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Geometric phase of a two-level atom near a dielectric nanosphere out of thermal equilibrium
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We study the geometric phase (GP) of a two-level atom coupled to an environment composed of free space and
a dielectric nanosphere in thermal and out of thermal equilibrium. We analytically and numerically analyze the
optical properties and loss of the dielectric medium, along with the nonequilibrium effects of the environment on
the GP. In the weak coupling limit, we find that the correction to the GP depends on the partial local density
of photonic states at the atom position, and an effective parameter that emerges out of the nonequilibrium
configuration of the system. The GP exhibits a significant enhancement due to the excitation of evanescent
surface waves at its resonance frequency. It is shown that the GP acquired by the atomic system out of thermal
equilibrium is always bounded between the thermal-equilibrium counterparts. Furthermore, the temperature
difference between the nanosphere and free space can play an important role in the GP only at moderate atomic
distances from the nanosphere. Our results elegantly demonstrate properties of the GP near material media that
can support phononic modes and pave the way for further research of GP as a resource for quantum computation.
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I. INTRODUCTION

Pancharatnam [1] was first to introduce the concept of ge-
ometric phase (GP) to the classical optics, and then Berry [2]
discovered this concept in quantum mechanics. He showed
that a quantum system can acquire a GP upon adiabatic trans-
port of its Hamiltonian around a closed path in parameter
space or in the projective Hilbert space. It depends only on the
geometry of the path that is taken and occur in a wide range of
circumstances in both classical and quantum systems, such as
Foucault’s pendulum [3] and the Aharonov-Bohm effect [4].
Over the past decades, the original adiabatic GP has been
generalized to different closed and open quantum systems un-
dergoing nonadiabatic or noncyclic evolution [5–9]. Recently,
the GP has shown great potential for applications in quantum
computation, quantum sensing, and quantum information pro-
cessing [10–16].

The presence of decoherence and dissipation due to in-
teractions with the environment can modify the GP. In such
cases, the GP can still provide valuable information about the
system-environment interaction and its effects on the system’s
evolution. In the context of open quantum systems, different
approaches have been applied to explore the modification of
the GP caused by the external environment [17–24]. Under-
standing the influence of the environment on the GP is an
important issue. It demonstrates the resilience of the GP to
various types of noises, while also shedding light on how in-
formation about the environment is encoded in the GP. Many
works have been conducted along these lines, considering
different types of decoherence sources in both Markovian
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and non-Markovian environments [25–34], the nonequilib-
rium environment [35], and strong coupling regime [36].

The two-level system, which is the focus of this study,
and harmonic oscillator are the simplest and yet most sig-
nificant examples for exploring GP in the context of open
quantum system. Measuring the GP of these simple systems
can be used as a tool to get information about the environ-
ment [33,34,37,38] and detect quantum effects like the Unruh
effect [39] and quantum friction force [40]. In Ref. [37], GP
encodes information about the number of particles in the sur-
rounding quantized field. In Ref. [33], it is shown that GP of a
dephasing two-level system contains phase information of the
environment. In Refs. [39,41], it is shown that the two-level
system can be used as a high-precision quantum thermometer,
when its GP is affected by surrounding quantized field in
thermal state.

The purpose of this paper is to study how GP of a two-level
system is affected by decoherence and dissipation of the envi-
ronment composed of free space and a dielectric nanosphere.
Here, the dielectric medium with certain susceptibility and
temperature modifies the quantum vacuum field. Depending
on the relative distance between the atom and the dielectric
medium as well as their geometrical and optical properties,
this mechanism results in varying dissipation rate. Further-
more, when the atom is situated in a stationary configuration
out of thermal equilibrium, where the medium temperature
is maintained fixed and different from the surrounding free
space, the density matrix of the atom evolves into a nonequi-
librium steady state with an effective temperature [42,43].
Consequently, the GP of the atomic system can be expected
to encode information about the geometrical and optical prop-
erties of the dielectric medium along with its temperature, and
the nonequilibrium effects of the environment.
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Recently, much attention has been paid to studying the
nonequilibrium effects of the environment on dynamical evo-
lution and decoherence of open quantum systems. The lack
of thermal equilibrium may appear in transient and ultra-
fast processes in physical or biological systems, providing
significant possibilities not available in the thermal equilib-
rium state, such as the suppression of the decoherence and
the non-Markovian features of the quantum systems [44]. In
this study, we compute the GP of the atomic system under
nonunitary dynamics in both equilibrium and nonequilibrium
configurations. The environmentally induced corrections to
the GP can be decomposed in different contributions: medium
correction induced by the modified quantum vacuum field due
to the presence of the nanosphere and corrections induced by
out of thermal equilibrium effects of the system.

The structure of this paper is organized as follows. In
Sec. II, we introduce the model under investigation and ob-
tain an exact master equation for the reduced atomic density
operator to describe the dynamics of a two-level atom cou-
pled to the quantized electromagnetic field in the presence
of a nanosphere. We derive explicitly the atomic transition
rates in terms of the partial local density of states and an
effective parameter, which depend on material properties
of the nanosphere, the atom position, and the orientation
of the atom’s dipole moment. In Sec. III, we compute the
GP acquired by the atomic system in both equilibrium and
nonequilibrium configurations. Section IV contains the nu-
merical analysis of the medium- and nonequilibrium-induced
corrections to the GP when the nanosphere is made of gal-
lium arsenide, and compares them with those obtained when
the atom is alone in free space. In the small-sphere limit,
we derive expressions for the GP correction acquired by the
atom in both short-distance and long-distance cases, and some
experimental proposals for measuring the GP are discussed.
Finally, in Sec. V, we make our final remarks and summery
of the conclusions. Details on the derivation of the electro-
magnetic Green’s tensor of the system found in Appendix A.
The components of the Green’s tensor as well as the partial
local density of states in the small-sphere limit are derived in
Appendix B.

II. MODEL

We consider a two-level atom with the transition frequency
ω0 in the vicinity of a dissipative-dispersive dielectric sphere
with permittivity ε(ω) and the radius a in a stationary config-
uration out of thermal equilibrium, as schematically shown in
Fig. 1. The sphere and the surrounding vacuum are maintained
at different constant temperatures, T1 and T0, respectively.
This can be done by connecting an external energy source at
temperature T1 to the sphere and embedding it in a thermal
black-body radiation emitted by some walls far from both
the sphere and the atom at temperature T0 [45,46]. The dis-
tance from the atom to the center of the nanosphere is ra.
The atom interacts with the sphere via the quantized electro-
magnetic field at the position of the atom. The quantization
of the electromagnetic field in the presence of dissipative
and dispersive dielectric media is accomplished in a second-
quantization framework [47]. The framework is well known
and has been carried out through the canonical [48–61] and

FIG. 1. A schematic of the system that is out of thermal equi-
librium but in a stationary regime. It consists of a two-level atom
located at the distance ra from the center of a dielectric sphere
with permittivity function ε(ω) and the radius a at temperature T1.
The atom-nanosphere is embedded in a vacuum environment with
free-space permittivity ε0 at temperature T0.

phenomenological approaches [56–61]. We follow the rig-
orous canonical approach where the dielectric medium is
modeled as a reservoir consisting of infinite harmonic oscil-
lators. These harmonic oscillators, which characterized by a
medium field, provide the polarizability and lossy characters
of the medium. In this way, the dissipative medium enters
directly into the quantization scheme, so that the complex
frequency-dependent permeability of the medium is charac-
terized through the macroscopic parameters of our model.
Furthermore, the initial conditions of the medium field deter-
mines the explicit form of the current noise operator (more
details can be found in Refs. [52,62,63]). Based on this
quantization scheme, the Hamiltonian of the entire system is
given by

H = Ha + Hf + Hint, (1)

where

Ha = h̄ω0σ
+σ−, (2a)

Hf =
∫

d3r
∫ ∞

0
dω h̄ω f†(r, ω) · f (r, ω), (2b)

Hint = −D · E(ra, t ) (2c)

are, respectively, the usual Hamiltonian of the free atom, the
Hamiltonian of the medium-assisted electromagnetic field,
and the dipolar atom-field interaction Hamiltonian in the
rotating wave approximation. Here, σ−(σ+) denotes the low-
ering (raising) operator of the atom, the annihilation and
creation operators f and f† represent the collective excitations
of the electromagnetic fields, and the medium and satisfy
the canonical commutation relation [ fi(r, ω), f †

j (r′, ω′)] =
δi jδ(r − r′)δ(ω − ω′), E(ra, t ) is the electric field operator
at the atom’s position, and D = d21|2〉〈1| + d∗

21|1〉〈2| is the
electric dipole moment of the atomic system. Given that
the vacuum (dielectric sphere) is in local thermal equilib-
rium at constant temperature T0 (T1), the correlation functions
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between the elementary excitations of the system in a station-
ary configuration have the following form [64]:

〈f (r, ω)f†(r′, ω′)〉 = [1 + n(ω, Ti )]δ(r − r′)δ(ω − ω′), (3a)

〈f†(r, ω)f (r′, ω′)〉 = n(ω, Ti )δ(r − r′)δ(ω − ω′), (3b)

where n(ω, Ti ) = 1/( exp[h̄ω/kBTi] − 1).

A. Master equation

In this paper, we intend to compute the GP of the atomic
system interacting with the medium-assisted electromagnetic
field during its evolution at stationary but nonequilibrium
condition. To explore a general description of the atom dy-
namics, we start from the von Neumann equation �̇tot(t ) =
− i

h̄ [HI
int(t ), �tot], where �tot is the density operator of the com-

bined close system and HI
int is the interaction Hamiltonian (2c)

in the interaction representation. Within the Born-Markov and
rotating wave approximations, we trace out the photonic de-
grees of freedom and obtain the following master equation of
the atom alone whose projections on the basis of the atomic
subspace [65]

�̇(t ) = − i

h̄
[Ha + HLS, �(t )] + D[�(t )]. (4)

The first term in the above equation describes the unitary
evolution of the reduced density operator, and D[�(t )] is the
Lindblad dissipator introducing dissipative effects such as
relaxation or dephasing. Here, the Lamb-shift Hamiltonian

HLS = h̄(S(−ω0)|1〉〈1| + S(ω0)|2〉〈2|), (5)

induces a shift of the atomic energy levels with a renormalized
energy level spacing �(ω0) = ω0 + S(ω0) − S(−ω0),
wherein S(ω) = �i, j si j (ω)[d21]∗i [d21] j and S(−ω) =
�i, j si j (−ω)[d21]i[d21]∗j with the parameter si j defined by

si j (ω) = 1

h̄2 P
∫ ∞

0
dω1

∫ ∞

0
dω2

×
[ 〈Ei(r, ω2)E†

j (r′, ω1)〉
ω − ω2

+ 〈E†
i (r, ω2)Ej (r′, ω1)〉

ω + ω2

]
,

(6)

where P is the Cauchy principal value. The Lindblad
dissipator

D[�(t )] = 	(ω)
[
�22(t )|1〉〈1| − 1

2 {|2〉〈2|, �(t )}]
+	(−ω)

[
�11(t )|2〉〈2| − 1

2 {|1〉〈1|, �(t )}], (7)

contains the downward and upward atomic transitions 	(ω) =
�i, jγi j (ω)[d21]∗i [d21] j and 	(−ω) = �i, jγi j (−ω)[d21]i[d21]∗j ,
where the rates γi j (±ω) are expressed in terms of the Fourier
transform of the electric-field correlation functions as fol-
lows [64,66]:

γi j (ω) = 2π

h̄2

∫ ∞

0
dω′ ×

{〈Ei(r, ω)E†
j (r, ω′)〉, ω > 0,

〈E†
i (r,−ω)Ej (r, ω′)〉, ω < 0.

(8)

B. Transition rates out of thermal equilibrium

Based on the canonical quantization scheme, the frequency
component of the electric field is given by

E(r, ω) = iω2

c2

√
h̄

πε0

∫
d3r′√Im[ε(r′, ω)]

× ¯̄G(r, r′, ω) · f (r′, ω), (9)

where Im stands for the imaginary part and ¯̄G is the
electromagnetic Green’s tensor fulfilling the Helmholtz equa-
tion [∇ × ∇ × −ε(ω)ω2/c2] ¯̄G(r, r′) = Īδ(r − r′) together
with the appropriate boundary conditions. Here, Ī is the unit
dyadic.

Using Eqs. (3), (8), and (9), and the Green’s
identity ω2

∫
d3s Im[ε(s, ω)] ¯̄G(r, s, ω) · ¯̄G

∗
(s, r′, ω) =

c2Im[ ¯̄G(r, r′, ω)], the downward and upward atomic
transitions 	(ω) and 	(−ω) are written as [64](

	(ω0)
	(−ω0)

)
= 	0

ρ(n̂d , ra, ω0)

ρ0

(
1 + neff(ω0)

neff(ω0)

)
, (10)

where 	0 = ω3
0 |d12|2

3πε0 h̄c3 is the vacuum spontaneous emission rate.
Here, the partial local density of states (PLDOS) is defined
as [67]

ρ(n̂d , r, ω) = 6ω

πc2
(n̂d · Im[ ¯̄G(r, r, ω)] · n̂∗

d ), (11)

where nd is a unit vector pointing in the direction of the dipole
moment d21. This quantity, which depends on the material
properties of the sphere, the atom position, and the orienta-
tion of the atom’s dipole moment, measures the number of
photonic states per unit of frequency and volume at a certain
position and frequency due to the presence of the sphere. In
particular, in free space, after averaging Eq. (11) over different
dipole orientation, ρ is simply ρ0 = ω2

0/π
2c3. The effective

parameter

neff(ω0) = n(ω0, T0) + ρm(n̂d , ra, ω0)

ρ(n̂d , ra, ω0)
(n(ω0, T1)

− n(ω0, T0)), (12)

depends both on temperatures and the material properties of
the sphere. This material dependence, emerging out of the
nonequilibrium configuration of the system, is established
through the quantity

ρm(n̂d , ra, ω) = 6ω3

πc4

∫ a

0
dr′r′2Im[ε(r′, ω)]

∫
dφ′dθ ′ sin θ ′

× (n̂d · ¯̄G(ra, r′, ω) · ¯̄G
∗
(r′, ra, ω) · n̂∗

d ),

(13)

which from now on we call the medium PLDOS. Likewise,
one can define its vacuum counterpart, i.e., ρv (n̂d , ra, ω),
where the lower and upper bounds of the above integral are
replaced by a and ∞, respectively. These two quantities lead
to the PLDOS, ρ = ρm + ρv , through the Green’s identity.
Note that ρm and ρv are positive quantities since Im ε � 0
and their integrals can be recast into a form

∫ |g|2 using the
reciprocity theorem, ¯̄Gi j (r′, ra, ω) = ¯̄Gji(ra, r′, ω). With this
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in mind, the effective parameter (12) can be rearrange to give
neff = (n(ω, T0)ρv + n(ω, T1)ρm)/ρ, resulting in the inequal-
ity n(ω, Tmin) � neff � n(ω, Tmax) where Tmin = min(T0, T1)
and Tmax = max(T0, T1). Subsequently, the downward and
upward atomic transitions (10) are bounded between their
equilibrium counterpart values at temperatures T0 and T1.
These findings are in agreement with the results reported in
Ref. [43].

In the case T1 = T0 = T , the sphere is in the thermal equi-
librium with the background thermal radiations and neff(ω0)
reduces to the mean thermal photon number n(ω0, T ). There-
fore, the atomic transitions 	(±ω0) are expressed as a product
of 	0ρ/ρ0 with the factor 1 + n(ω0, T ) or n(ω0, T ) at the
thermal equilibrium, as expected.

Given these results, the dynamic evolution of the elements
of the reduced atomic density operator (4) can be written as

�̇11(t ) = −	(−ω0)�11(t ) + 	(ω0)�22(t ), (14a)

�̇22(t ) = 	(−ω0)�11(t ) − 	(ω0)�22(t ), (14b)

�̇12(t ) =
[

i(� + ω0) − 	(ω0) + 	(−ω0)

2

]
�12(t ), (14c)

where � ≡ � − ω0 is the so-called Lamb shift. Using Eqs. (6)
and (9) and the Kramers-Kronig relations the Lamb shift is
given by

�(ω0) = − ω

h̄ε0c2
(n̂d · Re[ ¯̄G(ra, ra, ω0)] · n̂∗

d ), (15)

which is independent of the temperatures. This implies that
the Lamb shift does not depend on the absence or presence of
thermal equilibrium.

III. GEOMETRIC PHASE

In this section, we turn to compute the GP associated
with the evolution of the two-level atom in a stationary con-
figuration out of thermal equilibrium. It is well known that
the atom evolves nonunitarily due to its coupling with the
medium-assisted electromagnetic field near the nanosphere
whose temperature is kept fixed and different from that of the
surrounding vacuum. We pursue the kinematic approach of
Tong et al. [21], which gives the GP for a quantum system
under nonunitary dynamical evolution, and it reads

� = arg
∑

k

√
εk (0)εk (t )〈ψk (0)|ψk (t )〉e− ∫ t

0 dt ′〈ψk (t ′ )|ψ̇k (t ′ )〉,

(16)
where εk (t ) and |ψk (t )〉 are the eigenvalues and eigenvectors
of the reduced density matrix �(t ). As can be seen from the
definition above, to compute the GP, it is important to first find
the solution of time-dependent reduced density matrix (14) at
all times. To this end, we assume that the atom is initially

prepared in a superposition of upper and lower states in a
Ramsey zone

|ψ (0)〉 = cos
θ0

2
|2〉 + sin

θ0

2
|1〉, (17)

where θ0 can be controlled by the time duration of a laser pulse
that is irradiated on the atom [19,68,69]. Using Eqs. (14),
the elements of reduced density matrix for times t > 0 are
given by

�11(t ) = sin2 θ0

2
e−	+t + 	+ + 	−

2	+
(1 − e−	+t ), (18a)

�22(t ) = cos2 θ0

2
e−	+t + 	+ − 	−

2	+
(1 − e−	+t ), (18b)

�12(t ) = �∗
21(t ) = 1

2
e(i�−	+/2)t sin θ0, (18c)

where 	± ≡ 	(ω0) ± 	(−ω0), with 	+ being the dephas-
ing decay rate of the quantum coherence of the system.
Solving the eigenvalue problem for the reduced density ma-
trix, the eigenvalues of �(t ) are obtained as

ε±(t )

= 1
2 (1 ±

√
sin2 θ0e−	+t + [cos θ0e−	+t − Q(1 − e−	+t )]2),

(19)

with Q ≡ 	−/	+. The corresponding eigenvectors of �(t ) can
be expressed as

|ψ+(t )〉 = ei�t cos
θt

2
|1〉 + sin

θt

2
|2〉, (20)

|ψ−(t )〉 = ei�t sin
θt

2
|1〉 − cos

θt

2
|2〉, (21)

where tan(θt/2) = √
(�22 − ε−)/(�11 − ε−). Since

ε−(0) = 0, we only need |ψ+(t )〉 to calculate the GP.
Substituting Eqs. (19) and (20) into Eq. (16), the GP reduces
to

� = arg 〈ψk (0)|ψk (t )〉 − �

∫ t

0
dt ′ cos2(θt ′/2). (22)

Here, the first term is the Pancharatnam phase [1], which
results from the correlation of the time-evolved state |ψk (t )〉
and the initial state |ψk (0)〉, is written by

arg 〈ψk (0)|ψk (t )〉 = sin �t

cos �t + tan(θt/2) coth(θt/2)
. (23)

For the case that the system evolves along a quasicyclic
path with the evolution time t = 2π/�, the Pancharatnam
phase (23) vanishes and makes no contribution to the GP. The
last term in Eq. (22) arising from the GP of the dynamical
evolution, is given by

� = −�

2

∫ T

0
dt

(
1 − Q − Qe	+t + cos θ0√

sin2 θ0e	+t + (Q − Qe	+t + cos θ0)2

)
. (24)

A direct calculation of this integral is rather tedious. However,
a simple estimate can reveal that the ratio 	0/ω0 is vanishingly

small. For instance, considering a free space qubit with the
transition frequency ω0/2π = 4.68 GHz and the relaxation
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time 2.65 µs [69], 	0/ω0 is of order 10−5. This allows us to
evaluate this integral by making a series expansion of the
integrand in terms of 	0/ω0. Up to leading order in 	0/ω0,
it leads to

� ≈ −π (1 − cos θ0) − �

2ω0
	0 sin2 θ0

∫ T

0
dt t (2Q + cos θ0)

× ∂	+
∂ (	0/ω0)

. (25)

The first term of Eq. (25) is the GP for the isolated system with
no influence from the environment, and the second term is
the correction originates from the atom-electromagnetic field
interaction in the absence of thermal equilibrium. Using the
definition (10) for 	(±ω0), the GP (25) can be rearranged
to give

� ≈ −π (1 − cos θ0) − π2	0

2ρ0ω0
ρ(n̂d , ra, ω0) sin2 θ0

× [cos θ0 + 2neff (ω0) cos θ0 + 2]. (26)

As can be seen, in the absence of the electromagnetic modes
of the free space and the background thermal radiations, we
can recover the familiar expression �0 ≈ −π (1 − cos θ0) for
the GP [19,22,30]. In what follows, we separate the contribu-
tion induced by equilibrium and nonequilibrium effects in the
presence of dielectric nanosphere from that of �0 as

�� = π2	0

2ρ0ω0
ρ(n̂d , ra, ω0) sin2 θ0

× [cos θ0 + 2neff (ω0) cos θ0 + 2], (27)

where �� = |� − �0|. This GP difference reflects the cor-
rection to the unitary GP. However, the roles of material and
geometrical parameters of the medium and the nonequilib-
rium effects of the system on �� are ambiguous. A detailed
analysis of the GP will follow in the next section, but it would
be instructive to study approximate cases as a consistency
check and as a useful point of comparison later on. In the
small-sphere limit |k1a|, |k0a| 
 1, where the atom can be
very far from or very close to the sphere (see Appendix B),
one can gain a simple physical insight into the GP corrections.
We first consider the atom-sphere distances za = ra − a to be
much smaller than the atomic transition wavelengths, i.e.,
the atom is located at a position very close to the sphere.
In this short-distance limit, |k0ra| 
 1, the sphere facing the
atom effectively behaves like a plane. Substituting Eqs. (A4)
and (A5) into Eqs. (12) and (27), we derive after some algebra

�� � π2	0

2ω0

(
1 + 3

8k3
0

Im

[
ε − 1

ε + 1

]
z−3

a

)
sin2 θ0

× [2 + cos θ0 + 2n(ω0, T0) cos θ0]

+ 3π2	0

4ω0k3
0

Im[ε(ω)]

∣∣∣∣ 1

ε + 1

∣∣∣∣
2

z−3
a sin2 θ0 cos θ0

× [n(ω0, T1) − n(ω0, T0)]. (28)

Here, the GP difference exhibits a distance dependence of z−3
a ,

which is the same as the results of a perfectly conducting plate
at zero temperature [70,71]. Furthermore, it has a resonant
response when Re[ε(ω)] = −1. This is properly the resonant

frequency at which surface modes are excited on a flat sur-
face [72].

In the opposite limit of the atom far away from the sphere,
ra � a, inserting Eqs. (A4) and (A5) into Eqs. (12) and (27),
the GP difference reduces to

�� � π2	0

2ω0

(
1 + 6a3

k0
Im

[
ε − 1

ε + 2

]
r−4

a

)
sin2 θ0

× [2 + cos θ0 + 2n(ω0, T0) cos θ0]

+ 18π2a3	0

ω0k0
Im[ε(ω)]

∣∣∣∣ 1

ε + 2

∣∣∣∣
2

r−4
a sin2 θ0 cos θ0

× [n(ω0, T1) − n(ω0, T0)], (29)

where, unlike the short distance limit, it shows a distance
dependence of r−4

a and becomes significant at the resonance
frequency at which Re[ε(ω)] = −2. As explained in the next
section, this occurs for spherical structures that support plas-
monic or phononic modes.

For most metals, the resonance frequency of plasmonic
mode lies in the near UV and visible range so that these
surface waves are difficult to excite thermally. By contrast,
surface-phonon polaritons mode can be excited thermally be-
cause they exist in the infrared. Therefore, in what follows, we
only concentrate on the dielectric sphere.

IV. NUMERICAL ANALYSIS

In this section, we present a numerical analysis of the
GP (27) for the case where the atom is located on the z axis at
a distance of ra = 1.7 µm from the center of a nanosphere with
the radius of a = 700 nm for both out-of-thermal equilibrium
and in-thermal equilibrium configurations. We consider the
dipole moment of the atom oriented perpendicularly to the
surface of the GaAs nanosphere, i.e., n̂d = r̂. Similar results
are obtained for the case where the dipole moment of the
atom is tangent to the surface of the nanosphere (not shown
here). Here, the gallium arsenide (GaAs) nanosphere is in-
vestigated, which supports surface waves known as localized
surface phonon-polaritons (LSPhP), with optical properties
well described by the Drude-Lorentz model

ε(ω) = ε∞
ω2 − ω2

l + iγeω

ω2 − ω2
r + iγeω

, (30)

where ε∞ = 11, γe = 0.00452 × 1014 (rad /s), ωr = 0.506 ×
1014(rad /s), and ωl = 0.550 × 1014 (rad /s) [73]. The GaAs
nanosphere embedded in a vacuum exhibits a dipolar surface-
phonon mode at a frequency dictated by the condition
Re[ε(ω)] = −2 [72]. Using the Drude-Lorentz model (30),
this resonance appears at the frequency of 1.074ωr . In what
follows, we assume that the atomic frequencies are of the
same order as the resonance frequency of the sphere. Such
frequencies can be achievable using artificial atoms made of
semiconductor quantum dots [74].

A. Medium-induced corrections to the GP difference

In this subsection, we restrict our attention to the GP differ-
ence alone due to the presence of the nanosphere. To this end,
we consider that the whole system is in thermal equilibrium
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FIG. 2. The normalized medium-induced GP ω��m/	0(ωr )
versus normalized frequency ω/ωr for four initial states of θ0 = π/6
(red solid line), θ0 = π/4 (blue dashed line), θ0 = π/2 (green dotted
line), and θ0 = 5π/6 (brown dot-dashed line). The nanosphere is
made of GaAs with the permittivity function (30). The atom is
located on the z axis at a distance of ra = 1.7 µm from the center
of the GaAs nanosphere with the radius of a = 700 nm.

at zero temperature. For this particular case of zero temper-
ature, due to Eq. (12), neff vanishes and the medium-induced
correction to the GP (27) is obtained as

��m = π2	0

2ρ0ω0
ρ(r̂, ra, ω0) sin2 θ0[cos θ0 + 2], (31)

which depends on the properties of the atom via the transition
frequency ω0 and the spontaneous emission in vacuum 	0,
the initial state θ0, and material and geometrical properties
of the nanosphere through ρ. In the absence of the dielec-
tric sphere, where ρ = ρ0, the GP difference (31) reduces
to π2	0 sin2 θ0[2 cos θ0 + 1]/ω0, which is just the GP dif-
ference acquired by a two-level atom in a vacuum. This is
consistent with the result obtained for a two-level atom cou-
pled to an environment with Lorentzian spectral density [30].
However, as depicted in Fig. 2, the presence of the sphere
disrupts this result due to supporting surface-phonon modes.
This figure illustrates the normalized medium-induced GP,
ω��m/	0(ωr ), as a function of normalized frequency ω/ωr

for different initial states of θ0. The GP difference, which is
proportional to the PLDOS, shows a peak at ω = 1.074ωr

that corresponds to the LSPhP resonance. This increases
the PLDOS close to the sphere, which leads to a signif-
icant GP difference and provides ideal conditions for GP
detection. It further shows that the GP difference enhances
as θ0 increases from zero to π/2, while it decreases as θ0

increases beyond π/2. This is understandable because the
maximum of ��m occurs around θ0 = π/2 with the maxi-
mum medium-induced GP π2	0ρ(ω0)/ρ0ω0 where �0 also
reaches its maximum, whereas ��m vanishes when θ0 = 0
and θ0 = π . Figure 3 shows that the damping coefficient
γe can significantly influence on the medium-induced GP
difference. The GP difference is always larger than that in
the absence of the nanosphere at given frequencies, so that
it is more pronounced in the LSPhP resonance. Furthermore,
the peak width becomes broader with increasing γe because
the linewidth of the PLDOS is closely associated with the
damping coefficient. In this sense, the dissipative effect of

FIG. 3. The normalized medium-induced GP ω��m/	0(ωr )
versus the normalized frequency ω/ωr for three values of the damp-
ing coefficient γe = 0.00452ωr (red solid line), γe = 0.0452ωr (blue
dashed line), and γe = 0.452ωr (green dotted line). As a reference,
the GP difference in the absence of the nanosphere is plotted by the
brown dot-dashed line. Here, θ0 = π/4, and other parameters are the
same as those in Fig. 2.

the sphere has a strong correction around the LSPhP fre-
quency. Far from the LSPhP resonance, the GP difference is
relatively small, but it increases slightly for larger values of
γe. Since the PLDOS contains two radiative and nonradiative
channels through which the atom can decay, therefore, this
enhancement can be attributed to the increase in the non-
radiative decay to the absorption modes in the nanosphere.
Interestingly, our result indicates the insensitivity of the GP
to the presence of the nanosphere far from (near) the LSPhP
resonance frequency when the absorption is weak (strong).
This means that the GP difference shows a stronger resilience
to the medium with a large γe near the LSPhP resonance
frequency. To make this clear, let us derive an approximate
expression for the medium-induced GP in the small-sphere
limit where the atom is far from the sphere. By making use of
Eq. (29), after some manipulations, we get

��m � π2	0

2ω0

(
1 + 18a3 Im[ε] r−4

a

k0((Re[ε] + 2)2 + (Im[ε])2)

)

× sin2 θ0[2 + cos θ0]. (32)

It is clear that the imaginary part of the permittivity func-
tion in the denominator of the above equation suppresses the
GP divergence at the resonant frequency, particularly when
the damping coefficient is too large. Consequently, it is ex-
pected that the peak at ω = 1.074ωr gradually disappears
with increasing absorption (see Fig. 3), and exhibits a strong
robustness to high absorption at the resonance frequency. The
robustness features of GP in the presence of dissipation can be
an important resource for the construction of phase gates [75]
in quantum information systems.
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FIG. 4. The effective parameter neff versus the normalized fre-
quency ω/ωr . Two configurations out of thermal equilibrium with
temperatures T0 = 600 K, T1 = 100 K (red solid line) and T0 =
100 K, T1 = 600 K (blue dashed line) are compared with thermal
equilibrium configurations at temperatures T0 = T1 = 600 K (green
dotted line) and T0 = T1 = 100 K (brown dot-dashed line). The pa-
rameters we chose are the same as those in Fig. 2.

B. Out of thermal equilibrium induced corrections
to the GP in the presence of the nanosphere

In the following, we mainly concentrate on out of thermal
equilibrium corrections to the GP defined as

��out-eq = π2	0

ρ0ω0
ρ(r̂, ra, ω0)neff(ω0) sin2 θ0 cos θ0, (33)

where the material property of the nanosphere is encoded
on both quantities ρ and neff. Likewise, the thermal equilib-
rium corrections to the GP, i.e., ��eq, can be obtained by
replacing neff in the above equation with the mean thermal
photon number n. Figure 4 indicates the temperature and
frequency dependence of neff, appearing in Eq. (33), for two
configurations out of thermal equilibrium at T0 = 600K, T1 =
100K and T0 = 100 K, T1 = 600 K, and compares them with
the corresponding thermal-equilibrium parameter, i.e., n, at
temperatures T0 = T1 = Tmax = 600 K and T0 = T1 = Tmin =
100 K. It is observed that neff is enclosed between n(ω, Tmin)
and n(ω, Tmax), which is also established in Sec. II, and shows
a significant variations around the LSPhP resonance. As a con-
sequence, the GP difference ��out-eq, which is proportional
to neff, is always bounded between the thermal-equilibrium
counterparts ��eq(Tmin) and ��eq(Tmax), as shown in Fig. 5.
In Fig. 5(a), the GP difference as a function of the frequency
follows similar variations both in thermal equilibrium and
out of thermal equilibrium, showing a strong peak around
the LSPhP resonance. However, the peak height is almost
small when the nanosphere is at a lower temperature than
the vacuum environment, although it is still larger than
the thermal-equilibrium configuration at the sphere temper-
ature [compare the red solid and brown dot-dashed lines in
Fig. 5(a)]. This is because, for the small atom-sphere sepa-
rations considered here, the temperature of the sphere plays
a significant role in the GP difference at the resonance fre-
quency. It is evident from Fig. 5(b) that for small values
of the dimensionless distance ωrr/c only the temperature
of the nanosphere contributes, while at intermediate atomic

FIG. 5. The normalized GP deviation ω��out-eq/	0(ωr ) versus
the (a) normalized frequency ω/ωr and (b) the normalized distance
ωrr/c for both in thermal equilibrium and out of thermal equilib-
rium configurations. In (a), ra = 1.7µ m = 0.29c/ωr and in (b) ω =
1.074ωr . The other parameters are the same as in Figs. 2 and 4.

distances both sphere and vacuum temperatures play a role
in the GP difference. In contrast, for large values of ωrr/c,
the out of thermal equilibrium induced GP tends towards
the equilibrium counterpart at the vacuum temperature. This
means that at large distances, only the vacuum temperature
affects the GP difference. Therefore, at large (small) atomic
distances, the GP difference at the LSPhP resonance can vary
with the temperature of the vacuum (sphere).

C. Total corrections to the GP in the presence of the nanosphere

In this subsection, we consider the combination of both
medium and out of thermal equilibrium corrections to the GP
in the presence of the nanosphere. Figure 6 shows the sum of
these corrections, i.e., Eq. (27), as a function of the dimen-
sionless frequency ω/ωr . We compare the GP difference at
thermal equilibrium at T0 = T1 = 100 K and T0 = T1 = 600 K
with the GP out of thermal equilibrium at T0 = 600 K, T1 =
100K and T0 = 100 K, T1 = 600 K. As a reference, the GP
difference is also plotted in the absence of the nanosphere
at the vacuum environment temperature of 100 K (the black
dotted line). As can be seen, the GP deviation �� shows
a considerable increase at the LSPhP resonance for both in
thermal and out of thermal equilibrium. However, regardless
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FIG. 6. The normalized total GP deviation ω��/	0(ωr ) as a
function of the normalized frequency ω/ωr for both in thermal
equilibrium and out of thermal equilibrium configurations. The black
dotted line shows the GP difference in the absence of the nanosphere
at the vacuum temperature of 100 K. Here, θ0 = π/4, and other
parameters are the same as in Figs. 2 and 4. The inset shows the
zoomed region near the LSPhP resonance.

of the temperature of the sphere and the environment, there is
a slight difference between these curves for the atom distance
considered here. This is due to the prominent role of the
medium-induced correction to the GP at the LSPhP frequency
and demonstrates almost the robustness of the GP to the
temperature difference of the sphere and the environment.
Far from the LSPhP resonance, the GP difference decreases
sharply for out of thermal equilibrium configurations and
approaches the equilibrium counterparts at the vacuum en-
vironmental temperatures. In this sense, a small variation of
frequency around the LSPhP resonance lead to drastically
modifications of the GP difference. This can provide evidence
of thermally excited surface evanescent waves. In Fig. 7, the

FIG. 7. Density plot of the GP deviation �� as functions of
the normalized distance ωrr/c and the normalized frequency ω/ωr

for out of thermal equilibrium configuration with temperature T0 =
600 K, T1 = 100 K. Here, θ0 = π/4, and the other parameters are the
same as in Fig. 2.

GP difference �� is shown as a function of the dimensionless
frequency ω/ωr and the dimensionless distance ωrr/c for
T0 = 600 K and T1 = 100 K. This illustrates the role of LSPhP
resonance in the GP difference. In particular, it exhibits a
peak centered at the frequency ω = 1.078ωr for a very small
atom-sphere distance. Recalling Eq. (32), we find that this
frequency is the resonance frequency of surface modes in
a plane, which estimated from the relation Re[ε(ω)] = −1.
Close to the nanosphere, the PLDOS increases in the presence
(absence) of evanescent surface waves confined near the sur-
face of the sphere and strongly enhances (decreases) the GP
difference. Far from the nanosphere, the PLDOS decreases
due to the absence of evanescent radiation, resulting in a
decrease in the GP difference. These results still hold when
the sphere radius is increased and the atom-sphere distance is
kept constant (not shown here).

D. Experimental proposal

According to the obtained results, we conclude that the
model under study is a suitable scheme for measuring the
GP in nonequilibrium thermal conditions. In what follows,
we present two experimental proposals to account for sphere-
induced corrections and thermal equilibrium effects on the
GP. Our first scheme for measuring the GP relies on the use
of a single nitrogen-vacancy (NV) center in diamond as an
effective two-level system [76]. It can be attached to the tip of
an atomic force microscope (AFM) and placed at the distance
za of the surface of a dielectric sphere. With the ability to
maintain the distance between the NV center and the sphere,
this AFM can provide a good strategy to realize subnamome-
ter resolution [40]. Since, for a fixed atom-sphere distance and
a specific frequency the GP correction is maximized when
θ0 = π/2 (see Sec. IV A), the atom can be prepared in an
equal superposition between the upper and lower states. A
dielectric sphere made of GaAs with a temperature different
from the environment is used. We follow the scheme intro-
duced in Refs. [40,77] and extract the GP in a tomographic
manner by measuring elements of the reduced density matrix
of the atom and numerical interpolation of these elements
in Eq. (22). Consider an NV center with the transition fre-
quency of ω0/2π = 54.3 THz and a lifetime of ∼1 ns, which
is accessible with current technology facilities [78,79] and
is in resonant with the sphere. When the NV center is at a
distance of 100 nm from the surface of the sphere, and the
sphere is heated to T1 = 320 K with the ambient temperature
at room temperature, one can reach the total GP difference of
∼0.57 rad.

In the second scenario, the GP acquired by the atom can
be detected with an atom interferometer in which two atoms
follow two different paths [41,80]. In one path, the atom
moves through a cavity with walls at temperature T0 con-
taining a sphere at temperature T1. The sphere lies in the
vicinity of the path in black-body radiation emitted from the
cavity far from the sphere. This system can be equivalently
interpreted in terms of a system in thermal equilibrium with
an effective temperature, Teff = h̄ω0[kB ln(1 + neff )]−1 whose
value depends on the geometry of the sphere, the sphere-atom
distance, and optical resonances [43]. In the second path,
another atom as a reference atom passes through a cavity
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with the same temperature and characteristics as the first arm,
which is now empty of the sphere. In both paths, the atoms
acquires GP due to the interaction with the thermal field and
the near field of the sphere, and their motions. The atoms
of the two paths meet at the output, and in this way, the
thermal equilibrium and motion corrections to the GP between
the two interferometer arms can be eliminated. Although we
use moving atoms, but for small values of the velocity the
correction of the GP is mainly induced by the presence of
the thermal field and dielectric sphere [40]. Out-of-thermal
equilibrium correction to the GP are measured by a shift in the
interference fringes at the output. Note that the trajectories can
be chosen such that the dynamic relative phases cancel [41].
Inspired by Ref. [41], this design for GP detection can be used
to build a high precision quantum thermometer. Although,
this atomic interferometer can be prepared in a different way,
so that all the equipment is placed, for example, at room
temperature, and the sphere is heated or cooled at a different
temperature T1.

V. CONCLUSION

We studied the corrections to the GP under a nonunitary
evolution induced by the presence of a dielectric nanosphere.
We considered the atom to be embedded in a stationary
configuration out of thermal equilibrium, where the medium
temperature is kept fixed and different from the surrounding
free space. The effect of optical and geometrical properties
of the dielectric medium along with its temperature on the
geometric phase has been explored analytically and numeri-
cally. It was demonstrated that the first-order correction to the
GP, which is proportional to the partial local density of states
and the effective parameter neff is significantly large close to
the nanosphere when the surface phonon modes excited. In
this sense, a small change in frequency around the resonance
frequency leads to drastic changes in the GP, providing ideal
conditions for the GP detection.

However, the GP has shown a stronger resilience to
the medium with a large damping coefficient near the lo-
calized surface phonon-polaritons resonance frequency. For
the small atom-sphere separations, the medium temperature
leaves its footprint in the GP acquired by the atom, while
for large distances, the sphere temperature is immaterial, and
the out-of-thermal equilibrium-induced GP approaches the
equilibrium counterpart at the free space temperature. This
suggest that the geometric phase can be used to construct a
quantum thermometer for dielectric media in the nonequilib-
rium regime. Our results beautifully demonstrate properties
of the GP near material media that support phononic or even
plasmonic modes both in thermal and out of thermal equilib-
rium configurations and serve as a stepping stone for further
research of GP as a resource for quantum computation or
quantum sensing.

APPENDIX A: GREEN’S TENSOR OF THE SYSTEM

Following the method of scattering superposition in
Refs. [62,63,81], we can write the electromagnetic Green’s
tensor of the nanosphere in Fig. 1 in the form ¯̄G(r, r′, ω) =
¯̄G0(r, r′, ω)δ f s + ¯̄G

( f s)

s (r, r′, ω), where ¯̄G0 denotes the con-

tribution of the direct waves from the emitter in an unbounded
vacuum, the scattering Green’s tensor ¯̄G

( f s)

s describes the
multiple reflection and transmission processes due to the in-
teraction of the emitter with the nanosphere, f and s refer to
the regions where the field point and source point are located,
and δ f s is the usual Kronecker delta. In the current study, the
atom (emitter) is located out of the nanosphere on the z axis.
This, together with the analysis of Eqs. (11) to (13), leads
us to the fact that the field (source) point is placed outside
(both outside and inside) of the nanosphere. Since the dipole
moment of the atom is along the radial direction, i.e., r̂, only
the radial component of the direct term of the Green’s function
is needed to compute the PLDOS, which is given by

¯̄G0,rr (ra, ra, ω) = ik0

4π

∑
n

n(n + 1)(2n + 1)

× h(1)
n (k0ra) jn(k0ra)

(k0ra)2
. (A1)

While, for the scattered part, the following components are
required in the PLDOS and ρm calculations:

¯̄G
(00)

s,rr (ra, ra, ω) = ik0

4π

∑
n

n(n + 1)(2n + 1)B00
N (ω)

×
(

h(1)
n (k0ra)

k0ra

)2

, (A2a)

¯̄G
(01)

s,rr (ra, r′, ω) = ik1

4π

∑
n

n(n + 1)(2n + 1)A01
N (ω)

×
(

h(1)
n (k0ra) jn(k1r′)

k0ra k1r′

)
Pn(cos θ ′),

(A2b)

¯̄G
(01)

s,rθ (ra, r′, ω) = ik1

4π

∑
n

(2n + 1)A01
N (ω)

×
(

h(1)
n (k0ra)∂ jn(k1r′)

k0ra k1r′

)
dPn(cos θ ′)

dθ ′ ,

(A2c)
¯̄G(01)

s,rϕ (ra, r′, ω) = 0, (A2d)

where k0 = ω/c, k1 = √
ε ω/c, and the prime in the last three

equations represents the coordinates (r′, θ ′, ϕ′) of the source
inside the sphere. Here, jn(x) is the spherical Bessel function
of the first kind, h(1)

n (x) is the first-type of spherical Hankel
function, and Pm

n (x) is the associated Legendre function.
The scattering coefficients B00

N (ω) and A01
N (ω) in Eqs. (A2)

are related to the reflection and transmission coefficients
−RV

F0(ω) and T V
F0(ω), respectively, with

RV
F1 = k1 jn(k1a)∂ jn(k0a) − k0 jn(k0a)∂ jn(k1a)

k1 jn(k1a)∂h(1)
n (k0a) − k0∂ jn(k1a)h(1)

n (k0a)
, (A3a)

T V
F1 = k1( jn(k1a)∂h(1)

n (k1a) − ∂ jn(k1a)h(1)
n (k1a))

k1 jn(k1a)∂h(1)
n (k0a) − k0∂ jn(k1a)h(1)

n (k0a)
, (A3b)

where we introduced the abbreviations ∂ jn(x) = 1
x

d[x jn(x)]
dx and

∂h(1)
n (x) = 1

x
d (xh(1)

n (x))
dx .
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Inserting Eqs. (A1) and (A2a) into Eq. (11), after some
manipulations, the PLDOS is rewritten as

ρ(r̂, ra, ω) = ρ0

[
1 + 3

2
Re

∑
n

n(n + 1)(2n + 1)B00
N (ω)

×
(

h(1)
n (k0ra)

k0ra

)2]
. (A4)

Likewise, substituting Eqs. (A2b) to (A2d) into Eq. (13) after
lengthy but straightforward calculations, the medium PLDOS
ρm is simplified as

ρm(r̂, ra, ω) = 3
2 k3

0 |ε(ω)|2ρ0Im[ε(ω)]
(
C1(ra, ω)

+ C2(ra, ω)
)
, (A5)

where

C1(ra, ω) =
∑

n

n2(n + 1)2(2n + 1)|A01
N (ω)|2

×
∣∣∣∣h(1)

n (k0ra)

k0ra

∣∣∣∣
2 ∫ a

0
dr′r′2

∣∣∣∣ jn(k1r′)
k1r′

∣∣∣∣
2

,

(A6a)

C2(ra, ω) =
∑

n

n(n + 1)(2n + 1)|A01
N (ω)|2

×
∣∣∣∣h(1)

n (k0ra)

k0ra

∣∣∣∣
2 ∫ a

0
dr′r′2|∂ jn(k1r′)|2. (A6b)

Here, the following integral identities are used to get
Eqs. (A6):∫ π

0

dPn(cos θ ′)
dθ ′

dPn′ (cos θ ′)
dθ ′ sin θ ′dθ ′ = 2n(n + 1)

2n + 1
δnn′ ,

∫ π

0
Pn(cos θ ′)Pn′ (cos θ ′) sin θ ′dθ ′ = 2

2n + 1
δnn′ .

APPENDIX B: SMALL-SPHERE APPROXIMATION

In the limit of a small sphere with |k1a|, |k0a| 
 1 in
which the wavelength of the atomic transition is large com-
pared to the radius a of the sphere, the spherical Bessel and

Hankel functions appearing in Eqs. (A3) can be replaced
by their Taylor expansions as jn(x) � xn/(2n + 1)!! and
h(1)

n (x) � −i(2n − 1)!!/xn+1 [82]. Using these Taylor expan-
sions, we can also approximate the reflection and transmission
coefficients in the small-sphere limit as

B00
N (ω) ≈ i(n + 1)(k0a)2n+1

(2n + 1)!! (2n − 1)!!

( ε − 1

nε + n + 1

)
, (B1a)

A01
N (ω) ≈

( 2n + 1

nε + n + 1

)(k0

k1

)n
. (B1b)

In what follows, we take into account two interesting cases
where the atom is far from or very close to the sphere. For
the short-distance limit where the atom is very close to the
sphere the ratio a/ra is very close to 1. In this case, the main
contribution to the calculation of the PLDOS and the medium
PLDOS comes from those terms corresponding to high orders
of n. Therefore, the sum over n can be done by reducing it
to some geometric sums [82]. Taking this into account and
substituting Eq. (B1) into Eqs. (A4) and (A5), the PLDOS
and the medium PLDOS read

ρ(r̂, ra, ω) � ρ0

(
1 + 3

8k3
0

Im

[
ε − 1

ε + 1

]
z−3

a

)
, (B2a)

ρm(r̂, ra, ω) � 3 ρ0

4k3
0

Im[ε(ω)]

∣∣∣∣ 1

ε + 1

∣∣∣∣
2

z−3
a . (B2b)

While, in the long-distance limit where the condition
|k0ra| � 1 is satisfied, one finds that the leading-order term
for calculating the PLDOS and the medium PLDOS for the
small parameter a/ra stems from the first spherical harmonic
n = 1 [83]. Keeping only this term and replacing (B1) and
h(1)

1 (k0ra) � −ieik0ra/(k0ra)2 in Eqs. (A4) and (A5), the PL-
DOS and the medium PLDOS are given by

ρ(r̂, ra, ω) ≈ ρ0

(
1 + 6a3

k0
Im

[
ε − 1

ε + 2

]
r−4

a

)
, (B3a)

ρm(r̂, ra, ω) ≈ 18 ρ0

k0
Im[ε(ω)]

∣∣∣∣ 1

ε + 2

∣∣∣∣
2

r−4
a . (B3b)

Note that the the small-sphere approximation is in exact
agreement with the Markov approximation used here to get
the master equation (4).
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