to the input-output relation [60], the mixing
fields aout and Aout output from the two cavities can be de-
scribed by aout = (

√
κ1a1 + eiφ√

κ2a2)/
√

2 − avac and Aout =
(
√

κ1a1 − eiφ√
κ2a2)/

√
2 − a′

vac, where κi is the one-sided
decay rate of the ith cavity, φ is the relative phase between
the two output fields (tunable by using the phase shifter), and
avac (a′

vac) is the input vacuum field from the right-hand side
of the cavities. Here, we focus on the output field aout, and the
results of Aout can be obtained just by replacing φ by φ + π

(see Appendix A).
Photon statistics of the output field in the steady state can

be described by the second-order correlation function

g(2)
out (τ ) = 〈a†

outa
†
out (τ )aout (τ )aout〉
〈a†

outaout〉2

=
2∑

j,k,l,m=1

einφ√
κ jκkκlκm

〈a†
j a

†
k (τ )al (τ )am〉

N2
out

, (2)

where n = l + m − j − k, Nout = κ1〈a†
1a1〉 + κ2〈a†

2a2〉 +
2
√

κ1κ2Re(eiφ〈a†
1a2〉), and τ is the time delay. Different

from the second-order correlation function in the cavities
g(2)

i (0) = 〈a†
i a†

i aiai〉/〈a†
i ai〉2 (i = 1, 2), g(2)

out (0) also depends
on the cross correlation between the two cavities (i.e.,

FIG. 1. (a) A Mach–Zehnder interferometer with two cavities (a1

and a2) in the paths. A laser is divided into two beams by a 50/50
beam splitter (BS), and they are injected into a cavity containing
χ (3) nonlinear medium and an auxiliary (linear) cavity, respectively.
The output fields from these two cavities mix by another BS. A
phase shifter (PS) is placed in one path to induce tunable phase
difference φ between the two paths. The second-order correlation
of the output field is measured by a Hanbury-Brown-Twiss (HB-T)
set-up. Second-order correlations of the photons in the two cavities
[g(2)

1 (τ ) and g(2)
2 (τ )] and the mixing output field [g(2)

out (τ )] are plotted
(b) as functions of the detuning �1/κ for the time delay τ = 0, and
(c) as functions of log10(τκ/2π ) for �1 = 0. The parameters are
φ = π , U = 20κ , and δ = 2U .

〈a†
2a2a†

1a1〉, 〈a†
1a†

1a2a2〉, 〈a†
1a†

1a1a2〉, and 〈a†
2a†

1a2a2〉), and
there are phase factors einφ in front of the terms, which can be
negative and induce the enhancement of photon blockade in
the output field, without changing the photon statistics in the
cavities.

The dynamics of the system are governed by the mas-
ter equation [61] dρ/dt = −i[H, ρ] + ∑

i=1,2 κi(2aiρa†
i −

a†
i aiρ − ρa†

i ai ), where ρ is the density matrix of the
system. For simplicity, here, we set κ1 = κ2 = κ (the dis-
cussions on κ1 �= κ2 are given in the Appendix B), and
rescale other parameters by κ , such as ε = κ/10 for weak
pumping.

III. PHOTON BLOCKADE ENHANCEMENT

To demonstrate the photon blockade enhancement more
clearly, the second-order correlation functions for photons in
the two cavities g(2)

i (0) and in the output field g(2)
out (0) are

shown in Fig. 1(b). As expected, the photon statistics in the
two uncoupled cavities are independent of each other: strong
photon blockade g(2)

1 (0) ≈ 2.54 × 10−3 in the cavity a1 for
strong enharmonicity (U = 20κ), and no photon blockade
g(2)

2 (0) = 1 in the cavity a2 without nonlinearity. Surprisingly,
a much stronger photon blockade is obtained in the mixing
output field aout for [g(2)

out (0)/g(2)
1 (0)] ∼ 10−4 at resonant fre-

quency (�1 = 0). Moreover, as there is no direct coupling
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between the two cavities (a1 and a2), there is no oscillation in
g(2)

out (τ ) [Fig. 1(c)], in contrast to the rapid oscillations in pho-
ton correlations as a result of amplitude oscillation between
different cavities [26].

Figure 2(a) is a color plot of log10[g(2)
out (0)] as a function of

the phase φ/π and detuning δ/κ , for �1 = 0 and U = 20κ .
The minimum of log10[g(2)

out (0)] is reached for φ ≈ π and δ ≈
2U (or φ ≈ 0 and δ ≈ −2U ). Two cuts taken from the color
plot for δ = 2U and φ = π are shown in Figs. 2(b) and 2(c),
respectively. The photon blockade is enhanced, i.e., g(2)

out (0) <

g(2)
1 (0), in the regime of 0.66π < φ < 1.33π , and the minimal

value of g(2)
out (0) is about 5.4 orders smaller than g(2)

1 (0) at
φ ≈ 0.996π [Fig. 2(b)]. Moreover, g(2)

out (0) also strongly de-
pends on the detuning δ/κ between the two cavities, and it
is about 3.8 orders smaller than g(2)

1 (0) at δ ≈ 2U [Fig. 2(c)].
These results suggested that quantum interference might be
responsible for the great enhancement of photon blockade in
the output field.

In addition, the mean photon numbers in the cavities
(ni = 〈a†

i ai〉) are plotted as functions of the detuning δ/κ in
Fig. 2(d). Under the optimal condition δ ≈ 2U , the single-
photon generation in the auxiliary cavity a2 is suppressed
seriously (n2/n1 ≈ 10−3.2) for large detuning δ 	 κ . Hence,
almost all of the single photons in the mixing output field are
emitted from the cavity a1, and they are about one half of
the photons emitted from cavity a1. Nevertheless, the auxil-
iary cavity a2 provides another path for two photons passing
through the whole system, which is the key ingredient for
the enhancement of photon blockade in the output field as
discussed bellow. By the way, the mean photon number in the
auxiliary cavity a2 is almost the same as the one in cavity
a1 (n1 ≈ n2) under the resonant condition δ = 0, and they
cancel each other at φ = π for destructive interference, which
induces a strong bunching effect [g(2)

out (0) 	 1] [30,58] in the
output field [Fig. 2(c)].

IV. BIQUADRATIC SCALING

In order to understand the origin of the giant enhance-
ment of photon blockade in the output field, we derive
the expressions of the second-order correlations [g(2)

out (0) and
g(2)

1 (0)] analytically (see Appendix B). Here, including the
effect of optical decay, an effective Hamiltonian Heff = H −
iκ (a†

1a1 + a†
2a2) is introduced according to the quantum-

trajectory method [62]. Under weak driving condition (ε 

κ), the wave function on a Fock-state basis can be truncated to
the two-photon manifold as |ψ〉 = ∑2−n1

n2=0

∑2
n1=0 Cn1n2 |n1, n2〉.

Here, |n1, n2〉 represents the Fock state of n1 photons in cavity
a1 and n2 photons in cavity a2, with the probability amplitude
Cn1n2 . The expression of Cn1n2 can be obtained by solving
the Shrödinger equation d|ψ〉/dt = −iHeff |ψ〉 in the steady
states.

Under the conditions for photon blockade enhance-
ment (φ = π , �1 = 0, and δ = 2U 	 κ), the second-order
correlation function can be written as

g(2)
out (0) ≈ 2κ2

N2
out

{|C20 −
√

2C11|2 + |C02|2

−2Re[(
√

2C∗
11 − C∗

20)C02]}, (3)

FIG. 2. (a) The second-order correlation log10[g(2)
out (0)] for dif-

ferent phase φ/π and detuning δ/κ . The second-order correlations
log10[g(2)

out (0)] and log10[g(2)
1 (0)] vs (b) phase φ/π with δ = 2U and

(c) detuning δ/κ with φ = π . (d) The mean photon number log10(n1)
and log10(n2) vs detuning δ/κ with φ = π . The other parameters are
�1 = 0, U = 20κ , and ε = 0.1κ .

where Nout ≈ κ[|C10|2 + |C01|2 − 2Re(C01C∗
10)]. The proba-

bility amplitudes for two-photon states in the steady state are
approximately given by

C20 ≈ −i

U − iκ

ε2

√
2κ

, C02 ≈ −
√

2

2U − iκ

ε2

4U
,

C11 ≈ −i

U − iκ

(
ε2

2κ
− iε2

4U

)
(4)

with |C20| ≈ √
2|C11| 	 |C02|. The first and last terms inside

the curly brace of Eq. (3) are canceled out by the destructive
interference between C20 and C11. Then the second-order cor-
relation function in the output field is approximately given by

g(2)
out (0) ≈ [κ/(2U )]4. (5)

The second-order correlation of the photons in the output field
depends on the strength of the nonlinear interaction with a
biquadratic scaling law, which is different from the second-
order correlation of photons in the cavity a1, i.e., g(2)

1 (0) ≈
(κ/U )2, with a quadratic scaling law.

Both log10[g(2)
out (0)] and log10[g(2)

1 (0)], obtained by solving
the master equation numerically, are plotted as functions of
log10(U/κ ) in Fig. 3. In the strong nonlinear regime U/κ 	 1,
the slope of log10[g(2)

out (0)] versus log10(U/κ ) is −4, which
is much larger than the slope of −2 for log10[g(2)

1 (0)] ver-
sus log10(U/κ ). The numerical results agree well with the
analytical expressions in the strong nonlinear regime (black-
dashed lines in Fig. 3). Thus, the scheme we proposed cannot
only greatly enhance photon blockade by several orders,
but also change the scaling exponent of the second-order
correlation on the nonlinear interaction strength from −2
to −4.
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FIG. 3. The second-order correlations log10[g(2)
out (0)] and

log10[g(2)
1 (0)] vs the nonlinear interaction strength log10(U/κ ) with

�1 = 0, φ = π , and δ = 2U .

V. JC MODEL

The scheme for photon blockade enhancement in output
field is general. It can be extended to other optical platforms
with anharmonic energy levels, such as the JC model [63].
The strong coupling between a single cavity and a TLS has
been realized decades ago [64–67], and photon blockade was
demonstrated in a large number of experiments based on JC
model [18–24]. Here, we demonstrate a scaling enhancement
of photon blockade in the mixing field output from two (un-
coupled) cavities with a TLS strongly coupled to one of them.

The scheme can be extended to the JC model just by replac-
ing the χ (3) nonlinear medium [Fig. 1(a)] by a TLS [Fig. 4(a)],
and the system is described by

HJC = �1a†
1a1 + �aσ+σ− + g(a†

1σ− + σ+a1)

+�2a†
2a2 + iε(a†

1 + a†
2 − H.c.), (6)

where σ+ and σ− are the raising and lowering operators of
the TLS with transition frequency ωa, �a = ωa − ωp is the
laser detuning from the TLS, and g is the TLS-cavity coupling
strength. We assume that the TLS is resonant with the cavity
(�a = �1 = �), and the decay rate of the TLS is κa = 2κ .

In order to confirm the applicability of our scheme in
JC model, we perform a fully numerical simulation of the
second-order correlation in the output field based on the
master equation. log10[g(2)

out (0)] is plotted as a function of
φ/π and �2/κ in Fig. 4(b), for g = 20κ and � = −g. The
minimum of log10[g(2)

out (0)] appears around φ = π and �2 ≈
−13.3κ ≈ −2g/3. From the cuts of the color scale plot shown
in Figs. 4(c) and 4(d), g(2)

out (0) is about 4.3 orders smaller
than g(2)

1 (0) at φ = 0.99π with �2 = −2g/3 [Fig. 4(c)], and
about three orders smaller than g(2)

1 (0) at �2 ≈ −13.38κ with
φ = π [Fig. 4(d)].

In order to understand the enhancement of
photon blockade in the output field, we derive
the expression of g(2)

out (0) by using the effective

FIG. 4. Photon blockade enhancement in the mixing output field
of two cavities with a TLS in one of them. (a) Sketch of the pro-
posed scheme with a TLS (excited state |e〉 and ground state |g〉) in
cavity a1. (b) The second-order correlation log10[g(2)

out (0)] for differ-
ent phase φ/π and detuning �2/κ . The second-order correlations
log10[g(2)

out (0)] and log10[g(2)
1 (0)] vs (c) phase φ/π with �2 = −2g/3

and (d) detuning �2/κ with φ = π . (e) The second-order correla-
tions log10[g(2)

out (0)] and log10[g(2)
1 (0)] versus the interaction strength

log10(g/κ ) with φ = π , �1 = −g, and �2 = −2g/3. The other pa-
rameters are g = 20κ and κa = 2κ .

Hamiltonian HJC,eff = HJC − iκ (a†
1a1 + a†

2a2 + σ+σ−)
and wave function |ϕ〉 = ∑2−n1

n2=0

∑2
n1=0 Cgn1n2 |g, n1, n2〉 +∑1−n1

n2=0

∑1
n1=0 Cen1n2 |e, n1, n2〉 (see Appendix C). Here,

|g, n1, n2〉 (|e, n1, n2〉) denotes the Fock state of n1 photons in
cavity a1, n2 photons in cavity a2, and the TLS in the ground
(excited) state, with the probability amplitude Cgn1n2 (Cen1n2 ).
The optimal condition �2 = −2g/3 for photon blockade in
the output field is obtained by setting Cg02 ≈ √

2Cg11, and
they are canceled out by the destructive interference in the
output field at phase difference φ = π . Thus the second-order
correlation function in the output field becomes (see more
details in Appendix C)

g(2)
out (0) ≈ 16(κ/g)4. (7)

We also have the second-order correlation in cavity a1 as
g(2)

1 (0) ≈ 36(κ/g)2 for single-mode JC model, and they [dash
lines in Fig. 4(e)] agree well with numerical results in the
strong coupling regime. Similar to the case for the cavity con-
taining χ (3) nonlinear medium, the scheme with JC model can
also enhance photon blockade in the output field by several
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orders, and change the scaling exponent of the second-order
correlation on the strength of the TLS-cavity interaction from
−2 to −4.

VI. CONCLUSIONS

In conclusion, we have proposed a scheme to achieve
scaling enhancement of photon blockade in the mixing field
output from a nonlinear cavity (in the strong nonlinear regime)
and an auxiliary (linear) cavity. We identify that the proba-
bility for two photons in the output field can be significantly
inhibited by the quantum interference between two of the
paths for two photons passing through the whole system, lead-
ing to a biquadratic scaling relation between the second-order
correlation of the photons in the output field and intracav-
ity nonlinear interaction strength, in contrast to a quadratic
scaling relation for the photons in a nonlinear cavity. The
scheme for photon blockade enhancement is general, for it not
only achievable in the cavity containing χ (3) nonlinearity [68]
and TLS [69,70], but also applicable in cavities with other
nonlinear interactions, such as χ (2) nonlinearity [71,72] and
optomechanical interactions [73–79] (see Appendices D and
E). Furthermore, our scheme can be directly extended to en-
hance phonon blockade [80–83], magnon blockade [84–88],
and polariton blockade [89–93]. It is worth mentioning that,
as the second-order correlations become very small, there are
some other noises in the experiments, such as the noises in
the lasers and photodetectors, that may weaken the photon
blockade effect, and such effect should be considered case by
case.
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APPENDIX A: SECOND-ORDER CORRELATION OF Aout

The second-order correlation function of the output field
Aout is defined by

g(2)
OUT(τ ) ≡ 〈A†

outA
†
out (τ )Aout (τ )Aout〉
〈A†

outAout〉2

=
2∑

j,k,l,m=1

einφ′√
κ jκkκlκm

〈a†
j a

†
k (τ )al (τ )am〉

N2
OUT

,

(A1)

where n = l + m − j − k, φ′ = φ + π , and NOUT =
κ1〈a†

1a1〉 + κ2〈a†
2a2〉 + 2

√
κ1κ2Re(ei(φ+π )〈a†

1a2〉). The
second-order correlation g(2)

OUT(0) can be obtained from
g(2)

out (0) just with φ replaced by φ′.
The second-order correlation log10[g(2)

OUT(0)] for different
phase φ/π and detuning δ/κ are shown in Fig. 5(a). Different
from the second-order correlation log10[g(2)

out (0)] [Fig. 2(a)],
the minimal values of log10[g(2)

OUT(0)] are obtained for {δ ≈

−2U, φ ≈ π} or {δ ≈ 2U, φ ≈ 0}. In order to show the re-
lation between log10[g(2)

out (0)] and log10[g(2)
OUT(0)] clearly, we

plot log10[g(2)
out (0)], log10[g(2)

OUT(0)], and log10[g(2)
1 (0)] versus

phase φ/π in Fig. 5(b). In comparing with log10[g(2)
1 (0)],

log10[g(2)
out (0)], and log10[g(2)

OUT(0)] are enhanced or suppressed
periodically with the phase φ/π , and there is a phase differ-
ence of π between them, which are consistent with Eqs. (2)
and (A1). To avoid unnecessary duplication, we focus on the
output field aout in the main text.

APPENDIX B: χ(3) NONLINEARITY

In this Appendix, we will derive the analytical expressions
of the second-order correlation function for photons in the
mixing output field of two (uncoupled) cavities with χ (3)

nonlinearity in one of them. In order to obtain the analytical
expression of the second-order correlation function of the
photons in the output field, we use the wave function

|ψ〉 = C00|0, 0〉 + C10|1, 0〉 + C01|0, 1〉
+C20|2, 0〉 + C11|1, 1〉 + C02|0, 2〉 + · · · , (B1)

where |n1, n2〉 represents the Fock state with n1 photons in
cavity a1 and n2 photons in cavity a2, with the probability
amplitude Cn1n2 . According to the quantum-trajectory method
[62], we introduce an effective Hamiltonian

Heff = H − iκ1a†
1a1 − iκ2a†

2a2

= (�1 − iκ1)a†
1a1 + Ua†

1a†
1a1a1 + iε1(a†

1 − a1)

+ (�2 − iκ2)a†
2a2 + iε2(a†

2 − a2), (B2)

to include the decay effect of cavities. By substituting the
wave function and effective Hamiltonian into the Schrödinger
equation id|ψ〉/dt = Heff |ψ〉, we get the dynamic equa-
tions for the probability amplitude Cn1n2 as

i
d

dt
C10 = (�1 − iκ1)C10 + iε1C00 − iε2C11 − i

√
2ε1C20,

i
d

dt
C01 = (�2 − iκ2)C01 + iε2C00 − iε1C11 − i

√
2ε2C02,

i
d

dt
C20 = (2�1 + 2U − i2κ1)C20 + i

√
2ε1C10,

i
d

dt
C02 = (2�2 − i2κ2)C02 + i

√
2ε2C01,

i
d

dt
C11 = (�1 + �2 − iκ1 − iκ2)C11 + iε2C10 + iε1C01,

· · · (B3)

In the steady state, e.g., dCn1n2/dt = 0, we have

−iε1C00 = (�1 − iκ1)C10 − iε2C11 − i
√

2ε1C20,

−iε2C00 = (�2 − iκ2)C01 − iε1C11 − i
√

2ε2C02,

0 = (2�1 + 2U − i2κ1)C20 + i
√

2ε1C10,

0 = (2�2 − i2κ2)C02 + i
√

2ε2C01,

0 = (�1 + �2 − iκ1 − iκ2)C11 + iε2C10 + iε1C01.

· · · (B4)
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FIG. 5. (a) The second-order correlation log10[g(2)
OUT(0)] for different phase φ/π and detuning δ/κ . (b) The second-order correlations

log10[g(2)
out (0)], log10[g(2)

OUT(0)], and log10[g(2)
1 (0)] vs phase φ/π with δ = 2U . The other parameters are �1 = 0, U = 20κ , and ε = 0.1κ .

Under weak driving conditions {ε1, ε2} 
 {κ1, κ2}, we
have |C00| ≈ 1 	 {|C10|, |C01|} 	 {|C20|, |C02|, |C11|}, then
the probability amplitudes of one-photon states (C10 and C01)
are obtained as

C10 = −iε1

�1 − iκ1
, (B5)

C01 = −iε2

�2 − iκ2
, (B6)

and the probability amplitudes of two-photon states (C20, C11,
and C02) are obtained as

C20 = −i
√

2ε1

2�1 + 2U − i2κ1
C10, (B7)

C11 = −iε2C10 − iε1C01

�1 + �2 − i(κ1 + κ2)
, (B8)

C02 = −i
√

2ε2

2�2 − i2κ2
C01. (B9)

Under weak driving conditions, the first-order correlation
functions can be given by the steady state probability ampli-
tudes Cn1n2 as

〈a†
1a1〉 ≈ |C10|2, 〈a†

2a2〉 ≈ |C01|2,
〈a†

1a2〉 ≈ C01C
∗
10, (B10)

and the second-order correlation functions can be given by

〈a†
1a†

1a1a1〉 ≈ 2|C20|2, 〈a†
1a†

1a1a2〉 ≈
√

2C11C
∗
20,

〈a†
2a2a†

1a1〉 ≈ |C11|2, 〈a†
1a†

1a2a2〉 ≈ 2C02C
∗
20,

〈a†
2a†

1a2a2〉 ≈
√

2C02C
∗
11, 〈a†

2a†
2a2a2〉 ≈ 2|C02|2, (B11)

Thus, the second-order correlation function in the output field
can be given approximately as

g(2)
out (0) ≈ 2

N2
R,out

{|κ1C20 + eiφ
√

2κ1κ2C11|2 + |κ2C02|2

+ 2Re[(κ1C20 + eiφ
√

2κ1κ2C11)e−i2φκ2C
∗
02]},

(B12)

where Nout ≈ |√κ1C10 + eiφ√
κ2C01|2.

First of all, let us consider the conditions that ε1 = ε2 = ε

and κ1 = κ2 = κ . According to the numerical results shown
in Fig. 2 in the main text, photon blockade in the output field
is enhanced greatly under the conditions {δ = 2U, φ = π} or

{δ = −2U, φ = 0}, with the other parameters {�1 = 0 and
U 	 κ}. In order to understand these phenomena analytically,
we rewrite the second-order correlation as

g(2)
out (0) ≈ 2κ2

N2
out

{|C20 + eiφ
√

2C11|2 + |C02|2

+ 2Re[(C20 + eiφ
√

2C11)(ei2φC02)∗]} (B13)

where

C10 = ε

κ
, C01 ≈ −i

ε

2U
, (B14)

and

C20 ≈ −i
√

2ε

2U − i2κ

ε

κ
, (B15)

C11 ≈
( −ε2

δ − i2κ

)(
i

κ
+ 1

2U

)
, (B16)

C02 ≈ −
√

2ε

4U − i2κ

ε

2U
. (B17)

In the strong nonlinear regime, i.e., |δ| = 2U 	 κ , we have

|C10| 	 |C01|, |C20| ≈ |
√

2C11| 	 |C02|. (B18)

Under the conditions {δ = 2U, φ = π} or {δ = −2U, φ =
0}, C20 and

√
2C11 cancel each other out by destructive

interference, with

|C20 + eiφ
√

2C11| 
 |C20| ≈ |
√

2C11|. (B19)

In this case, the second-order correlation function for the
photons in the output field is given by

g(2)
out (0) ≈ 1

16

( κ

U

)4
, (B20)

which is much smaller than the second-order correlation func-
tion for the photons in the cavity a1

g(2)
1 (0) = 〈a†

1a†
1a1a1〉

〈a†
1a1〉2

≈ 2|C20|2
|C10|4 ≈

(
κ

U

)2

(B21)

in the strong nonlinear regime.
In addition, we discuss how to achieve scaling enhance-

ment of photon blockade with κ1 �= κ2. According to the
definition of εi, i.e., εi = √

κiPin/h̄ωp, where Pin is the driving
power of the two cavities, we have ε1/ε2 = √

κ1/κ2. Accord-
ing to Eq. (B12), in order to achieve scaling enhancement of
photon blockade, the coefficients (C20, C11, and C02) should

063705-6
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satisfy the conditions {|κ2C02|, |κ1C20 + eiφ
√

2κ1κ2C11|} 

|κ1C20| ≈ |√2κ1κ2C11|. Based on the expressions of the co-
efficients (C20, C11, and C02) [Eqs. (B7)-(B9)], the conditions
are satisfied with

�1 = 0, δ ≈ 2Uκ2/κ1, φ ≈ π, (B22)

or

�1 = 0, δ ≈ −2Uκ2/κ1, φ ≈ 0, (B23)

in the strong nonlinear regime (U 	 {κ1, κ2}) and the ratio
κ2/κ1 	 (κ1/2U )2. In this case, the second-order correlation
function for the photons in the output field is given by

g(2)
out (0) = 1

16

(κ1

U

)4
, (B24)

which also depends on the strength of the nonlinear interaction
U with a biquadratic scaling law.

As an example, we show the second-order correlation
log10[g(2)

out (0)] in Fig. 6 for κ2 = κ1/10. We can see that the
numerical results shown in Fig. 6 are very similar to the Figs. 2
and 3, except that the optimal detunings are δ ≈ ±2Uκ2/κ1.
In brief, we can achieve scaling enhancement of photon block-
ade with κ1 = κ2 or κ1 �= κ2. In the main text, we set κ1 =
κ2 = κ , without loss of generality.

APPENDIX C: TLS-CAVITY INTERACTION

In this Appendix, we will derive the second-order corre-
lation function of the output field for the system consisting
of two (uncoupled) cavities with a TLS in one of them. The
system can be described by a JC model, including decay
effects, as

HJC,eff = HJC − iκ1a†
1a1 − iκ2a†

2a2 − i
κa

2
σ+σ−

= (�1 − iκ1)a†
1a1 +

(
�a − i

κa

2

)
σ+σ−

+ g(a†
1σ− + σ+a1) + (�2 − iκ2)a†

2a2

+ iε1(a†
1 − a1) + iε2(a†

2 − a2), (C1)

and the wave function

|ϕ〉 = Cg00|g, 0, 0〉 + Cg10|g, 1, 0〉 + Cg01|g, 0, 1〉
+Cg20|g, 2, 0〉 + Cg11|g, 1, 1〉 + Cg02|g, 0, 2〉
+Ce00|e, 0, 0〉 + Ce10|e, 1, 0〉 + Ce01|e, 0, 1〉,

(C2)

with Fock-state basis truncated to the two-photon manifold,
under the weak driving conditions (ε 
 {κ1, κ2, κa} ). Here,
|g, n1, n2〉 (|e, n1, n2〉) denotes the Fock state of n1 photons
in cavity a1, n2 photons in cavity a2, and the TLS in the
ground (excited) state, with the probability amplitude Cgn1n2

(Cen1n2 ). By substituting the wave function |ϕ〉 and effective
Hamiltonian HJC,eff into the Schrödinger equation, d|ϕ〉/dt =
−iHJC,eff |ϕ〉, we get the dynamic equations for the probabil-
ity amplitudes Cgn1n2 (Cen1n2 ), and the probability amplitudes
Cgn1n2 (Cen1n2 ) can be obtained analytically in the steady
state dCgn1n2/dt = dCen1n2/dt = 0 . Under weak driving
conditions, we have |Cg00| ≈ 1 	 {|Cg10|, |Cg01|, |Ce00|} 	
{|Cg20|, |Cg11|, |Cg02|, |Ce10|, |Ce01|}, then the probability am-
plitudes of one-particle excitation states (Cg10, Cg01, and Ce00)
are obtained as

Cg10 = −iε
(
�a − i κa

2

)
(�1 − iκ1)

(
�a − i κa

2

) − g2
, (C3)

Ce00 = iεg

(�1 − iκ1)
(
�a − i κa

2

) − g2
, (C4)

Cg01 = −iε

(�2 − iκ2)
, (C5)

and the probability amplitudes of two-photon states (Cg20,
Cg11, and Cg02) are obtained as

Cg20 = −iε
√

2
(�1 + �a − iκ2 − iκa/2)Cg10 − gCe00

(2�1 − i2κ1)(�1 + �a − iκ2 − iκa/2) − 2g2
,

(C6)

Cg11 = −iε[(�a + �2 − iκ2 − iκa/2)Cg10 − gCe00] − iεCg01(�a + �2 − iκ2 − iκa/2)

(�1 + �2 − iκ1 − iκ2)(�a + �2 − iκ2 − iκa/2) − g2
, (C7)

Cg02 = − i
√

2ε

(2�2 − i2κ2)
Cg01. (C8)

The second-order correlation function for photons in the
output field can be given approximately by the probability
amplitudes Cgn1n2 (Cen1n2 ) as

g(2)
out (0) ≈ 1

N2
out

[
2κ2

1 |Cg20|2 + 2κ2
2 |Cg02|2

+ 4κ1κ2|Cg11|2 + 4κ1κ2Re(ei2φCg02C
∗
g20)

+ 4
√

2κ1
√

κ1κ2Re(eiφCg11C
∗
g20)

+ 4
√

2κ2
√

κ1κ2Re(eiφCg02C
∗
g11)

]
(C9)

with Nout ≈ κ1|Cg10|2 + κ2|Cg01|2 + 2
√

κ1κ2Re(eiφCg01C∗
g10).

In order to obtain the parameter conditions for photon
blockade enhancement in the output field, based on the quan-
tum interference between the coefficients Cg20 and Cg11, the
second-order correlation function can be rewritten as

g(2)
out (0) ≈ 2κ2

N2
out

{|Cg20 + eiφ
√

2Cg11|2 + |Cg02|2

+ 2Re[ei2φ (Cg20 + eiφ
√

2Cg11)∗Cg02]} (C10)

under the condition κ1 = κ2 = κa/2 = κ . In order to cancel
the terms related to Cg20 and Cg11, we need

|Cg20|
|Cg11| =

√
2, (C11)
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FIG. 6. (a) The second-order correlation log10[g(2)
out (0)] for different phase φ/π and detuning δ/κ with κ2 = κ1/10 and U = 20κ . The

second-order correlations log10[g(2)
out (0)] and log10[g(2)

1 (0)] vs (b) phase φ/π with δ = 2Uκ2/κ1 and U = 20κ , (c) detuning δ/κ with φ = π and
U = 20κ , and (d) the χ (3) nonlinear interaction strength log10(U/κ ) with δ = 2Uκ2/κ1 and φ = π . The other parameters are �1 = 0, κ1 = κ ,
κ2 = κ/10, ε1 = 0.1κ , and ε2 = ε1

√
κ2/κ1.

which is satisfied with

�2 = ±2

3
g, (C12)

under the optimal conditions (�1 = �a = ±g and g 	 κ)
for photon blockade in cavity a1. In the case of {�2 =
−2g/3, φ ≈ π} (or {�2 = 2g/3, φ ≈ 0} ), the second-order
correlation function for photons in the output field is
simplified as

g(2)
out (0) ≈ 16

(
κ

g

)4

, (C13)

which is much smaller than the second-order correlation func-
tion for photons in cavity a1 as

g(2)
1 (0) =

〈
a†

1a†
1a1a1

〉
〈
a†

1a1
〉2 ≈ 2

∣∣Cg20

∣∣2

∣∣Cg10

∣∣4 ≈ 36

(
κ

g

)2

, (C14)

in the strong coupling regime g 	 κ .

APPENDIX D: SECOND-ORDER NONLINEAR
INTERACTION

The second-order nonlinear interaction in non-
centrosymmetric materials is another typical nonlinear
interactions that has attracted great attentions for it is usually
orders of magnitude higher than the third-order interaction
[71,72]. In this Appendix, we will consider the χ (2) interaction
in one of the cavities, then the system Hamiltonian becomes

H2nd = �1a†
1a1 + �bb†b + g

(
a†2

1 b + b†a2
1

) + �2a†
2a2

+ iε1
(
a†

1 − a1
) + iε2

(
a†

2 − a2
)
. (D1)

Here, �b = ωb − 2ωp is the detuning of the second-harmonic
mode (b with frequency ωb), and g is the corresponding
second-order nonlinear interaction strength.

In the presence of optical decay, the system can be written
as an effective Hamiltonian

H2nd,eff = H2nd − iκ1a†
1a1 − iκ2a†

2a2 − iκbb†b,

= (�1 − iκ1)a†
1a1 + (�b − iκb)b†b

+ g
(
a†2

1 b + b†a2
1

) + (�2 − iκ2)a†
2a2

+ iε1(a†
1 − a1) + iε2(a†

2 − a2), (D2)

where κb is the one-sided decay rate of the second-harmonic
mode b. For a very weak probe field, the state of the system
can be truncated to the first several Fock states as

∣∣ψ ′〉 = C000|0, 0, 0〉 + C010|0, 1, 0〉 + C001|0, 0, 1〉
+C100|1, 0, 0〉 + C020|0, 2, 0〉 + C011|0, 1, 1〉
+C002|0, 0, 2〉. (D3)

Here, |nb, n1, n2〉 represents the Fock state of nb photons in
cavity b, n1 photons in cavity a1, and n2 photons in cav-
ity a2, with the probability amplitude Cnbn1n2 . Substituting
the wave function |ψ ′〉 and effective Hamiltonian H2nd,eff

into the Schrödinger’s equation i∂|ψ ′〉/∂t = H2nd,eff |ψ ′〉, we
get the dynamic equations for the probability amplitudes
Cnbn1n2 . For simplicity, we assume that κb = 2κ1 = 2κ2 =
2κ , �b = �1 = 0, ε1 = ε2 = ε. Under weak driving con-
ditions, i.e., ε 
 κ , we have C000 ≈ 1 	 {|C010|, |C001|} 	
{|C100|, |C020|, |C011|, |C002|}, and the probability amplitudes
in the steady state are obtained analytically as

C010 ≈ ε

κ
, (D4)

C001 ≈ −iε

(�2 − iκ )
, (D5)

for one-photon states, and

C020 ≈
√

2ε2

2κ2 + g2
, (D6)

C011 ≈
[
− iε2

κ
− ε2

(�2 − iκ )

]
1

(�2 − i2κ )
, (D7)

C002 ≈ −
√

2ε2

2(�2 − iκ )(�2 − iκ )
, (D8)

for two-photon states.
Based on the probability amplitudes, the second-order

correlation function for photons in the output field can be
rewritten as

g(2)
out (0) ≈ 2κ2

N2
out

{|C020 + eiφ
√

2C011|2 + |C002|2

+ 2Re[ei2φ (C020 + eiφ
√

2C011)∗C002]}. (D9)
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FIG. 7. (a) The second-order correlation log10[g(2)
out (0)] for different phase φ/π and detuning �2/κ with g = 5κ . The second-order

correlations log10[g(2)
out (0)] and log10[g(2)

1 (0)] vs (b) phase φ/π with �2 = −g2/κ and g = 5κ , (c) detuning �2/κ with φ = π/2 and g = 5κ ,
and (d) the second-order nonlinear interaction strength log10(g/κ ) with �2 = −g2/κ and φ = π/2. The other parameters are �1 = �b = 0,
κb = 2κ , and ε = 0.001κ .

In order to realize destructive quantum interference between
C020 and C011, i.e., C010 + eiφ

√
2C001 ≈ 0, we have

�2 = ±g2

κ
, φ = ∓π/2 (D10)

for {|�2|, g} 	 κ . Under the above conditions, the second-
order correlation function for photons in the output field is
simplified as

g(2)
out (0) ≈ 13

(
κ

g

)8

, (D11)

which is much smaller than the second-order correlation func-
tion for the photons in the cavity a1,

g(2)
1 (0) ≈ 4

(
κ

g

)4

(D12)

in the strong coupling regime (g > κ).
Figure 7(a) is a color plot of log10[g(2)

out (0)] as a function
of the phase φ/π and detuning �2/κ , for �1 = �b = 0 and
g = 5κ . The minimum of log10[g(2)

out (0)] is reached for φ ≈
π/2 and �2 ≈ −g2/κ (or φ ≈ 3π/2 and �2 ≈ g2/κ). Two
cuts taken from the color plot for �2 ≈ −g2/κ and φ = π/2
are shown in Figs. 7(b) and 7(c), respectively. The photon
blockade is enhanced significantly as g(2)

out (0) is about 2.4 or-
ders smaller than g(2)

1 (0) at φ ≈ π/2 [Fig. 7(b)] and about 2.8
orders smaller at �2 ≈ −g2/κ [Fig. 7(c)]. Both log10[g(2)

out (0)]
and log10[g(2)

1 (0)] are plotted as functions of log10(g/κ ) in
Fig. 7(d). Different from the scaling behaviors for χ (3) nonlin-
earity and TLS-cavity interaction, in the strong second-order
nonlinear regime g/κ 	 1, the slope of log10[g(2)

out (0)] versus
log10(g/κ ) is −8, which is much larger than the slope of
−4 for log10[g(2)

1 (0)] versus log10(g/κ ). The numerical results
agree well with the analytical expressions in the strong nonlin-
ear regime [black dashed lines in Fig. 7(d)]. Thus, the scheme
we proposed can change the scaling exponent of the second-
order correlation on the second-order nonlinear interaction
strength from −4 to −8.

APPENDIX E: OPTOMECHANICAL INTERACTION

In this Appendix, we consider a mechanical mode c with
frequency ωm in the cavity a1 and they are coupled through
optomechanical interaction [73–79], then the whole system is

described by the Hamiltonian

Hom = (�1 − iκ1)a†
1a1 + (�2 − iκ2)a†

2a2

+ (ωm − iγ )c†c + ga†
1a1(c + c†)

+ iε1(a†
1 − a1) + iε2(a†

2 − a2), (E1)

where γ is the mechanical decay rate and g is the single-
photon optomechanical interaction strength. In order to
understand the optimal conditions for the strong photon block-
ade, it is convenient to transform the Hamiltonian into a
displaced oscillator representation Hom,eff = SHomS†, by the
unitary transformation

S = exp

[
g

ωm
a†

1a1(c† − c)

]
, (E2)

as

Hom,eff ≈ (�′
1 − iκ1)a†

1a1 + (�2 − iκ2)a†
2a2

+ (ωm − iγ )c†c − Uoma†
1a†

1a1a1

+ iε1(a†
1 − a1) + iε2(a†

2 − a2). (E3)

Here, �′
1 ≡ �1 − Uom, Uom ≡ g2/ωm, and

iε1{a†
1 exp[ g

ωm
(c† − c)] − H.c.} ≈ iε1(a†

1 − H.c.) for g < ωm.
We also assume κ1 = κ2 = κ 	 γ , ε1 = ε2 = ε, ε 
 κ , in
the following.

The effective Hamiltonian (E3) for the system with op-
tomechanical interaction is almost the same as the one (B2)
for the system with χ (3) nonlinearity, except the phonon mode.
According to the results obtained in Appendix B, we can
obtain the second-order correlation

g(2)
out (0) ≈ 1

16

(
κ

Uom

)4

= 1

16

(
κωm

g2

)4

(E4)

for photons in the output field, and

g(2)
1 (0) ≈

(
κ

Uom

)2

=
(

κωm

g2

)2

(E5)

for photons in the cavity a1, with the optimal conditions

�1 = Uom, �2 = −2Uom, φ ≈ π, (E6)

or

�1 = Uom, �2 = 2Uom, φ ≈ 0. (E7)
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FIG. 8. (a) The second-order correlation log10[g(2)
out (0)] for different phase φ/π and detuning �2/κ with g = 20κ . The second-order

correlations log10[g(2)
out (0)] and log10[g(2)

1 (0)] vs (b) phase φ/π with �2 = −4.3κ and g = 20κ , (c) detuning �2/κ with φ = 0.96π and
g = 20κ , and (d) the optomechanical interaction strength log10(g/κ ) with �2 = −2Uom and φ = 0.96π . The other parameters are �1 = Uom,
ωm = 200κ , γ = 0.01κ , and ε = 0.01κ .

We show log10[g(2)
out (0)] numerically in Fig. 8. We can see

that the photon blockade is enhanced significantly as g(2)
out (0)

is about 1.9 orders smaller than g(2)
1 (0) in Figs. 7(b) and 7(c).

Both log10[g(2)
out (0)] and log10[g(2)

1 (0)] are plotted as functions
of log10(g/κ ) in Fig. 8(d). Similar to the scaling behaviors for
second-order nonlinear interaction, in the strong optomechan-
ical interaction regime g/κ 	 1, the slope of log10[g(2)

out (0)]

versus log10(g/κ ) is −8, which is much larger than the slope
of −4 for log10[g(2)

1 (0)] versus log10(g/κ ). But the numerical
result is a sharp departure from the analytical expressions for
the output field [red dashed lines in Fig. 8(d)]. That is because
there are many phonon states in the optomechanical system,
and the resonant transition between the states with different
phonons may suppress photon blockade [76,78] .
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