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Magnomechanically controlled Goos-Hänchen shift in cavity QED
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Phenomena involving interactions among magnons, phonons, and photons in cavity magnomechanical sys-
tems have attracted considerable attention recently, owing to their potential applications in the microwave
frequency range. One such important effect is the response of a probe field to such a tripartite interaction
between photon-magnon-phonon. In this paper we study the Goos-Hänchen shift (GHS) of a reflected probe
field in a cavity magnomechanical system. We consider a yttrium iron garnet (YIG) sphere positioned within a
microwave cavity. A microwave control field directly drives the magnon mode in the YIG sphere, whereas the
cavity is driven via a weak probe field. Our results show that the GHS can be coherently controlled through
magnon-phonon coupling via the control field. For instance, the GHS can be tuned from positive to negative
by tuning the magnon-phonon coupling. Similarly, the effective cavity detuning is another important controlling
parameter for the GHS. Furthermore, we observe that the enhancement of the GHS occurs when magnon-phonon
coupling is weak at resonance and when the magnon-photon coupling is approximately equal to the loss of
microwave photons. Our findings may have potential significance in applications related to microwave switching
and sensing.

DOI: 10.1103/PhysRevA.110.033711

I. INTRODUCTION

The cavity magnomechanical system consisting of
magnons in a single-crystal yttrium iron garnet (YIG) sphere
strongly coupled to the cavity mode has been theoretically
proposed and experimentally demonstrated [1]. Such a system
has emerged as an important frontier in the realm of cavity
quantum electrodynamics (QED), drawing substantial atten-
tion in recent times [2–7]. It offers a unique platform for
exploring interactions among photon, magnon, and phonon
modes. Such interactions have led to some interesting out-
comes such as the generation of entanglement [8,9], the
preparation of squeezed states [10,11], coherent superposi-
tion, and Bell states [12].

Meanwhile, studies of the response of the microwave field
to the system arising from the coupling of the magnon,
phonon, and cavity microwave photon reveal magnon-
induced absorption as well as magnomechanically induced
transparency [13–20]. These phenomena originate from the
internal constructive and destructive interference that can be
interpreted by analogy with the optomechanically induced
absorption and transparency, respectively, in the cavity op-
tomechanics [21–23]. Tunable slow and fast light has also
been demonstrated in cavity magnomechanics [14–17]. In this
paper we focus on another crucial aspect of optical response
in a cavity magnomechanical system, known as the Goos-
Hänchen shift (GHS).

In classical optics, the Goos-Hänchen shift occurs when
a classical electromagnetic light beam reflects from the
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interface of two optically different media. It is a lateral shift of
the reflected light beam from the actual point of reflection at
the interface and first reported in an experiment by Goos and
Hänchen [24,25]. The GHS has magnificent applications in
optical switching [26], optical sensors [27,28], beam splitters
[26], optical temperature sensing [29], acoustics [30], seis-
mology [31], and the theory of waveguides [32]. The GHS
can be positive or negative, depending on the properties of the
system under consideration. So far, various quantum systems
have been investigated for the manipulation of the GHS, such
as atom-cavity QED [33–35], quantum dots [36,37], cavity
optomechanics [38–40], two-dimensional quantum materials
[41–43], and a spin-polarized neutron reflecting from a film
of magnetized material [44]. However, studies of the ma-
nipulation of the GHS in a cavity magnomechanical system,
which could have possible potential applications in sensing
and switching, are lacking.

In this paper we investigate the manipulation of the GHS
in the reflected portion of the incident probe field in a cavity
magnomechanical system using the stationary phase method.
We show that the magnon-phonon coupling strength, con-
trolled via an external microwave driving field, flexibly alters
the GHS from negative to positive. The negative GHS be-
comes larger at weak magnon-phonon interaction strength.
We also show that the GHS can be controlled by tuning the
effective cavity detuning. By varying the effective detuning
at zero magnon-phonon coupling strength, the GHS can be
effectively tuned from positive to negative. Finally, we explore
the effects in both weak- and strong-coupling limits, deter-
mined by the ratio of magnon-photon coupling to the lifetime
of microwave photons. We find that the optimum value to
achieve an enhanced GHS corresponds to magnon-photon
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FIG. 1. Schematic diagram of the physical system. A YIG sphere
is positioned inside a single-mode microwave cavity, near the
maximum magnetic field of the cavity mode, and simultaneously
subjected to a uniform biased magnetic field Bz. This arrangement
establishes the magnon-photon coupling. A microwave field of fre-
quency ω0 is applied in the x direction by an external driving
magnetic field Bx to enhance the magnon-phonon coupling. The
magnetic fields of the cavity mode By, biased magnetic field Bz, and
driving magnetic field Bx are mutually perpendicular at the site of the
YIG sphere. The incident probe field falls in the x direction on the
wall of the mirror M1 at angle θ , which is reflected with positive or
negative GHS denoted by Sr .

coupling of approximately the same strength as the cavity
decay rate.

The rest of the paper is organized as follows. In Sec. II we
explain the physical system. Section III presents the results
and a discussion. We summarize in Sec. IV.

II. SYSTEM MODEL AND HAMILTONIAN

We consider a cavity magnomechanical system that con-
sists of a single-mode cavity of frequency ωa with a YIG
sphere placed inside the cavity, as shown in Fig. 1. Both
nonmagnetic mirrors M1 and M2 are kept fixed, assuming M2

is perfectly reflecting while M1 is partially reflecting. Both
mirrors have thickness d1 and permittivity ε1. The effective
cavity length is d2 and effective cavity permittivity in the
presence of a YIG sphere is ε2. Therefore, our system is ef-
fectively a three-layer structure comprising two mirrors and an
intracavity medium similar to atomic system [35] and cavity
optomechanics [38]. In Fig. 1, a uniform bias magnetic field
in the z direction is applied on the YIG sphere, which excites
the magnon modes of frequency ωm. These magnon modes
are coupled with the cavity field through a magnetic dipole
interaction. The excitation of the magnon modes inside the
sphere varies the magnetization, resulting in the deformation
of its lattice structure. This magnetostrictive force causes vi-
brations of the YIG sphere with phonon frequency ωb, which
establishes the magnon-phonon interaction.

Usually, the single-magnon magnomechanical coupling
strength is very weak [45]. However, we consider that the
magnon mode of the YIG sphere is directly driven by a strong
external microwave source having frequency ω0 and ampli-
tude Ed = √

5Nγ B0/4. Here γ is the gyromagnetic ratio, N
is the total number of spins inside the YIG sphere, and B0 is
the magnitude of the external driving field in the x direction.
This microwave driving plays the role of a control field in our

model and enhances the magnomechanical (magnon-phonon)
interaction of the YIG sphere. Additionally, the cavity is
probed by a weak field with frequency ωp, incident from
vacuum ε0 at an angle θ along the x axis. The amplitude of
the probe field is Ep = √

2Pκa/h̄ωp. Here P is the power of
the probe field and κa is the cavity decay rate. The probe light
is reflected back from the surface of the mirror M1 with some
lateral displacement along the z axis known as the GHS and
denoted by Sr .

To investigate the GHS, we employ stationary phase the-
ory, in which a well-collimated probe field with sufficiently
large linewidth can be considered as a plane wave. Under the
stationary phase theory, the GHS in the reflected probe laser
beam is given by [46,47]

Sr = − λp

2π

dφr

dθ
, (1)

where λp is the wavelength of the incident probe field and φr is
the phase of the TE polarized reflection coefficient R(kz, ωp).
Here kz = k sin θ , with k = 2π/λp. Equation (1) can be ex-
pressed in a more explicit form such that [48]

Sr = − λp

2π |R|2
(

Re(R)
d

dθ
Im(R) + Im(R)

d

dθ
Re(R)

)
. (2)

The reflection coefficient R = R(kz, ωp) used in Eq. (2) can be
derived using standard transfer matrix theory for a three-layer
structure [35] and is given by

R =q0(Q22 − Q11) − (
q2

0Q12 − Q21
)

q0(Q22 + Q11) − (
q2

0Q12 + Q21
) . (3)

This transfer matrix approach is well established in the context
of the GHS in atomic systems [33,35], cavity optomechanics
[38,39], and quantum dots [36], among others. Here q0 =√

ε0 − sin2 θ and Qi j (i, j = 1, 2) are the elements of the total
transfer matrix

Q(kz, ωp) = m1(kz, ωp, d1)m2(kz, ωp, d2)m1(kz, ωp, d1), (4)

where d1 is the thickness of mirrors M1 and M2 and d2 is
the effective cavity length containing the YIG sphere. The
element mj relates the input and output of the electric field
associated with the probe field propagating through the cavity
and is given by

mj (kz, ωp, d1) =
[

cos
(
kx

j d j
)

i sin
(
kx

j d j
)
k/kx

j

i sin
(
kx

j d j
)
kx

j /k cos
(
kx

j d j
)

]
, (5)

where kx
j = (ωp/c)

√
ε j − sin2 θ is the x component of the

wave number of the probe field. Here we use the definition
k = ωp/c, with c the speed of light in vacuum. In addition, ε j

represents the susceptibility of the jth layer of the medium.
The effective permittivity of the cavity is determined by the
nonlinear susceptibility χ as ε2 = 1 + χ . The susceptibility
depends on the nonlinear interaction between the cavity field,
magnon, and phonons in the presence of the microwave driv-
ing. As a result, the resonance conditions for the probe field
are modified, resulting in controllable absorption and disper-
sion. Therefore, the reflection properties of the probe field
strongly depend on the cavity magnomechanical interaction.
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Next we calculate χ for the cavity magnomechanical sys-
tem to study the reflection properties of the probe field. We
consider the dimensions of the YIG sphere much smaller
than the wavelength of the microwave so that the influence of
radiation pressure in the system can be negligible. In a frame
rotating with the driving frequency ω0, the total Hamiltonian
(in units of h̄ = 1) of the system under the rotating-wave
approximation becomes

H = �aa†a + �mm†m + ωbb†b

+ gma(a†m + am†) + gmbm†m(b + b†)

+ i(Ed m† + Epe−iδt a† − H.c.). (6)

Here a (a†), m (m†), and b (b†) are the annihilation (creation)
operators of the cavity mode, the magnon mode, and the me-
chanical mode, respectively. The detunings of the cavity field,
magnon mode, and probe field from the control field are �a =
ωa − ω0, �m = ωm − ω0, and δ = ωp − ω0, respectively. The
magnomechanical coupling rate gmb characterizes the inter-
action between the magnon and phonon modes, whereas gma

determines the photon-magnon coupling strength.
To understand the dynamics of the system, we write, within

the semiclassical limit, the Heisenberg-Langevin equations

ȧ = −(i�a + κa)a − igmam + Epe−iδt ,

ṁ = −(i�s + κm)m − igmaa + Ed ,

ḃ = −(iωb + γb)b − igmbm†m, (7)

where

�s = �m + gmb(bs + b∗
s )

is the effective magnon-phonon detuning. In Eqs. (7) we take
into account the decay of the cavity mode κa, the dissipation
of the magnon mode κm, and the dissipation of the mechan-
ical mode γb. Since we are interested in studying the mean
response of this system to the applied probe field, we have
neglected the quantum input noise and thermal noise. Us-
ing a semiclassical perturbation framework, we consider that
the probe microwave field is much weaker than the control
microwave field. As a result, we expand each operator as
the sum of its steady-state value os and a small fluctuation
δo(t ), where o = (a, b, m). Then steady-state values of the
dynamical variables become

as = −igmams

i�a + κa
,

ms = −igmaas + Ed

i�s + κm
,

bs = −igmb|ms|2
iωb + γb

. (8)

Considering the perturbation induced by the input probe field
up to the first-order term and eliminating the steady-state
values, we obtain the linearized equations of motion

δȧ = −κaδa − igmaδm + Epe−ixt ,

δṁ = −κmδm − igmaδa − igmbmsδb,

δḃ = −γbδb − igmbm∗
s δm, (9)

where x = δ − ωb is the effective detuning. For the derivation
of Eqs. (9) we introduced the slowly varying operator for
the linear terms of the fluctuation as δa = δae−i�at , δm =
δme−i�st , and δb = δbe−iωbt . We also consider that the mi-
crowave field driving the magnon is at the red sideband (ωb ≈
�a ≈ �s) under the rotating-wave approximation, which ac-
tually leads to optimal cooling [23].

In order to solve Eqs. (9), we apply an ansatz δo =
o1e−ixt + o2eixt with o = (a, m, b). As a result, we obtain the
amplitude a1 of the first-order sideband of the cavity mag-
nomechanical system for a weak probe field:1

a1 = Ep

(κa − ix) + g2
ma(γb−ix)

(γb−ix)(κm−ix)+G2
mb

. (10)

Here Gmb = gmbms is the effective magnomechanical cou-
pling coefficient, which can be tuned by an external magnetic
field at fixed gmb. Furthermore, it is not necessary to con-
sider the expression of a2 as it pertains to four-wave mixing
with frequency ωp − 2ω0 for the driving field and the weak
probe field. Then, using the input-output relation, we obtain
ET = Ein − κa1 [49]. The output field is related to the optical
susceptibility as χ = ET = κaa1/Ep [23,39,40,50,51]. Here χ

is a complex expression that defines the quadrature of the field
ET containing real and imaginary parts. The quadrature is
defined as χ = χr + iχi and can be measured by homodyne
techniques. The real term displays the absorption spectrum,
while the imaginary term displays the dispersion spectrum of
the probe field.

III. RESULTS AND DISCUSSION

In this section we present the result of our numeri-
cal simulations. For numerical calculation, we consider the
parameters from the recent experiment on a hybrid magnome-
chanical system [1,13]: ωa = 2π × 13.2 GHz, ωb = 2π ×
15 MHz, κa = 2π × 2.1 MHz, κm = 2π × 0.1 MHz, γb =
2π × 150 Hz, D = 250 µm, and the magnon-photon coupling
gma = 2π × 2.0 MHz. In order to study the GHS, we consider
ε0 = 1, ε1 = 2.2, d1 = 4 mm, and d2 = 45 mm [1]. We con-
sider the YIG sphere with diameter D = 250 µm, spin density
ρ = 4.22 × 1027 m−3, and gyromagnetic ratio γ = 2π × 28
GHz/T [1,13]. For these parameters, we choose the driving
magnetic field B0 � 0.5 mT (which corresponds to Gmb/2π �
1.5 MHz) such that the system remains in the stable
regime [18].

We first illustrate the output absorption spectrum as a
function of effective detuning x in Fig. 2. The solid curve
represents the spectrum in the absence of magnon-phonon
coupling (Gmb = 0). In this condition, only the magnon mode
is coupled to the cavity field mode, resulting in the splitting
of the output spectrum into two Lorentzian peaks with a
single dip at resonance. This spectrum is known as magnon-
induced transparency. The width of this transparency window
depends on magnon-photon coupling gma. Switching on the

1The amplitude of the output field described by Eq. (10) is equiv-
alent to Eq. (15) in Ref. [18] under the red sideband and slowly
varying approximation with phase φ = 0.
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FIG. 2. Absorption spectrum of the probe field as a function of
effective detuning x = δ − ωb. Here the solid curve is at magnon-
phonon coupling Gmb = 0 and the dashed curve is at Gmb = 2π ×
0.5 MHz. All other parameters are the same as given in the text.

magnon-phonon effective coupling to Gmb = 2π × 0.5 MHz
by applying an external magnetic field, the single magnon-
induced transparency window splits into a double window
due to the nonzero magnetostrictive interaction. These results
are shown by the dashed curve in Fig. 2 and are known as
magnomechanically induced transparency. As the effective
coupling strength Gmb increases from zero, the height of the
central peak starts increasing, along with a slight shift to the
left of the resonance point. Next we discuss the effects of
control field strength, effective cavity detuning, and cavity
decay rates, which are responsible for enhanced manipulation
of the GHS at different incidence angles. For the sake of
simplicity, we consider that the incident probe field is a plane
wave.

A. Effect of the microwave driving field

The strength of the microwave driving field depends on
the magnitude of an external magnetic field (Ed ∝ B0). From
steady-state dynamical values [see Eq. (8)], it is evident
that all excitation modes strongly depend on the strength of
the microwave driving field via ms. Similarly, the effective
magnomechanical coupling coefficient Gmb is directly propor-
tional to ms at fixed gmb. As a result, the output spectrum of
the probe field is modified by the strength of the microwave
driving field. We recall that when Gmb is kept zero the intra-
cavity medium becomes transparent to the probe light beam
at effective resonance x = δ − ωb = 0. To see this effect on
the GHS, we plot the GHS as a function of the probe light
incident angle θ (in units of radians) in Fig. 3 at the reso-
nance condition. It can be seen from the red curve that the
GHS shift is always positive in the absence of microwave
driving and exhibits three peaks. The peak of the GHS gets
enhanced at a larger incident angle and is maximum at
θ = 1.42 rad.

When the effective magnomechanical coupling Gmb is
turned on through an external microwave driving field, the
absorption at resonance x = 0 starts to appear (see Fig. 2).
The dashed and dotted curves in Fig. 3 show the GHS at
Gmb = 2π × 0.05 and 2π × 0.5 MHz, respectively. The other
parameters are unchanged. We note the negative GHS in

FIG. 3. Normalized GHS Sr/λ as a function of incident angle
at the resonance condition x = 0. The solid curve shows that the
GHS is always positive when Gmb = 0. The dashed and dotted
curves represent the results at Gmb = 2π × 0.05 and 2π × 0.5 MHz,
respectively.

the reflected probe light beam at certain incident angles θ .
Switching of the GHS from positive to negative is related
to the group index of the total cavity system [33,52]. The
group index is defined as the ratio of the speed of light in a
vacuum to the group velocity of the reflected field and can be
approximated as

Ng ≈ 1

L

dφr

dωp
, (11)

where L = 2d1 + d2 is the total thickness of the cavity. The
GHS is positive for a positive value of Ng and negative for a
negative value of Ng [33]. It is already established for the case
of an atomic medium that the GHS in the reflected beam is
negative for the absorptive medium and positive for the trans-
parent medium [52]. Therefore, the GHS can be coherently
switched from positive to negative via an external microwave
driving field. The increase of Gmb reduces the amplitude of
the negative peaks and peaks get shifted to a higher angle as
shown in Fig. 3. Therefore, in order to understand this effect
more clearly, we present the contour plot of the GHS as a
function of Gmb and angle θ in Fig. 4. The large negative GHS
can be obtained at lower values of Gmb. The magnitude of
the GHS depends on the absorption of the probe field (results
shown in Fig. 2) via the reflection coefficient [Eq. (3)]. As the
value of Gmb increases, the probe field gets more absorbed,
which results in a decrease in the magnitude of the GHS.

B. Effect of detuning

Next we consider the effect of another control parameter,
the effective cavity detuning on the reflected GHS. Figure 5
shows the dependence of the GHS on the effective cavity
detuning and incident angles. We observe the manipulation
effect on the GHS under different strengths of the microwave
control field. Figure 5(a) shows the results when Gmb is kept
zero, which means that there is no influence of the microwave
driving field on the cavity. At resonance (x = 0), we observe
a sharp transition from positive peaks to negative peaks. The
magnitude of the GHS is higher at detuning relative to the res-
onance x = 0 and eventually gets smaller at larger detuning.
These results provide another control mechanism of the GHS
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FIG. 4. Contour plot of the GHS as a function of incident an-
gle and effective magnomechanical coupling Gmb (in units of 2π ×
1 MHz) at the resonance condition x = 0. Clearly, lower values of
magnon-phonon coupling induce a larger negative GHS2.

from positive to negative by changing the effective detuning
in the absence of a microwave driving field. At a large incident
angle θ = 1.42 a positive shift appears in a narrow interval of
detuning. In Fig. 5(b) we plot the dependence of the GHS on
effective cavity detuning and incident angles of the probe light
beam in the presence of the microwave control field. We note
that the transition point from the negative to the positive GHS
peak moves from resonance to negative effective detuning. As
a result, we have a negative GHS for a relatively larger range
of detuning. Away from the transition point, towards positive
detuning, the amplitude of the peaks decreases and the peaks
get broader.

C. Effects of weak and strong coupling

Indeed, our cavity magnomechanical system is a lossy one
because the cavity photons have a limited lifetime after which
they decay (lose energy) at the cavity decay rate κa. The
cavity decay rate may be different for different microwave
cavities depending on its quality factor Q. Therefore, it may
also affect the reflection coefficient as well as the GHS of
the reflected probe light beam. Figure 6 shows the behav-
ior of the GHS against the normalized cavity decay rate in
units of magnon-phonon coupling gma at resonance (x = 0).
The value of the ratio κa/gma defines the coupling regime
of the system. For instance, the strong-coupling regime cor-
responds to κa/gma < 1, whereas the weak-coupling regime
corresponds to κa/gma > 1. Figures 6(a) and 6(b) show the
results in the absence of microwave driving when Gmb = 0 at
two different angles θ = 1.08 and 1.42, respectively. These
two angles correspond to the last two peaks of the GHS from
Fig. 3 (red curve). We note that the GHS remains positive
for the whole range of κa considered here. However, it peaks
around κa ≈ gma and decreases symmetrically in the weak-
and strong-coupling regimes. This symmetric decrease around
κa ≈ gma becomes very fast, resulting in a narrow spectrum

2We used a very small step size (of both variables involved) to
get the smooth and high-resolution plots in Figs. 4 and 5. As a
result, some peaks or dips become quite sharp with large amplitudes.
We therefore truncated the color bar limit to demonstrate the effect
clearly.

FIG. 5. Contour plot of the GHS as a function of incident angle
θ and effective detuning x for (a) Gmb = 0, which indicates that
the GHS can also be controlled via effective cavity detuning, and
(b) Gmb = 2π × 1.0 MHz, which shows that a negative GHS is larger
slightly away from resonance2.

for a larger incident angle [see Fig. 6(b)]. Figures 6(c) and
6(d) show the results in the presence of microwave driving
when Gmb = 2π × 0.01 and 2π × 0.015 MHz, respectively.
We choose the maximum literal shift angles θ = 0.97 and 0.70
from the results of Fig. 4. The GHS shift is negative and has a
dip around κa ≈ gma. Again, the width of the GHS spectrum
is narrow at a larger angle. At a fixed incident angle, the
peak value of the GHS depends on the reflection coefficient

FIG. 6. Plot of the GHS as a function of cavity decay rate κa/gma

for (a) Gmb = 0 and θ = 1.08, (b) Gmb = 0 and θ = 1.42, (c) Gmb =
2π × 0.01 MHz and θ = 0.97, and (d) Gmb = 2π × 0.015 MHz and
θ = 0.70. For these results, we consider the resonant case x = 0,
while the rest of the parameters are the same as given in the text.
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FIG. 7. Plot of the GHS as a function of incident angle for (a)
Gmb = 0 and (b) Gmb = 2π × 0.05 MHz at three different intracavity
medium lengths. Solid, dashed, and dotted curves show the GHS at
d2 = 45, 70, and 100 mm, respectively. Here we consider resonance
condition x = 0. The rest of the parameters are the same as given in
the text.

R as evident from Eq. (2). At κa ≈ gma, R approximately
approaches zero, which results in the peak value of the GHS.

So far, we have discussed the effect of the driving field,
which is directly related to the strength of the effective mag-
nomechanical coupling coefficient Gmb = gmbms via ms [see
Eq. (8)]. Another important parameter worth studying is the
cavity size. There is indeed a strong dependence of the GHS
on the cavity structure, such as the total thickness of the cavity
L = 2d1 + d2. Therefore, we plot the GHS as a function of
incident angle θ at three different intracavity medium lengths
d2 for Gmb = 0 in Fig. 7(a) and Gmb = 2π × 0.05 MHz in
Fig. 7(b) at x = 0. Both figures show that an increase in
cavity length introduces more resonance peaks and dips in the
GHS as a function of the incidence angle. This dependence
of the GHS on medium thickness in cavity magnomechanics
is analogous to the behavior previously discussed in the GHS
studies in the atomic medium [33].

IV. CONCLUSION

We have theoretically investigated the GHS in a cavity
magnomechanical system where the magnon mode is excited
by a coherent microwave control field. We noted the coherent
manipulation of the GHS by the control microwave field. The
GHS is positive at resonance in the absence of a control field.
By turning on the control field, we showed that the GHS
changes from positive to negative. Similarly, by modifying
the effective cavity detuning in the absence of a control field,
we showed the behavior of the GHS changing from positive
to negative. For instance, positive detuning gives a positive
GHS, while negative detuning gives a negative GHS. This
symmetric behavior of the GHS around resonance, however,
can be changed by turning on the control field. We also iden-
tified the optimum ratio of the microwave photon lifetime to
the magnon-photon coupling to maximize the GHS. It was
shown that the larger incident angles are more sensitive to this
optimal ratio as compared to smaller angles.

In this work we have considered a generic cavity mag-
nomechanical system to demonstrate the idea of the GHS.
We mainly used a magnomechanically induced transparency
configuration to observe the changes in the GHS of the
reflected probe field. The connection between the two con-
cepts of magnomechanically induced transparency and the
magnomechanical Goos-Hänchen shift is qualitatively the
same as the connection between electromagnetically induced
transparency in atomic media and the corresponding Goos-
Hänchen shift of the probe field due to the atomic media
[33,35]. It is important to note that the idea of a tunable
magnomechanically induced transparency spectrum has been
demonstrated in recent experiments [1,53]. The experimental
realization of the GHS in cavity magnomechanics may require
design modifications in the typical experimental systems or
consideration of other hybrid cavity magnomechanical sys-
tems [54–59]. We therefore believe that our analysis may
be useful to investigate the GHS in cavity magnomechani-
cal systems and may potentially lead to the development of
microwave devices using the GHS. Some possible examples
could be quantum switching and microwave high-precision
measurement sensing.
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