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We present analytic expressions for the coincidence detection probability amplitudes of photon pairs gen-
erated by spontaneous parametric down-conversion in both momentum and position spaces, without using the
Gaussian approximation and taking into account the effects of birefringence in the nonlinear crystal. We also
present experimental data supporting our theoretical predictions, using Einstein-Podolsky-Rosen correlations as
benchmarks, for eight different pump beam configurations.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) is a
versatile and widely used tool in investigating fundamental
quantum properties of correlated two-photon fields. Among
these properties, nonclassical transverse momentum and
transverse position correlations in two-photon states have
been explored in many works with SPDC, in particular, the
so-called Einstein-Podolsky-Rosen (EPR) paradox [1], first
realized experimentally by Howell et al. [2] and by D’ Angelo
et al. [3]. Realizing the EPR paradox consists of preparing a
quantum state of two spatially separated particles that allows
one to infer with high precision either the position or the
momentum of one of the particles (say, particle 1) without
interacting with it, by measuring the position or the momen-
tum of the other particle (particle 2). Since the measurement
of x, or p, is a matter of choice, and x and p are incompatible
variables and therefore subjected to the uncertainty relation
AxAp > h/2, EPR used the possibility to prepare such a
state and the hypothesis of locality to suggest that quantum
mechanics is an incomplete theory although it is correct in
its statistical predictions. After a long debate, remarkable
theoretical developments, and a long series of experiments
[4], the idea that local hidden-variable theories are ruled out
is now common sense. Nevertheless, EPR-type correlations
are interesting on their own [5] and have been studied over
the last two decades in two-photon states generated by SPDC
[6-18]. As a rule, most works on EPR-type correlations in
SPDC either rely on oversimplified models to describe the
two-photon quantum state or do not present a theoretical
model in both momentum and position representations to fit
experimental data. In general, those simplified models do not
include the effects of birefringence in the nonlinear crystals
used in practice. Because of this, EPR correlations in SPDC
have been analyzed only in the direction that is not affected by
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birefringence, that is, the direction normal to the plane defined
by the crystallographic optical axis and the pump beam propa-
gation direction [19]. The commonly used Gaussian models to
describe SPDC two-photon states have the advantage of sim-
plifying calculations, but fail to correctly describe the full state
propagation and do not include the effects of birefringence.
Although Gaussian models work reasonably well when the
detection plane (or its image) is not too close to the output
face of the nonlinear crystal, it fails at the output face, as we
show in the next section. A detailed discussion of Gaussian
approximations in SPDC can be found in Refs. [20,21], al-
though in comparison with a simplified non-Gaussian model.
In this paper, we present a more precise theoretical model for
the SPDC two-photon state in both position and momentum
representations and show how well it fits experimental data.
This paper is organized as follows. In Sec. II we explain the
meaning of the Gaussian approximation in SPDC and present
an accurate expression for the two-photon state generated by
SPDC in both momentum and position representations with-
out making use of that approximation. In Sec. III we describe
EPR correlations in the two-photon states generated by SPDC
and how they depend on experimental conditions. In Sec. IV
we present an experiment where we measured EPR correla-
tions in SPDC with eight different pump beam configurations,
to validate our theoretical predictions. In Sec. V we present a
brief discussion of the results and our conclusions.

II. THE TWO-PHOTON STATE GENERATED BY SPDC

The basic SPDC process occurs when one photon from the
laser pump beam of frequency w,,, usually in the ultraviolet
spectral range, is converted into two photons of frequencies
w; and w;, such that w; + w; = w, (energy conservation) and
k; + k; ~ k, (phase match). Due to dispersion, the refractive
index at w, is greater than it is at the lower frequencies w;
and w,, making phase match impossible in isotropic media.
This problem is circumvented in birefringent nonlinear me-
dia, where dispersion can be compensated by birefringence.
For example, in negative uniaxial crystals [22], such as beta

©2024 American Physical Society
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FIG. 1. Nonlinear crystal configuration.

barium borate (BBO), the pump beam polarized in the

extraordinary direction and the down-converted beams po-
larized in the ordinary direction can be subjected to the
same refractive indices, provided they propagate at appro-
priate directions. If the pump laser beam with extraordinary
polarization propagates such that the angle between k, and
the optical axis is 6, it is subjected to a refractive index [19]

NopNEP

Np = > .
2 o 2
\/nOP sin” 6 + ngp cos” 6

(1

where nop and ngp are the ordinary and extraordinary re-
fractive indices, respectively, at w,. The collinear type I
phase-match condition is achieved when 6 is such that n,w, =
ne1w1 + nypwy, where n, and n,, are the ordinary refractive
indices at frequencies w; and w,, respectively.

Let us consider a piece of negative birefringent nonlinear
crystal (e.g., BBO) in the form of a block having its input
face lying on the plane z = 0, and cut for type I phase match
with the principal plane (defined by optical axis and the pump
beam propagation axis) parallel to the plane xz. A uv pump
beam whose cross section lies entirely within the input and
output faces of the crystal propagates along the z axis with
extraordinary (x) polarization. The crystal thickness in the z
direction is L. This configuration is illustrated in Fig. 1.

In the k-vector (momentum) representation, the two-
photon detection probability amplitude for the state generated
by SPDC in the paraxial approximation is known to be well
described (up to a normalization constant) by [23]

Y(qy, qy) = Eo(qy + qple”

where q; is the xy component of k; (j = 1,2), &(q; + qy) is
the angular spectrum of the pump beam on the plane z = 0,

L w7 w1
Apo = Moo + 1 (q1x + q2) — — |,/ —4; — ./ —q
4kp w1 w)

k, = npw,/c, I; is half of the transverse walk-off length,
Moo = (g — np)k,L/21n,, and #, is the ordinary refractive in-
dex of the nonlinear crystal at w,/2. The transverse walk-off
length is given by [19]
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FIG. 2. The walk-off of the pump beam in a negative uniaxial
crystal.

In negative uniaxial crystals, ngp < nop and the extraordinary
beam tends to deviate away from the optical axis direction.
This situation is illustrated in Fig. 2.

Here we work in the collinear phase-match condi-
tion, where i, =1, = o =0, and in the quasidegen-
erate regime, where w; = (1+Vv)w,/2 and w; =(1—
V)w,/2, with v < 1. This means that \/w,/w; ~ 1 — v and
Jwi/wy = 1+ v. In the collinear phase match it is possible
to make a straightforward use of the paraxial approximation
and Fourier optics [24]. It is also possible to do so in the
noncollinear phase match but at the cost of more complicated
expressions. We chose to work in the quasidegenerate regime
in order to stress the generality of our model. The degenerate
regime can be readily recovered by making v = 0 in the ex-
pressions that follow. It is interesting to notice that even in the
collinear regime there will be a walk-off in the propagation of
the pump beam inside the nonlinear crystal, since the phase-
match angle 6 lies, in general, between O and 7 /2. In our
experiment (see Sec. IV), 6 ~ 33° and 2/, = 0.37 mm.

To simplify the notation, we make

Q=gq, +qy,
P=(-v)q, —(+v)q,, €]
L
2—_
g 4k,

Then,
¥(Q, P) = £(Q)sinc(/,Q, — BEPY)e h=FP)  (5)

Since ¥ (Q,P) is a two-beam plane-wave spectrum and
the two beams propagate independently by acquiring a phase
factor depending on the z component of each k vector [24]:

¥(Q, P, z) = ¥(Q, P)etrsth), (6)

Inside the crystal (0 < z < L), in the collinear phase match
[23],

1,2 zc
(kiztka)z = —= (@1 + w2)———[(1 = V)gi+(1 +v)g3]
c nywp
< 2 2
=k,z — — Po). 7
2 2kp(Q + P?) (7)
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From z =L to z > L, ¥(Q, P) propagates in free space,
that is,

¥(Q,P,2) = ¥(Q, P, L)t ®)
In free space and collinear propagation,
2 2
v v v v ql QZ
(ki +k3,)(z— L) = <k1 +k - — —v>(z—L)

: ‘ 2k} 2Kk}

z—L

2k,

=ky@—L)— (@ +P). (9

where k| = wi/c, ky = wy/c, and k) = w,/c (superscript v
stands for vacuum).

Considering a Gaussian pump beam, we can write, in the
complex notation [25],

£(Q.2) = Aelite @0/ (10)

where A is a constant, a(z) =z — z. — ikl”,wg/Z, wq is the
beam waist, and z. is the waist location on the z axis. Hence,

E0(Q) = A e @012 (11)

where ag = a(0). Therefore, neglecting a multiplicative con-
stant and a phase factor depending only on z,

¥ (Q, P, z) = sinc(l,Q, — B*P?)e

% e—ibl(Z)Qze—ibz(z)Pz’ (12)
where
(z/fip — 20)/2K" — iwd /4 O<z<L),
bl(Z) = ’ r .2
(z =L —2z0)/2k, — iwg/4 (z > L),
L'=({1- 1/n,)L, (13)
(z —L/2)/2n,k? O<z<L),

bZ(Z) = {(Z _ L”)/Q,k[v, P (Z - L), (14)
L'=(1- 1/2n,)L. (15)

To the best of our knowledge, an accurate analytic expres-
sion for v in the coordinate representation is not available
in the literature, except under the Gaussian approximation,
which consists of replacing sinc(l;Q, — B2P?) in Eq. (12) by
a Gaussian function, necessarily neglecting the walk-off term
l; Q.. This approximation works well when L/ k,,w(z) < 1, that
is, when the pump beam is highly collimated, or when the
crystal is very thin (L &~ 1 mm) [21], and, in both cases, when
the detection plane is not too close to the output face of the
nonlinear crystal, as discussed below.

To arrive at an expression for v, in coordinate representa-
tion, we adopt the following approximation: For pump beams
with reasonably narrow-band angular spectra (wg > 50 um)
and L = 1 to 5 mm, which cover most practical cases, we can
make

¥ (Q, P, z) = sinc(l,Qy)e Qe 1"
x sinc (B2P2)e @ (16)

which turns ¥ (Q, P, 7) into a separable function of Q and P.
Defining the coordinates R = [(1 +v)p; + (1 —v)p,]1/2
and S = (p; — p,)/2, the calculation of the Fourier transform

of ¥ (Q, P, z) is straightforward:

YR, S, z)
e—R3/4ih1(z) R, —2l, ¢ R,
= - E N
1,J/ib1(2) { [Za/ibl(z)] ' [2\/ib1(z)} }

2 2
X {Ei [;S—] — Ei [:S—“ (17)
4b,(2) 4b}(z)

where Erf is the error function and Ei is the exponential
integral function [26],

@ = L)/ 20k, 0<z<l),
ne= {(z LK > 1), 1o
yoo |2/2R0k, 0<z<l),
0= {(z _yk =D, {19

with L' = (1 — 1/7,)L.

For computational purposes, it is important to notice that
the exponential integral function in Eq. (17) is defined here
forx > 0 as

Ei(ix) = Ci(x) — l[g _ Si(x)],
Ei(—ix) = Ci(x) + l[% - Si(x)],

where Ci(x) and Si(x) are the sine integral and cosine integral
functions, respectively [26].

Equations (16) and (17) can be considered the main con-
tribution of this paper to the field of SPDC. Using Eq. (17)
one can predict experimental results of spatial two-photon
correlations with very good accuracy and push experimental
conditions to their limits when testing specific theoretical
models. As an example, let us consider a 5-mm-long BBO
crystal positioned as shown in Fig. 1, pumped by a 355-nm
laser beam and cut for collinear degenerate phase match.
We calculate the coincidence detection rate (p o< [¥]?) as
a function of x; for x, =y, =y, =0, using Eq. (17) and
the double-Gaussian model from Refs. [17,20] extended to
include walk-off. As shown in Figs. 3(a) and 3(d), the double-
Gaussian model works well at z = L/2 (the midplane inside
the crystal) and in the far field. At distances not too close
to the crystal output face [Smm from the face in Fig. 3(c)]
the model is still acceptable. However, it fails significantly
when the detection plane is very close to the output face
[1 wm from the face in Fig. 3(b)], which is precisely where
the transverse position correlation length is at its minimum,
as demonstrated experimentally in Ref. [27]. This discrepancy
may be important in predicting results when the SPDC field is
screened by narrow slits or coupled directly to optical fibers
and waveguides at the output face of the nonlinear crystal.

III. EPR CORRELATIONS

In this paper, we test EPR correlations, as they involve both
spatial and momentum correlations. With expressions (16)
and (17) we can calculate the uncertainties Ax; and Ay, for
fixed x», ¥2, and z, and Ak, and Ak, for fixed ky, and ky, as
functions of the pump beam angular spectrum width (defined
by the beam waist wy) and see how they are affected by
the crystal anisotropy (quantified here by walk-off parameter
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FIG. 3. Normalized coincidence detection rates p/pmax for a 5-
mm-long nonlinear crystal pumped by a 355-nm laser beam and cut
for collinear phase match in the degenerate regime. Solid blue curves
are obtained from Eq. (17) and dashed red curves are obtained from
the double-Gaussian model used in Refs. [17,20], extended to include
walk-off.

l;). Assuming any fixed value for p,, Eq. (17) allows us to
calculate Ax; and Ay for any z > L. Alternatively, assuming
any fixed value for q,, Eq. (16) allows us to calculate Ak,
and Ak;y, which do not depend on z.

It is interesting to note that the uncertainties Ax; and Ay,
increase rapidly as the distance from the crystal increases in
the z direction, although we do not explore this dependence
experimentally in this paper. In general, position uncertain-
ties depend on the pump beam parameters, as exemplified in
Fig. 4. For a weakly focused pump laser beam (wg = 0.5 mm)
whose waist is located at the crystal input face (z. = 0), our
predictions shown in Fig. 4(a) are in good agreement with
the results reported in Ref. [17] under similar conditions.
For a strongly focused pump beam, position correlations may
show different and richer z dependencies in x and y direc-
tions, as shown in Fig. 4(b) for the particular case of a waist
wo = 0.05mm located at z, = 150 mm. The drop of Ay
around z. = 150 mm is a direct consequence of the transfer
of angular spectrum from the pump laser beam to the SPDC
field [19].

(b)
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FIG. 4. Predicted values of Axi|,,—o (red dashed curve) and
Ayilp,—0 (blue solid curve) as functions of the distance from the
output face of a 5-mm-long BBO crystal cut for collinear degener-
ate phase match, pumped by a 355-nm laser beam with (a) wy =
0.5mm, z. = 0 and (b) wy = 0.05mm, z. = 150 mm.
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FIG. 5. Experimental setup.

IV. EXPERIMENT

EPR correlations predicted by Eqs. (16) and (17) were
tested experimentally with the setup represented in Fig. 5. A
5-mm-long BBO crystal cut for type I collinear phase match
(NLC) having its optical axis parallel to the xz plane and input
face located on the plane z = 0 was pumped by a 355-nm
laser beam polarized in the x direction, propagating along
the z direction. The beam parameters, listed in Table I, were
changed with the help of a telescope composed by a lens L3
of focal length 50 mm and a lens L4 of focal length 40 mm
separated from L3 by a variable distance. The down-converted
light, with A; = 690 nm and A, = 731 nm, was sent to a beam
splitter (BS) and directed to detectors D; (equipped with a
12-nm band-pass filter centered at 690 nm) and D, (equipped
with a 40-nm band-pass filter centered at 730 nm). Lenses L,
and L, of focal length 75 mm were placed at 150 mm from
the output face of the nonlinear crystal. Detectors D; and D,
were placed at 75 mm from L; and L, (Fourier plane) for the
measurements of |¥(q,,0,L)|*> and at 150 mm (1:1 image
plane) for the measurements of | (p;, O, L)|?. Each detector
consists of a multimode optical fiber with a diameter of 50 um,
one tip mounted on a computer-controlled xy motorized trans-
lation stage and the other tip coupled to a photon-counting
avalanche photodiode. In all measurements, D, was kept
at p, = 0.

TABLE I. Pump beam parameters.

Beam wg (mm) Z. (mm)
1 0.062 178
2 0.067 213
3 0.072 251
4 0.085 298
5 0.095 355
6 0.105 422
7 0.120 510
8 0.142 635
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FIG. 6. Top row: Examples of coincidence detection profiles on
the image plane (left) and on the Fourier plane (right) for beam
1 (see Table I). Middle row: Corresponding detection probability
densities P(x;|p, = 0) (left) and P(y;|p, = 0) (right). Bottom row:
Corresponding detection probability densities P(k,i|q, = 0) (left)
and P(ky|q, = 0) (right). Dots are normalized experimental data
and solid lines are best fits for distributions A sech w&/2A¢ (§ = x,y
on the image plane) and A exp(—&°/2A}) (§ = ki, k, on the Fourier
plane).

Due to the relatively large fiber diameter and photon-
counting fluctuations, experimental results are not directly
comparable with theory. To check the accuracy of theoretical
predictions, the following procedure was adopted: Numerical
convolutions of the coincidence profiles predicted by Egs. (16)
and (17) with the 50-um circular apertures of D; and D,
were made, resulting in the expected detection probability
distributions. Experimental data for coincidence detections on
the image plane were fit to a hyperbolic secant distribution
Asech m&/2A¢ (§ = x,y), whose standard deviation is given
by Ag. Profiles obtained when the crystal was pumped with
the laser beam 1 (see Table I) are shown in Fig. 6. An addi-
tional correction of the beam waist radius was made, due to
the pump beam M? factor of 1.14. On the Fourier plane, a
Gaussian distribution A exp(—£2/ ZAg) (& = ky, ky) was used
in a similar procedure. Experimental results and theoretical
predictions are presented in Fig. 7.

V. DISCUSSION AND CONCLUSION

From the results presented here, one can see that the
EPR correlations AxAk, and AyAk, of the photons pairs

(a)
0.05
E 0.04 -
% | ﬂ a g l ] | o
— 0.03
>
q.~
& 0.02
% 001
0.00 1 2 3 4 5 6 7 8
Pump beam
(b)
__15;®
< B
c |
£ .|
810 " .
g -
. ° o ° "
&5 IR
5
<
0 N " N " N N " N
1 2 3 4 5 6 7 8
Pump beam
(c)
0.6 g
< 0.5 g
5 "8
T 04 W
4 " g
<03 i,
Sool® 2 2 o
3 0.2 ¢ L4 e t 8 °
<
0.1
0.0

1 2 3 4 5 6 7 8
Pump beam
FIG. 7. Measured (solid markers) and predicted (open markers)
values of (a) Ax; (red circles) and Ay, (blue squares), (b) Ak, (red
circles) and Ak, (blue squares), and (c) Ax; Ak, (red circles) and

Ay, Ak, (blue squares) for a 5S-mm-long BBO crystal pumped by
355-nm laser beams whose parameters are listed in Table I.

generated by spontaneous parametric down-conversion are
strongly affected by the pump beam angular spectrum in the
direction normal to the principal plane (defined by the optical
axis and the z axis). Such dependence is much smaller in
the direction parallel to the principal plane. This effect is
readily explained by the presence of the term sinc/,Q, in
Eq. (16). That term, which depends on the birefringence, the
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phase-match angle, and the crystal length [see Eq. (3)], acts
as a spatial filter for the transfer of the angular spectrum
from the pump beam to the two-photon state [19]. Because
of this filtering effect, the product AxAk, behaves like the
laser beam was less focused. The two uncertainty products
AxAk, and AyAk, tend to a unique minimum value as the
pump beam gets more collimated, that is, wy > /;. In our case,
[, = 0.186 mm.

In conclusion, we have presented: (a) accurate ana-
Iytic expressions for the coincidence detection probability
amplitudes of photon pairs generated by spontaneous para-
metric down-conversion in both momentum and position
spaces on the entire plane normal to the pump beam—those
expressions allow us to predict how the correlations in po-

sition and momentum depend on the system parameters like
crystal length, crystal birefringence, pump beam focusing,
pump beam waist location, and detector locations—and (b)
experimental data supporting our theoretical predictions, us-
ing Einstein-Podolsky-Rosen correlations as benchmarks, for
eight different pump beam configurations.

The results presented here may be useful in any application
relying on position and momentum correlations of photon
pairs generated by SPDC in birefringent crystals.
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