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Highly squeezed states in ring resonators: Beyond the undepleted-pump approximation
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We present a multimode theory of squeezed-state generation in resonant systems valid for arbitrary pump
power and including pump depletion. The Hamiltonian is written in terms of asymptotic-in and -out fields from
scattering theory, capable of describing a general interaction. As an example we consider the lossy generation of
a highly squeezed state by an effective second-order interaction in a silicon nitride ring resonator point coupled to
a waveguide. We calculate the photon number, the Schmidt number, and the second-order correlation function of
the generated state in the waveguide. The treatment we present provides a path forward to study the deterministic
generation of non-Gaussian states in resonant systems.
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I. INTRODUCTION

Continuous-variable (CV) squeezed states of light ex-
hibit an uncertainty below vacuum noise in one quadrature
[1], making them an essential resource for implementing
CV quantum information processing [2], and with postse-
lection strategies they can be used to create non-Gaussian
states of light [3,4], an important resource for quantum
computing. Squeezed states are typically generated through
nonlinear optical processes such as spontaneous parametric
down-conversion (SPDC) and spontaneous four-wave mixing
(SFWM), the first relying on the presence of a χ (2) suscep-
tibility and the second on the χ (3) susceptibility [5,6]. In the
usual treatment of these processes, the pump field or fields
are treated classically, with the nonlinear process being con-
sidered sufficiently weak that those fields can be treated as
undepleted. In this case the resulting squeezed state can be
approximately written as [7]

|ψ〉 = exp

(
β

2

∫
dk1k2φ(k1, k2)a†

k1
a†

k2
− H.c.

)
|vac〉, (1)

where β is an overall squeezing parameter and φ(k1, k2) is the
normalized biphoton wave function that describes the produc-
tion of pairs of photons, one with wave number k1 and the
other k2. The ket in Eq. (1) can be obtained by keeping the
lowest-order term in the Magnus expansion [8] and treating
the pump as classical and undepleted. If the squeezing pa-
rameter β is sufficiently weak, then time-ordering corrections
that arise in the higher-order terms of the Magnus expansion
are expected to be negligible. However, time-ordering effects
become important when the amount of squeezing increases
[9–11], and the approximate ket in Eq. (1) then becomes a
poorer and poorer approximation.
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Including time-ordering corrections, the ket can be ob-
tained under the assumption that the pump is classical and
undepleted and that the generated light is Gaussian. As a
result, the full Gaussian ket can be written generally as a
squeezed vacuum state

|ψ〉 = exp

(
1

2

∫
dk1dk2J (k1, k2)a†

k1
a†

k2
− H.c.

)
|vac〉, (2)

where the squeezing matrix J (k1, k2) can be obtained from
the Heisenberg equations of motion [10]. If time-ordering
corrections are negligible, this ket reduces to Eq. (1), with the
squeezing matrix just being proportional to the biphoton wave
function J (k1, k2) ≈ βφ(k1, k2).

However, if the nonlinear process is strong enough that
pump depletion needs to be considered, the generated light
can be expected to be non-Gaussian due to entanglement
between the pump and the generated fields [12,13]. In this
case a squeezed vacuum state such as in Eq. (2) does not
provide a complete description of the features of the generated
light, such as pump depletion. To go beyond the undepleted
pump approximation, one strategy that has been employed is
to replace the vacuum state in Eq. (2) with a non-Gaussian
ket, which starts from the vacuum initially and evolves such
that it remains close to the vacuum. This treatment was re-
cently investigated in waveguides [12] and for a single-mode
SPDC Hamiltonian [13] and offers a potential route to the
deterministic generation of non-Gaussian states of light. In
fact, experiments have already demonstrated high conver-
sion efficiencies where the undepleted pump approximation
is no longer valid [14,15] and non-Gaussianity may become
important.

In this paper we extend such a treatment to resonant sys-
tems. As an example we study a ring resonator, a system
of interest in its own right due to its resonant enhancement
of nonlinear processes and the precise control over the fre-
quencies involved, as well as its integrability on photonic
chips [16–18]. We develop a multimode Hamiltonian theory
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FIG. 1. (a) SFWM with a weak pump at ωP and a strong pump
at ωC . (b) Schematic of a ring resonator point coupled to an ac-
tual waveguide (bottom red) and phantom waveguide (top white).
(c) Asymptotic-in field associated with the input channel of the actual
waveguide (left) and asymptotic-out fields associated with the output
channel of the actual waveguide (center) and phantom waveguide
(right) [19,21].

of non-Gaussian state generation in such systems, including
scattering loss, by employing the asymptotic-in and -out fields
used in scattering theory [19].

We apply the theory to the particular case of generating
a highly squeezed state by an effective χ (2) interaction in a
ring resonator [15,20]. For this interaction one relies on the
χ (3) response of the medium, but there is one pump field in
a mode C that is a continuous wave (cw) and so strong that
it can be treated as classical and undepleted; in the presence
of the material χ (3) this leads to an effective χ (2) through
which a much weaker pump in the mode P can generate two
photons in the mode S [see Fig. 1(a)]. There is no issue with
phase matching, since the pumps and the generated photons
are close in wavelength. The formalism we present can also
be applied to a standard χ (2) interaction as well.

Although the theory we present is capable of studying
non-Gaussian states, our focus in this paper is on highly
squeezed states that include the effects of pump depletion.
The treatment of the non-Gaussian corrections to the squeezed
state, the effects of self- and cross-phase modulation, and the
excitation of fields in additional ring resonances are beyond
the scope of the present work. In the ring resonator and
pumping scenario that we study we find that the non-Gaussian
corrections to the squeezed state are negligible, justifying our
focus on squeezed states. While in this paper we specialize to
ring resonator systems, most of the formalism can be applied
to other systems as well, such as waveguides.

This paper is organized as follows. In Sec. II we write
the system Hamiltonian, including the SFWM interaction in
a ring resonator, in terms of the asymptotic-in and -out fields
for our system. In Sec. III we introduce the input and output
kets that are used to describe the generation of light in the
ring resonator system. In Sec. IV we derive the non-Gaussian
unitary operator that connects the input ket to the output ket.
In Sec. V we show how to obtain the first-order solution for
the ket. In Sec. VI we numerically study the generation of a

highly squeezed state by an effective χ (2) interaction in a ring
resonator with loss. In Sec. VII we summarize.

II. THE HAMILTONIAN

Our system of interest is a ring resonator point coupled to
an actual waveguide and a phantom waveguide [see Fig. 1(b)],
where the phantom waveguide is used to describe scattering
losses [21]. We define the input and output channels of the
actual waveguide (shown in red) as the parts of that waveguide
that are to the left and to the right of the coupling point,
respectively; likewise, the input and output channels of the
phantom waveguide (shown in white) are the parts of that
waveguide that are to the right and to the left of the coupling
point, respectively.

As a basis for expanding the electromagnetic field in
the full system of waveguides and ring, we employ the
asymptotic-in and -out mode fields [19,21]; they are sketched
in Fig. 1(c) and are eigenstates of the full linear Hamiltonian
of the system. Each asymptotic-in or -out mode field has
an amplitude in both waveguides and in the ring. In each
diagram, the black arrow corresponds to a freely propagat-
ing field that is either incoming (asymptotic-in) or outgoing
(asymptotic-out), with its amplitude equal to that of a mode
field in an isolated waveguide. The white arrows indicate
either outgoing (asymptotic-in) or incoming (asymptotic-out)
fields in the other channels, and their amplitudes depend on
the coupling parameters between the ring and the waveguides
[21]. Asymptotic-in mode fields are also defined for the phan-
tom channel, but they will not appear in our calculations.

The asymptotic-in and -out mode fields can be identified
by three parameters. We use a discrete index n to indicate
the actual output channel or the phantom output channel, the
waveguide wave numbers k, and an index J that identifies the
range of wave numbers k in the waveguide that correspond to a
range of frequencies near a ring resonance, where J = P, S,C.
We assume the ring resonances have sufficiently-high-quality
factors that the ranges over which k varies for each J can
be considered distinct; we leave this implicit in the integrals
below.

For the system considered here, the displacement field
operator can be written in terms of the asymptotic-in mode
fields as [19]

D(r) =
∑
n,J

∫
dk bnJkDin

nJk (r) + H.c., (3)

where bnJk is the operator that annihilates an asymptotic-in
photon associated with input channel n, with wave number
k in the ring resonance J , and Din

nJk (r) is the mode field
associated with that photon [see the left sketch in Fig. 1(c)
for the asymptotic-in mode field associated with the actual
input channel]. Similarly, the displacement field operator can
be written in terms of the asymptotic-out mode fields as

D(r) =
∑
n,J

∫
dk anJkDout

nJk (r) + H.c., (4)

where anJk is the operator that annihilates an asymptotic-out
photon associated with output channel n, with wave number
k in the ring resonance J , and Dout

nJk (r) is the mode field

033709-2



HIGHLY SQUEEZED STATES IN RING RESONATORS: … PHYSICAL REVIEW A 110, 033709 (2024)

associated with that photon [see the middle or right sketch
in Fig. 1(c)]. The input and output operators satisfy the com-
mutation relations

[anJk, a†
nJk′ ] = [bnJk, b†

nJk′ ] = δ(k − k′), (5)

with all others zero; the linear Hamiltonian can be written in
terms of the input or output operators as

HL =
∑
n,J

∫
dk h̄ωnJkb†

nJkbnJk

=
∑
n,J

∫
dk h̄ωnJka†

nJkanJk, (6)

where ωnJk is the dispersion relation for the waveguide con-
taining channel n, ranging only over wave numbers k near ring
resonance J (see Appendix A for details).

We now include a third-order nonlinear interaction de-
scribed by the Hamiltonian [10]

HNL = − 1

4ε0

∫
dr 	

i jkl
3 (r)Di(r)D j (r)Dk (r)Dl (r), (7)

where i, j, k, and l are Cartesian components, as usual
summed over when repeated, and the tensor 	

i jkl
3 (r) is related

to the more familiar third-order tensor χ
i jkl
3 (r) by [10]

	
i jkl
3 (r) = χ

i jkl
3 (r)

ε2
0ε

4(r)
, (8)

where we have assumed that the relative dielectric function
ε(r) does not depend on frequency over the range of fre-
quencies within each ring resonance and have neglected any
dependence of χ

i jlk
3 (r) over the frequencies of interest.

Our process of interest is SFWM, where one pump photon
in resonance P and one in resonance C are annihilated and
two photons in resonance S are generated [see Fig. 1(a)]. The
asymptotic-out fields for the actual and phantom waveguides
are used for the generated photons, while only the asymptotic-
in mode field for the actual waveguide is used for the pump
photons; hence we can drop the index n on the asymptotic-
in mode fields and operators, understanding the actual input
channel to be identified. If we consider only the terms re-
sponsible for SFWM in Eq. (7), the nonlinear Hamiltonian
becomes [21]

HNL = − 3

ε0

∑
n,n′

∫
dk1dk2dk3dk4Knn′

(k1, k2, k3, k4)

× a†
nSk1

a†
n′Sk2

bPk3 bCk4 + H.c., (9)

where the nonlinear coefficient for SFWM is given by

Knn′
(k1, k2, k3, k4) =

∫
dr 	

i jkl
3 (r)

[
Dout,i

nSk1
(r)

]∗

× [
Dout, j

n′Sk2
(r)

]∗
Din,k

Pk3
(r)Din,l

Ck4
(r). (10)

The sums over n and n′, which range over the actual and
phantom output channels, take into account the four combi-
nations of two photons exiting the ring through two output
channels. More specifically, both photons can leave through
the phantom or actual output channel, or one through each
of the channels. The nonlinear coefficient Knn′

(k1, k2, k3, k4)

gives the strength of the interaction corresponding to each
combination. It is symmetric with respect to exchanging the
order of both n and n′ and k1 and k2, that is,

Knn′
(k1, k2, k3, k4) = Kn′n(k2, k1, k3, k4), (11)

but it is not symmetric with respect to only exchanging the
order of n and n′ or k1 and k2, that is,

Knn′
(k1, k2, k3, k4) �= Kn′n(k1, k2, k3, k4). (12)

We have derived the SFWM nonlinear coefficient in Eq. (10)
considering the specific system of a ring resonator point cou-
pled to two waveguides. In Appendix A we work out the
nonlinear coefficient using the asymptotic-field mode profiles
for the ring system in the expression (10) for the nonlin-
ear coefficient and integrating over the ring where the fields
are strongest; the resonant field enhancement in ring res-
onator systems is an advantage of ring resonator systems over
the nonlinear waveguides that have been studied previously
[12]. Moreover, our approach includes multiple modes of
the asymptotic fields over a range of values of k, advancing
previous single-mode treatments for three-wave interactions
[13]. However, our approach is not limited to resonate sys-
tems. One of its strengths is that it can be used to study a
general system that includes a nonlinear interaction, such as
SFWM in a waveguide, simply by putting the asymptotic-field
mode profiles for that system into the nonlinear coefficient
in Eq. (10). Of course for an alternative system the number
of input and output channels n can be different, but this is
straightforward to accommodate.

III. INPUT AND OUTPUT KETS

The unitary time-evolution operator for the system,
U (t, t ′), is a solution to the Schrödinger equation

ih̄
dU (t, t ′)

dt
= HU (t, t ′), (13)

satisfying U (t ′, t ′) = I for all t ′, where I is the identity opera-
tor. We write the full Hamiltonian H as the sum of the linear
and nonlinear contributions

H = HL + HNL, (14)

where HL is given by Eq. (6) and HNL is given by Eq. (9). We
assume that times ton and toff can be identified such that (a) for
t < ton the excitations of the quantum fields incident on the
ring are sufficiently far from it that HNL has no effect on the
evolution of the ket and (b) for t > toff all the field excitation
has propagated sufficiently far from the ring that, again, HNL

has no effect on the evolution of the ket.
Consider then the evolution of a ket from some early time

t0 < ton to some later time t1 > toff. The evolution operator can
be written as

U (t1, t0) = U (t1, toff )U (toff, ton)U (ton, t0). (15)

The evolution operator from t0 to ton and toff to t1 only involves
the linear Hamiltonian, that is,

U (ton, t0) = e−iHL (ton−t0 )/h̄, (16)

U (t1, toff ) = e−iHL (t1−toff )/h̄. (17)
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We can then write Eq. (15) as

U (t1, t0) = e−iHL (t1−toff )/h̄U (toff, ton)e−iHL (ton−t0 )/h̄. (18)

We now suppose that an initial ket |ψ (t0)〉 is specified at a
time t0 < ton. We define the input ket

|ψin〉 ≡ e−iHL (0−t0 )/h̄|ψ (t0)〉, (19)

which is the ket that the initial ket would evolve to at t = 0
were HNL = 0. In addition, starting with the ket |ψ (t1)〉 char-
acterizing the state at a time t1 > toff, we define the output ket

|ψout〉 ≡ eiHL (t1−0)/h̄|ψ (t1)〉, (20)

which is the ket at t = 0 that would evolve to |ψ (t1)〉 at t = t1
were HNL = 0. Since the evolution of the ket from from t0 to
t1 is given by

|ψ (t1)〉 = U (t1, t0)|ψ (t0)〉, (21)

in terms of the input and output kets this can be written as

|ψout〉 = U (t1, t0)|ψin〉, (22)

where we defined

U (t1, t0) ≡ eiHLt1/h̄U (t1, t0)e−iHLt0/h̄. (23)

Then taking the limit

U (∞,−∞) = lim
t1→∞,t0→−∞U (t1, t0), (24)

we obtain

|ψout〉 = U (∞,−∞)|ψin〉. (25)

It is then convenient to define

Ū (t ) ≡ U (t,−∞) (26)

for all times t . We can then write

|ψout〉 = |ψ̄ (∞)〉, (27)

where

|ψ̄ (t )〉 = Ū (t )|ψin〉 (28)

and

|ψin〉 = |ψ̄ (−∞)〉. (29)

Taking the derivative of Eq. (28) and using Eqs. (13), (23),
and (26), we obtain

ih̄
d

dt
|ψ̄ (t )〉 = H̄NL(t )|ψ̄ (t )〉, (30)

where we have defined the interaction picture nonlinear
Hamiltonian as

H̄NL(t ) ≡ eiHLt/h̄HNLe−iHLt/h̄, (31)

and as t ranges from −∞ to ∞ in Eq. (30) the ket evolves
from |ψin〉 to |ψout〉.

IV. UNITARY EVOLUTION

In Appendix A we simplify the nonlinear Hamiltonian (31)
by treating the strong cw pump classically and discretize the k

involved for the weak pump and generated fields to implement
numerical calculations. The result can be written as

H̄NL(t ) = h̄
∑
μ,ν

∑
l

�μνl (t )a†
μa†

νbl + H.c., (32)

where for convenience we removed the discrete labels P and
S on the input and output operators and they satisfy the usual
commutation relations [bl , b†

l ′ ] = δll ′ and [aμ, a†
ν] = δμν . Here

�μνl (t ) is the nonlinear coefficient for the effective χ (2) inter-
action, where l labels a discrete wave number kl for the pump,
and μ and ν are discrete indices for the generated photons
[see Eq. (A14)]. Each greek index μ, for example, refers to
two properties of the photon, its discrete wave number ki and
the output channel n. The sum over μ in Eq. (32) represents
two sums, one over the actual and phantom output channel
and the second over the discrete wave numbers ki.

We now turn to the unitary evolution in Eq. (30). Here we
do not consider a general initial ket |ψ (t0)〉 at the initial time
t0, but restrict ourselves to an initial ket that is a coherent state
for the pump in the actual input channel and vacuum in all
other channels,

|ψ (t0)〉 = Db(e−iωPt0βin )|vac〉, (33)

where Db(e−iωPt0βin) is the unitary displacement operator
given by

Db(e−iωPt0βin) = exp[(e−iωPt0βin)Tb† − (eiωPt0β∗
in)Tb], (34)

where the subscript b corresponds to the input operators
for the pump, and b = [b1, b2, . . .]T and b† = [b†

1, b†
2, . . .]

T

are column vectors of input operators. Here ωP is the
dispersion relation for the pump in the input channel of
the actual waveguide. It is written as a diagonal matrix
ωP = diag(ωP,1, ωP,2, . . .), where ωP,l is the frequency of
the pump mode with discrete wave number kl , and βin =
[βin,1, βin,2, . . .]T is a column vector of initial displacement
parameters. For example, in Sec. VI we take βin to have
a Gaussian distribution. Putting Eq. (33) for |ψ (t0)〉 into
Eq. (19) for |ψin〉, the input ket can be written as

|ψin〉 = exp([βin]Tb† − [β∗
in]Tb)|vac〉, (35)

where we used the linear Hamiltonian in Eq. (6).
We then seek a solution of Eq. (30) of the form

|ψ̄ (t )〉 = Ua(t )Ub(t )|ψ̃ (t )〉, (36)

where |ψ̃ (t )〉 describes the effect of a non-Gaussian unitary
operator acting on the vacuum state, as discussed below, and
Ua(t ) and Ub(t ) are Gaussian unitary operators, given by

Ua(t ) = Sa[J(t )]Ra[φ(t )]eiθa (t ), (37)

Ub(t ) = Db[β(t )]eiθb(t ), (38)

where θb(t ) and θa(t ) are real functions of time, Sa[J(t )]
is a multimode squeezing operator, Ra[φ(t )] is a multimode
rotation operator, and Db[β(t )] is the multimode displacement
operator that has the same form as Eq. (34). Here the sub-
script a corresponds to the output operators for the generated
squeezed light and as above the subscript b corresponds to the
input operators for the pump.
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The unitary squeezing operator Sa[J(t )] is given by [22]

Sa[J(t )] = exp[ 1
2 a†T

J(t )a† − H.c.], (39)

where a = [a1, a2, . . .]T and a† = [a†
1, a†

2, . . .]
T are column

vectors of output operators and J(t ) is the symmetric time-
dependent squeezing matrix, with J(t ) = JT(t ). The unitary
rotation operator Ra[φ(t )] is given by [22]

Ra[φ(t )] = exp[ia†T
φ(t )a], (40)

where φ(t ) is the Hermitian time-dependent rotation ma-
trix, with φ(t ) = φ†(t ). The parameters β(t ), J(t ), and φ(t )
are subject to the following initial conditions β(−∞) =
βin, J(−∞) = 0, and φ(−∞) = 0, and also θb(−∞) =
θa(−∞) = 0; further, we take

|ψ̃ (−∞)〉 = |vac〉. (41)

This guarantees that the initial condition (29) is satisfied.
Returning to Eq. (36), our goal is to define the parameters

in the Gaussian unitary operators in Eqs. (37) and (38) so
that the ket |ψ̃ (t )〉 isolates the non-Gaussian behavior of the
full ket in Eq. (36). Now regardless of how the parameters
in those Gaussian unitary operators are chosen to depend on
time, we find that for Eq. (36) to satisfy the full Schrödinger
equation (30) we require

ih̄
d

dt
|ψ̃ (t )〉 = Heff(t )|ψ̃ (t )〉, (42)

where we have introduced the effective Hamiltonian

Heff(t ) = HI (t ) + U †
a (t )Ha(t )Ua(t ) − ih̄U †

a (t )
dUa(t )

dt

+ U †
b (t )Hb(t )Ub(t ) − ih̄U †

b (t )
dUb(t )

dt
, (43)

with

Ha(t ) ≡ h̄�μνl (t )[β(t )]l a
†
μa†

ν + H.c., (44)

Hb(t ) ≡ h̄�∗
μνl (t )[V (t )W T(t )]μν{b†

l − [β∗(t )]l} + H.c.,
(45)

HI (t ) ≡ h̄�∗
μνl (t )([V (t )]μμ′[V (t )]νν ′aμ′aν ′

+ {[V (t )]μν ′[W (t )]νμ′ + [W (t )]μμ′[V (t )]νν ′ }a†
μ′aν ′

+ [W (t )]μμ′[W (t )]νν ′a†
μ′a

†
ν ′ )b†

l + H.c. (46)

Here repeated indices are summed over, and the matrices V (t )
and W (t ) are defined in terms of the parameters appearing
in the Gaussian unitary operators in Eqs. (37) and (38) (see
Appendix B for details).

The Hamiltonians appearing above each capture part of the
physics: Ha(t ) describes the generation of photon pairs by
an effective χ (2) interaction modulated by a time-dependent
pump amplitude β(t ); Hb(t ) determines the rate of depletion
of the pump amplitude β(t ), which is being driven by the
generation of photon pairs; HI (t ), which only contains non-
Gaussian terms, describes the quantum correlations between
the pump and the generated light.

To achieve our goal of moving all the non-Gaussian be-
havior to |ψ̃ (t )〉, we must choose the time dependence of the

parameters appearing in the Gaussian operators in Eqs. (37)
and (38) so that

Heff(t ) = HI (t ). (47)

It is easy to show that this condition is satisfied if we have

ih̄
dUa(t )

dt
= Ha(t )Ua(t ), (48)

ih̄
dUb(t )

dt
= Hb(t )Ub(t ). (49)

We show in Appendix B that this can be achieved by appro-
priately choosing the parameters V (t ), W (t ), β(t ), and θb(t )
so that

dV (t )

dt
= −2iζ(t )W ∗(t ), (50)

dW (t )

dt
= −2iζ(t )V ∗(t ), (51)

i
d[β(t )]l

dt
= [γ (t )]l , (52)

θb(t ) = 1

2

∫ t

−∞
dt ′[γ (t ′)]l [β

∗(t ′)]l + c.c. (53)

are satisfied, where the matrix ζ(t ) drives the production of
photon pairs in the squeezed state,

[ζ(t )]μν = �μνl (t )[β(t )]l , (54)

and the vector γ (t ) determines the rate of pump depletion,

[γ (t )]l = �∗
μνl (t )[V (t )W T(t )]μν. (55)

We solve Eqs. (50), (51), and (52) numerically for the
parameters V (t ), W (t ), and β(t ), respectively, which are sub-
ject to the initial conditions β(−∞) = βin, W (−∞) = 0, and
V (−∞) = I [see Eq. (29)], where I is the identity matrix.
The solutions are put into Eq. (53), which is then integrated
to obtain the phase θb(t ). In Appendix C we show how to
extract the squeezing matrix J(t ) and rotation matrix φ(t )
from the solutions V (t ) and W (t ), and in Appendix D we give
an equation for the phase θa(t ) in Eq. (37). This procedure
provides a solution for the Gaussian parameters of the unitary
operators in Eqs. (37) and (38) and is valid for high pump
power and nonlinear interaction strength.

Still necessary for a full solution, of course, is to include
the non-Gaussian evolution of |ψ̃ (t )〉. Then the full solution
can be written as a squeezed, displaced, and rotated version of
the non-Gaussian ket |ψ̃ (t )〉, as given in Eq. (36). An attractive
feature of this approach is that we can work in the Gaussian
limit by setting |ψ̃ (t )〉 → |vac〉 in Eq. (36) and still study
the effects of pump depletion and the dynamics of the joint
spectral amplitude in squeezed-state generation.

That is what we do for the remainder of this paper. We put

|ψ̄ (t )〉 → Ua(t )Ub(t )|vac〉 ≡ |ψ̄G(t )〉, (56)

and we have

|ψ̄G(t )〉 = eiθa (t )Sa[J(t )]|vac〉 ⊗ eiθb(t )|β(t )〉, (57)

where |β(t )〉 = Db[β(t )]|vac〉 is a coherent state. The
Gaussian state is a product of a squeezed vacuum state written
in terms of the output operators and a coherent state written in

033709-5



VENDROMIN, LIU, YANG, AND SIPE PHYSICAL REVIEW A 110, 033709 (2024)

terms of the input operators, and from Eq. (56) its dynamics
is governed by

ih̄
d|ψ̄G(t )〉

dt
= [Ha(t ) + Hb(t )]|ψ̄G(t )〉. (58)

The Gaussian state approximation neglects the entanglement
between the pump and the squeezed state. However, this en-
tanglement can be a significant characteristic of the full state
if the coefficients in the non-Gaussian Hamiltonian HI (t ) in
Eq. (46) are non-negligible. To examine the validity of the
Gaussian approximation for our problem, we consider a per-
turbative solution to Eq. (42), assuming that HI (t ) is small,

|ψ̃ (t )〉 ≈ |vac〉 + |ψ̃1(t )〉 + · · · , (59)

where

|ψ̃1(t )〉 = Flμ′ν ′ (t )a†
μ′a

†
ν ′b

†
l |vac〉, (60)

with

Flμ′ν ′ (t ) = −i
∫ t

−∞
dt ′�∗

μνl (t
′)[W (t ′)]μμ′[W (t ′)]νν ′ , (61)

where the second term in Eq. (59) results from the only term in
HI (t ) that does not destroy the vacuum ket. For the Gaussian
approximation |ψ̃ (t )〉 ≈ |vac〉 to be a good one, we require

〈ψ̃1(∞)|ψ̃1(∞)〉 � 1. (62)

Generally, this condition will not be satisfied if the elements
of the tensor �μνl (t ) are large or the number of squeezed
photons, given by tr[W ∗(t )W T(t )] [10], is a significant frac-
tion of the number of pump photons. However, in Sec. VI
we show that this condition is satisfied for the squeezed state
generated by an effective second-order interaction in a silicon
nitride ring resonator with the pump powers and parameters
we consider.

There is an additional consequence of the Gaussian ap-

proximation: The operator Q = a†Ta/2 + b†T
b commutes

with HL and HNL and therefore with the full Hamiltonian in
Eq. (14), and so is a conserved quantity. It therefore also com-
mutes with H̄NL(t ), which governs the evolution of the full
|ψ̄ (t )〉 according to Eq. (30). However, it does not commute
with the Hamiltonian Ha(t ) + Hb(t ) that governs the evolution
of the Gaussian approximation ket |ψ̄G(t )〉. Thus, under the
Gaussian approximation the operator Q is not a conserved
quantity. Nonetheless, in Appendix E we show that its expec-
tation value in the Gaussian approximation, 〈ψ̄G(t )|Q|ψ̄G(t )〉
is constant as |ψ̄G(t )〉 evolves according to Eq. (58).

V. FIRST-ORDER SOLUTION

If the energy of the pump is sufficiently low or the non-
linear coefficients �μνl (t ) are sufficiently weak, then the
elements of the matrix ζ(t ) in Eq. (54) will be much less than
unity, [ζ(t )]μν � 1 for all μ and ν. In this case the solution to
Eqs. (50) and (51) can be approximately written as [10]

V (t ) ≈ I, (63)

W (t ) ≈ −2i
∫ t

−∞
dt ′ζ(t ′). (64)

Consequently, the pump depletion rate in Eq. (52) is negligible

d[β(t )]l

dt
≈ −2i�∗

μνl (t )
∫ t

−∞
dt ′[ζ(t ′)]μν ≈ 0, (65)

since it depends on the product of the nonlinear coefficients,
which are assumed to be small. The Hamiltonian Hb(t ) in
Eq. (45) can be set to zero, Hb(t ) → 0, since the coefficients
in Hb(t ) are given by d[β(t )]l/dt . Similarly, the phase θb(t ) in
Eq. (53) is negligible, θb(t ) ≈ 0.

With these approximations, the Gaussian ket |ψ̄G(t )〉 in
Eq. (57) can be written as

|ψ̄G(t )〉 = Sa[J(t )]|vac〉 ⊗ |βin〉, (66)

which satisfies the Schrödinger equation

ih̄
d|ψ̄G(t )〉

dt
= Ha(t )|ψ̄G(t )〉. (67)

Treating Ha(t ) as a small quantity, we can construct a first-
order solution to Eq. (67) using the Magnus expansion [8],
and keeping only the first term, we obtain

|ψ̄G(t )〉 ≈ exp

(
−i

∫ t

−∞
dt ′[ζ(t ′)]μνa†

μa†
ν − H.c.

)
⊗ |βin〉.

(68)

The higher-order terms in the expansion involve the commu-
tator between the Hamiltonian at two different times, such as
[Ha(t ), Ha(t ′)] [8]. The ket in Eq. (68) is the solution when
we assume that [Ha(t ), Ha(t ′)] = 0 so that time-ordering ef-
fects are negligible. It was pointed out earlier for waveguides
[10,12] that this assumption becomes invalid when the power
of the pump is increased. We demonstrate below that this
also holds for a squeezed state generated in a ring resonator.
Comparing Eqs. (68) and (66), we immediately obtain the
approximate first-order solution for the squeezing matrix

J(t ) ≈ −2i
∫ t

−∞
dt ′ζ(t ′). (69)

This is the expression for W (t ) in Eq. (64), so we can write
J(t ) ≈ W (t ). To obtain the form in Eq. (66) we set θa(t ) = 0,
which is valid for a weak nonlinearity (see Appendix D).

VI. EXAMPLE: SQUEEZED-STATE GENERATION
IN A RING RESONATOR

In this section we study the example of generating a highly
squeezed state in a ring resonator. We calculate the squeezing
matrix, the number of generated photons, the Schmidt num-
ber, and the second-order correlation function in the actual
output channel including scattering loss and compare these
results to the first-order solution.

We consider a SiN ring resonator point coupled to an
actual waveguide and a phantom waveguide, the latter mod-
eling scattering loss [see Fig. 1(b)]. We consider a structure
similar to that considered by Vernon et al. [20], with a ring
radius of R = 64 µm, ωS = 2π × 193 THz, a group velocity
of 1.5 × 108 m/s, a nonlinear parameter of γ̄NL ≈ 1 (W m)−1

[see Eq. (A13)], and an intrinsic quality factor of 2 × 106

for all three ring resonances. We take the loaded quality fac-
tors for the P, S, and C modes to be 4 × 104 (overcoupled),
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FIG. 2. Magnitude of the elements of the squeezing matrix |Jk1k2 |
in the strong pump regime (UP = 100 pJ) calculated using the
(a) first-order solution and (b) the full numerical Gaussian solution.

2 × 105 (overcoupled), and 1 × 106 (critically coupled), re-
spectively.

In mode C there is an undepleted cw pump with power
PC = 30 mW, and in mode P there is a weak pulsed pump
with energy UP and duration τP = 0.5 ns. The initial ampli-
tude of the pulse is

[βin]l =
√

NPvPτP√
π

exp
[ − 1

2 (kl − KP )2v2
Pτ 2

P

]
, (70)

where for simplicity we neglect group velocity dispersion, NP

is the initial photon number, vp is the group velocity, and KP

is the central wave number.
In Figs. 2(a) and 2(b) we plot the magnitude of the com-

ponents Jk1k2 of the final squeezing matrix J(∞) for UP =
100 pJ (NP ≈ 7.8 × 108). The x axes and y axes of Figs. 2(a)
and 2(b) represent the detuning from the center of the ring
resonance of the mode S, where vS , KS , and 1/	̄S ≈ 330 ps
are its group velocity, central wave number, and dwelling
time, respectively. In Fig. 2(a) we show the scattering matrix
J(∞) as predicted by the first-order solution of Eq. (69); in
Fig. 2(b) we show the solution using the full Gaussian solu-
tion in Eq. (C20) found by numerically solving the coupled
differential equations (50)–(52). The full Gaussian solution in
Fig. 2(b) exhibits less correlation between the wave numbers
k1 and k2 of the generated photon pairs than the first-order
solution in Fig. 2(a). For this energy the first-order solution
predicts an average generated photon number of about 11,
which corresponds to approximately 16.7 dB of squeezing;
in the full Gaussian calculation the average generated pho-
ton number is about 19, which corresponds to approximately
19 dB of squeezing.

In Fig. 3(a) the average generated photon number in
the squeezed state is shown for pump energy UP between
1 and 100 pJ. The calculations are done with the full
Gaussian solution (blue solid line) and the first-order solution
(pink dashed line). The photon number is calculated with
tr[W ∗(t )W T(t )] [10], where the matrix W (t ) is obtained
using the full Gaussian solution or the first-order solution.
The first-order solution gives a photon number that is smaller
than that of the full Gaussian solution by approximately 20%
or less for pump energies at or below 60 pJ. This corresponds
to an underestimation of the squeezing by about 1 dB at

FIG. 3. (a) Average generated photon number in the squeezed
state and (b) Schmidt number, calculated with the full numerical
Gaussian solution (blue solid line) and the first-order solution (pink
dashed line) for increasing energy of the pulsed pump (UP).

most. However, at 80 and 100 pJ the first-order solution
underestimates the squeezing by 1.6 and 2.3 dB, respectively.

Despite the high level of squeezing, the level of pump de-
pletion is negligible. As a result, we expect the neglect of the
non-Gaussian corrections to the vacuum, which are captured
by the evolution (42) of |ψ̃ (t )〉 and which we expect to only
become important when there is significant pump depletion
[12], is justified. To confirm it is reasonable to neglect the
non-Gaussian corrections we calculate

〈ψ̃1(∞)|ψ̃1(∞)〉 = 2Flμ′ν ′ (∞)F ∗
lμ′ν ′ (∞) (71)

for a high pump energy of UP = 100 pJ and find it is on the
order of 10−8; thus Eq. (62) is well satisfied.

For the same parameters as adopted above, in Fig. 3(b) we
show the Schmidt number [23] of the squeezing matrix J(t ).
It is given by

KS (t ) =
(∑

j sinh2[r j (t )]
)2∑

j sinh4[r j (t )]
, (72)

where the r j (t ), for j = 1, 2, . . ., are the singular values ob-
tained from a singular value decomposition (SVD) of J(t ).
A Schmidt number of unity KS (t ) = 1 indicates that J(t ) has
only one singular value and the squeezed state can be written
as a single-mode squeezed state in terms of a single Schmidt

033709-7



VENDROMIN, LIU, YANG, AND SIPE PHYSICAL REVIEW A 110, 033709 (2024)

mode. A Schmidt number greater than unity KS (t ) > 1 in-
dicates that the squeezed state is characterized by multiple
Schmidt modes. In Fig. 3(b) the Schmidt number of J(t ) is
calculated using the first-order solution and the full Gaussian
solution. The first-order solution consistently overestimates
the Schmidt number, and thus the squeezed state obtained
from the full Gaussian solution is more single mode than what
is predicted by the first-order solution.

Each Schmidt mode typically involves light exiting into
both the actual and the phantom waveguide, the latter mod-
eling the scattering of light off the chip. In order to study
the temporal correlations between the generated photon pairs
that both exit the output channel of the actual waveguide,
we consider a measurement of the second-order correlation
function G(2)(t1, t2) of the squeezed light exiting the actual
output channel. It is convenient to introduce a channel opera-
tor ā(x, t ) as the Fourier transform of the output operators for
the actual waveguide ak as [24]

ā(x, t ) =
∫

dk√
2π

akei(k−KS )(x−vSt ), (73)

where x is the direction of propagation in the waveguide.
The operator ā(x, t ) is associated with an electric field at the
position x and time t . Just beyond the coupling point between
the ring and waveguide (x = 0+), the second-order correlation
function is given by [25]

G(2)(t1, t2) = v2
S〈ā†(0+, t1)ā†(0+, t2)ā(0+, t2)ā(0+, t1)〉,

(74)

where the expectation value is done with the Gaussian ket
in Eq. (57). This can be used to predict the probability of
detecting coincidence counts at the two times t1 and t2. We
normalize it using �2, where � is the ratio of the number of
generated photons per pump pulse duration, given by

� ≡ 〈nS〉/τP, (75)

where 〈nS〉 is the number of generated photons.
In Figs. 4(a) and 4(b) we show the second-order correla-

tion function for the actual output channel, calculated using
the first-order solution, and in Figs. 4(c) and 4(d) we show
it as calculated using the full Gaussian solution. When the
energy of the pump pulse is 10 pJ the correlation functions
from the first-order solution and full Gaussian solution ap-
pear to agree. However, for the high-energy pump pulse at
100 pJ, the first-order solution begins to show correlations
that are not present in the full Gaussian solution, and the
maximum of the first-order solution occurs at an earlier time
(t1 = t2 = 0.9/	̄S) than does that of the full Gaussian solution
(t1 = t1 = 1.5/	̄S).

VII. CONCLUSION

We have presented a multimode theory of Gaussian state
generation for an effective χ (2) interaction, in terms of
asymptotic-in and -out fields, that includes scattering loss and
pump depletion. We showed that the full ket for our system
can be written as a Gaussian unitary acting on non-Gaussian
ket that satisfies a Schrödinger equation with an effective
Hamiltonian that describes the quantum correlations between

FIG. 4. Comparison of the second-order correlation functions
G(2)(t1, t2) in the actual output channel using the first-order solution
(left column) with (a) UP = 10 pJ and (b) UP = 100 pJ and using the
full numerical Gaussian solution (right column) with (c) UP = 10 pJ
and (d) UP = 100 pJ.

the pump and the generated light. In order for this to be valid,
we required that the squeezing, rotation, and displacement
parameters of the Gaussian unitary were solutions to a set
of coupled differential equations. As an example we studied
the lossy generation of a highly squeezed state using an ef-
fective χ (2) interaction in a silicon nitride ring resonator and
we compared this full Gaussian solution to a lowest-order
Magnus expansion for the ket. We found that the amount of
pump depletion in the ring was negligible, as was the first-
order non-Gaussian correction term to the squeezed state. We
leave for future work the study of the evolution of the non-
Gaussian ket, the effects of self- and cross-phase modulation,
and the application to more general resonant systems where
the non-Gaussian corrections will be more significant. This
work opens up a path to study the deterministic generation of
non-Gaussian states in resonant systems.
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APPENDIX A: EFFECTIVE χ(2) INTERACTION
IN A RING RESONATOR

In this Appendix we derive the nonlinear Hamiltonian for
an effective χ (2) interaction in a ring resonator.

We begin with the nonlinear Hamiltonian for SFWM in
Eq. (9). In the interaction picture
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it takes the form

H̄NL(t ) = − 3

ε0

∑
n,n′

∫
dk1dk2dk3dk4

× Knn′
(k1, k2, k3, k4)e−i�nn′ (k1,k2,k3,k4 )t

× a†
nSk1

a†
n′Sk2

bPk3 bCk4 + H.c., (A1)

where we have used the definition in Eq. (31) and defined

�nn′ (k1, k2, k3, k4) ≡ ωCk4 + ωPk3 − ωn′Sk2 − ωnSk1 . (A2)

In order to build the effective χ (2) interaction, the pump in the
mode C is treated classically with a cw field that is undepleted.
The operators bCk4 are replaced with the amplitudes [21]

bCk4 →
√

2πPC

h̄ωCvC
δ(k4 − KC ), (A3)

where PC is the cw power and vC is the group velocity of the
cw pump in the actual input channel. Under this approxima-
tion, Eq. (A1) becomes

H̄NL(t ) = h̄
∑
n,n′

∫
dk1dk2dk3�

nn′
(k1, k2, k3, t )

× a†
nSk1

a†
n′Sk2

bPk3 + H.c., (A4)

where the effective χ (2) coefficient �nn′
(k1, k2, k3, t ) is

given by

�nn′
(k1, k2, k3, t ) = − 3

h̄ε0

√
2πPC

h̄ωCvC
Knn′

(k1, k2, k3, KC )

× e−i�nn′ (k1,k2,k3,KC )t . (A5)

We consider a ring resonator that is point coupled to an
actual waveguide that couples light both into and out of the
ring and a phantom waveguide that handles the scattering loss
[recall Fig. 1(b)]. The circumference of the ring is given by
L = 2πR, where R is its radius. The resonant wave numbers
for the ring are given by κ such that κL = 2πm, where m
is a positive integer. We assume that around each ring reso-
nance we can neglect group velocity dispersion and that the
dispersion relation is the same for the actual and phantom
waveguides. Under these assumptions, the dispersion relation
for either channel is given by

ωJ (k) = ωJ + vJ (k − KJ ), (A6)

where ωJ is the center frequency of the resonance J , vJ is
the group velocity in either channel, and KJ is the wave
number for the light in either channel with frequency ωJ . The
linewidth of the ring resonances is given by 2	̄J , which in-
cludes coupling losses to the actual waveguide and scattering
losses to the phantom waveguide; the loaded quality factor is
then Qload

J = ωJ/2	̄J .
The asymptotic-in and -out displacement fields are defined

over all space, but we assume that the nonlinear interaction
takes place mostly inside the ring resonator. Thus to obtain the
nonlinear coefficient we only require expressions for the field
that hold at positions in the ring. To simplify the integration of
that region of space, we introduce the coordinates of the ring
frame as (r⊥, ζ ), where r⊥ = (ρ, z) and ζ = φR, and (ρ, φ, z)

are cylindrical coordinates. For positions inside the ring, the
asymptotic-in pump fields can be written as [21]

Din
Pk (r) = −

√
h̄ωP

4π
dP(r⊥; ζ )eiζκP FP−(k), (A7)

Din
Ck (r) = −

√
h̄ωC

4π
dC (r⊥; ζ )eiζκC FC−(k) (A8)

and the asymptotic-out fields can be written as

Dout
nSk (r) = −

√
h̄ωS

4π
dS (r⊥; ζ )eiζκS F (n)

S+ (k). (A9)

Here we introduced the field enhancement factors for the
actual input channel, FJ−(k), given by [21]

FJ−(k) = 1√
L

(
(γJ )∗

vJ (KJ − k) − i	̄J

)
, (A10)

where J = P,C and γJ is a coupling constant between a
discrete ring mode and the continuous waveguide mode of
the actual input channel at the frequency band J . The field
enhancement factors for the output channels, F (n)

S+ (k), are
given by

F (n)
S+ (k) = 1√

L

( (
γ

(n)
S

)∗

v
(n)
S

(
K (n)

S − k
) + i	̄S

)
, (A11)

where now the coupling constant, group velocity, and center
wave number depend on the output channel n. The coupling
constant for a given channel is related to the intensity decay
rate into that channel, as introduced earlier [21]. For simplic-
ity, we assume that the coupling constants are real.

Putting Eqs. (A7)–(A9) into Eq. (10), the nonlinear coeffi-
cient for SFWM can be written as

Knn′
(k1, k2, k3, k4) = h̄2ε0vPvC

12π2
γ̄nlωSLF (n)∗

S+ (k1)

× F (n′ )∗
S+ (k2)FP−(k3)FC−(k4), (A12)

where we have introduced the nonlinear parameter [21]

γ̄nl = 3
√

ωPωC

4ε0vPvCL

∫
ring

dr⊥dζ	
i jkl
(3) (r)

× d∗i
S (r⊥; ζ )d∗ j

S (r⊥; ζ )dk
P(r⊥; ζ )dl

C (r⊥; ζ )ei�κζ ,

(A13)

which has units of (W m)−1, and �k = κP + κC − 2κS is the
phase-matching function. Now to obtain an effective second-
order nonlinear coefficient in the ring, we put Eq. (A12) into
Eq. (A5) and find

�nn′
(k1, k2, k3, t ) = − h̄vPvC γ̄NLωSL

4π2

√
2πPC

h̄ωCvC

× F (n)∗
S+ (k1)F (n′ )∗

S+ (k2)FP−(k3)

× FC−(KC )e−i�nn′ (k1,k2,k3,KC )t . (A14)

Then putting Eq. (A14) into Eq. (A4), we obtain the nonlinear
Hamiltonian for an effective χ (2) interaction in a ring res-
onator. In order to work with this Hamiltonian numerically,
the wave numbers in all channels have to be discretized. Each
waveguide mode has a discrete label j such that its wave
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number is given by k j = 2πmj/L, where mj is an integer
mode number and L is the quantization length [10]. Using this
discrete notation, the nonlinear Hamiltonian in Eq. (A4) can
be written as

H̄NL(t ) = h̄
∑
n,n′

∑
i, j,l

�nn′
i jl (t )a†

nSia
†
n′S jbPl + H.c., (A15)

where we defined

�nn′
i jl (t ) ≡

(
2π

L

)3/2

�nn′
(k1i, k2 j, k3l , t ), (A16)

where �nn′
(k1i, k2 j, k3l , t ) is the effective second-order non-

linear coefficient for the ring given in Eq. (A13), and the
operators satisfy the commutation relations

[anJi, a†
nJ j] = [bPi, b†

P j] = δi j . (A17)

The Hamiltonian in Eq. (A15) can be written equivalently as

H̄NL(t ) = h̄
∑

(i,n),( j,n′ )

∑
l

�(i,n)( j,n′ )l (t )

× a†
S(i,n)a

†
S( j,n′ )bPl + H.c. (A18)

We then introduce the discrete indices μ and ν that are
constructed by grouping the labels i and n, and j and n′
together as

μ ≡ (i, n), (A19)

ν ≡ ( j, n′), (A20)

where μ refers to a photon in the output channel n with wave
number ki. With this labeling, we obtain the Hamiltonian in
Eq. (32).

APPENDIX B: DERIVING EQUATIONS
FOR THE GAUSSIAN PARAMETERS

In this Appendix we show how Eq. (48) for Ua(t ) leads to
Eqs. (50) and (51) for V (t ) and W (t ) and how Eq. (49) for
Ub(t ) leads to Eqs. (52) and (53) for β(t ) and θb(t ).

Beginning with Eq. (48) for Ua(t ), it was pointed out earlier
[22] that, with an Ha(t ) of the form (44), its unique solution
can indeed be written as (37). The task here is just to identify
how the parameters in Ua(t ) depend on time for a specified
Ha(t ). The strategy that we employ relies on introducing time-
dependent output operators a(t ) defined as

a(t ) = U †
a (t )aUa(t ) = V (t )a + W (t )a†, (B1)

where V (t ) and W (t ) are found to be given by [22]

V (t ) ≡ cosh[u(t )]eiφ(t ), (B2)

W (t ) ≡ sinh[u(t )]eiα(t )e−iφT(t ) (B3)

and where the Hermitian matrices u(t ) and α(t ) that appear
here come from the polar decomposition of the squeezing
matrix,

J(t ) = u(t ) exp[iα(t )]. (B4)

The matrices V (t ) and W (t ) in Eqs. (B2) and (B3) satisfy the
constraints

V (t )V †(t ) − W (t )W †(t ) = I, (B5)

V (t )W T(t ) − W (t )V T(t ) = 0, (B6)

which are necessary so that the operators in Eq. (B1) satisfy
the usual equal time bosonic commutation relations. Taking
the time derivative of the first line in Eq. (B1), we obtain the
equation of motion

da(t )

dt
= i

h̄
U †

a (t )[Ha(t ), a]Ua(t ), (B7)

where we used Eq. (48). Now using Eqs. (44) and (B1),
Eq. (B7) becomes

da(t )

dt
= −2iζ(t )W ∗(t )a − 2iζ(t )V ∗(t )a†, (B8)

where ζ(t ) is given by Eq. (54). On the other hand, taking
the time derivative of the second line in Eq. (B1), we have
equivalently

da(t )

dt
= dV (t )

dt
a + dW (t )

dt
a†. (B9)

Since the expressions for da(t )/dt in Eqs. (B9) and (B8) are
equivalent, we can equate the elements of the matrix coeffi-
cients multiplying the a and a† operators in each expression,
leading to the coupled equations (50) and (51).

Next we turn to deriving Eq. (52) for β(t ) and Eq. (53) for
θb(t ). We start by multiplying Eq. (49) by U †

b (t ) from the left

ih̄U †
b

dUb(t )

dt
= h̄[γ (t )]l b

†
l + H.c., (B10)

where γ (t ) is given by Eq. (55). Putting Eq. (38) into the left-
hand side of Eq. (B10), we obtain

ih̄D†
b

dDb(t )

dt
− h̄

dθb(t )

dt
= h̄[γ (t )]l b

†
l + H.c. (B11)

The derivative of the displacement operator is obtained by
disentangling it and using the chain rule. Doing this, we obtain

ih̄D†
b

dDb(t )

dt
= ih̄

d[β(t )]l

dt
b†

l + i

2
h̄

d[β(t )]l

dt
[β∗(t )]l + H.c.

(B12)

Putting Eq. (B12) into Eq. (B11) and collecting terms, we
obtain

0 =
(

i
d[β(t )]l

dt
− [γ (t )]l

)
b†

l −
(

i
d[β∗(t )]l

dt
+ [γ∗(t )]l

)
bl

+ i

2

(
d[β(t )]l

dt
[β∗(t )]l − d[β∗(t )]l

dt
[β(t )]l

)
− dθb(t )

dt
,

(B13)

which leads to Eqs. (52) and (53).

APPENDIX C: EXTRACTING J(t ) AND φ(t ) FROM
V (t ) AND W (t )

In this Appendix we show how to numerically extract
the squeezing matrix J(t ) and the rotation matrix φ(t )
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from the solutions V (t ) and W (t ) of the coupled equations
(50) and (51).

We begin by doing a numerical polar decomposition of
V (t ). Note that Eq. (B2) is already in the form of a polar
decomposition, where cosh[u(t )] is a Hermitian positive-
semidefinite (PSD) matrix and eiφ(t ) is a unitary matrix. Since
the Hermitian PSD matrix in a polar decomposition is al-
ways unique, the diagonal elements of cosh[u(t )], which we
identify by the set {si(t )}, will be unique. Further, since the
matrices cosh[u(t )] and u(t ) commute they can be diago-
nalized by the same unitary transformation. The SVD of
cosh[u(t )] can be written as

cosh[u(t )] = F(t )diag[s1(t ), . . .]F†(t ), (C1)

where

u(t ) = F(t )diag[r1(t ), . . .]F†(t ), (C2)

with the unitary matrix F(t ) the same in both decompositions,
and the set {ri(t )} are the diagonal elements of u(t ). Since
Eqs. (C1) and (C2) are diagonalizations of PSD Hermitian
matrices, we have

si(t ) � 0 (C3)

and

ri(t ) � 0. (C4)

Writing Eq. (C2) as

u(t ) = F(t )r(t )F†(t ), (C5)

where r(t ) is a diagonal matrix, we have

cosh[u(t )] = cosh[F(t )r(t )F†(t )]

= F(t ) cosh[r(t )]F†(t ) (C6)

or

cosh[u(t )] = F(t )diag[cosh r1(t ), . . .]F†(t ). (C7)

Comparing with Eq. (C1), we obtain

si(t ) = cosh[ri(t )], (C8)

and so, given Eq. (C4), we have

si(t ) � 1. (C9)

Since the singular values si(t ) are never zero, then cosh[u(t )]
is invertible and then so is V (t ). Thus, from the numerical
polar decomposition of V (t ) we obtain a unique Hermitian
matrix cosh[u(t )] and a unique unitary matrix eiφ(t ). Addition-
ally, from Eq. (C8) we can write Eq. (C2) as

u(t ) = F(t )diag{arccosh[s1(t )], . . .}F†(t ), (C10)

where by arccosh we mean the non-negative arccosh, by virtue
of Eq. (C4). In summary, then, from the numerical polar
decomposition of V (t ) we immediately obtain the unique
matrices eiφ(t ) and cosh[u(t )], from the diagonalization (C1)
we determine the unitary matrix F(t ) and the {si(t )}, and then
from Eq. (C10) we construct u(t ).

Using u(t ) in Eq. (C10), we can write

sinh[u(t )] = sinh[F(t )r(t )F†(t )]

= F(t ) sinh[r(t )]F†(t ) (C11)

or equivalently

sinh[u(t )] = F(t )diag{sinh[r1(t )], . . .}F†(t ), (C12)

which can be written as

sinh[u(t )] = F(t )diag

(
sinh[r1(t )]

r1(t )
, . . .

)

× diag[r1(t ), . . .]F†(t ) (C13)

or

sinh[u(t )] = K(t )u(t ), (C14)

where we have used Eq. (C2) and let

K(t ) = F(t )diag

(
sinh[r1(t )]

r1(t )
, . . .

)
F†(t ), (C15)

with

Ki(t ) = sinh[ri(t )]

ri(t )
. (C16)

Forming Ki(t ) seems problematic if ri(t ) = 0. Of course, in
such an instance the natural choice would be to take Ki(t )
to be the limit of Eq. (C16) as ri(t ) → 0, which would give
Ki(t ) = 1. However, one could worry about issues of unique-
ness. In fact, we show below that if ri(t ) = 0 we can take Ki(t )
to be any nonzero number, and the final result of the following
calculation of J(t ) will be the same.

The matrix K(t ) is clearly invertible, since we can identify

K−1(t ) = F(t )diag

(
1

K1(t )
, . . .

)
F†(t ), (C17)

and furthermore we can numerically construct K−1(t ) since
we know F(t ) and the ri(t ). From Eq. (C14) we then have

K−1(t ) sinh[u(t )] = u(t ) (C18)

and from Eq. (B3) we have

K−1(t )W (t ) = u(t )eiα(t )e−iφT(t ) = J(t )e−iφT(t ), (C19)

so

J(t ) = K−1(t )W (t )eiφT(t ). (C20)

All the quantities on the right-hand side are known and so we
can determine J(t ).

To investigate what happens to J(t ) when some of the
eigenvalues ri(t ) are zero, consider

K−1(t )W (t ) = F(t )diag

(
sinh[r1(t )]

K1(t )
, . . .

)

× F†(t )eiα(t )e−iφT(t ), (C21)

where we used Eqs. (C18) and (C12). Now we can see that for
any i for which ri(t ) = 0 we will have sinh[ri(t )]/Ki(t ) = 0,
regardless of which nonzero value Ki(t ) is set. So the eigen-
values ri(t ) that are zero do not contribute to the matrix J(t ).

At this point we have identified J(t ) and eiφ(t ); we still
must extract φ(t ). The φ(t ) appearing in Ra[φ(t )] of (40) is
a Hermitian matrix and so can be diagonalized,

φ(t ) = M(t )diag[χ1(t ), . . . ]M†(t ), (C22)
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where M(t ) is a unitary matrix. Thus we have

eiφ(t ) = eiM(t )diag[χ1(t ),...]M†(t )

= M(t )eidiag[χ1(t ),...]M†(t ). (C23)

Numerically diagonalizing the identified eiφ(t ) would naturally
lead us to identify φ(t ) as given by Eq. (C22). However,
although the eigenvalues of eiφ(t ) are well defined, the values
of the phases appearing in those eigenvalues are not. For
example, one could write

eiφ(t ) = M(t )ei diag[χ1(t )+2πm1(t ),...]M†(t )

= eiM(t )diag[χ1(t )+2πm1(t ),...]M†(t ), (C24)

where m1(t ), etc., are any integers. Instead of Eq. (C22) an
equivalent φ(t ) is given by

φ(t ) = M(t )diag[χ1(t ) + 2πm1(t ), . . .]M†(t ). (C25)

However, this ambiguity does not affect the Gaussian unitary
operators in Eq. (36), because both Eqs. (C22) and (C25) lead
to the same effective Ra[φ(t )].

To see this, note that if we posit Eq. (C25) we have

[φ(t )]kl = [M(t )]kp[χp(t ) + 2πmp(t )][M†(t )]pl , (C26)

and so

Ra[φ(t )] = eia†
k [M(t )]kp[χp(t )+2πmp(t )][M†(t )]pl al . (C27)

Now we set

cp(t ) = [M†(t )]plal = [M∗(t )]l pal , (C28)

so

c†
q(t ) = [M(t )] jqa†

j . (C29)

Thus

[cp(t ), c†
q(t )] = δpq, (C30)

and the new operators cp(t ) and c†
q(t ) satisfy equal time com-

mutation relations. In terms of them, we can write (C27) as

Ra[φ(t )] = eic†
p(t )[χp(t )+2πmp(t )]cp(t )

= eic†
p(t )χp(t )cp(t )e2π imp(t )c†

p(t )cp(t ). (C31)

As basis kets we can choose the eigenkets |{n}, t〉 of all the
number operators c†

q(t )cq(t ), where

c†
q(t )cq(t )|{n}, t〉 = nq|{n}, t〉. (C32)

Then

e2π imp(t )c†
p(t )cp(t )|{n}, t〉 = e2π imp(t )np |{n}, t〉 = |{n}, t〉, (C33)

and since any ket |ϕ(t )〉 can be written as a superposition of
the |{n}, t〉, from (C31) and (C33) we have

Ra[φ(t )]|ϕ(t )〉 = eic†
p(t )[χp(t )+2πmp(t )]cp(t )|ϕ(t )〉

= eic†
p(t )χp(t )cp(t )|ϕ(t )〉. (C34)

Thus, the result we find for Ra[φ(t )] will be the same whether
we use Eq. (C22) or (C25), that is, any logarithm of eiφ(t ) can
be used to construct Ra[φ(t )].

APPENDIX D: DETERMINING THE PHASE θa(t )

The phase θa(t ) appears in the unitary operator Ua(t )
in Eq. (37). In this Appendix we determine this phase
following the approach of Ma and Rhodes [22]. Recall
that Ua(t ) is the solution to the Schrödinger equation (48)
with the Hamiltonian Ha(t ) defined in Eq. (44). Given the
form of Ha(t ) in Eq. (44), it follows [22] that the phase θa(t )
is given by

θa(t ) = −1

2

∫ t

−∞
dt ′tr{ζ∗(t ′) tanh[u(t ′)]eiα(t ′ )} + c.c., (D1)

where ζ(t ) is defined in Eq. (54) and is related to the coeffi-
cients in Ha(t ); recall Eq. (B4) for the polar decomposition of
the squeezing matrix J(t ) = u(t ) exp[iα(t )].

The first-order solution that is discussed in Sec. V is valid
when the amount of squeezing is small or the nonlinearity
is weak. In this Appendix we show that the phase θa(t ) in
Eq. (D1) is approximately zero in the first-order solution. In
this case, because the entries of the squeezing matrix J(t )
are small, we replace tanh[u(t ′)] exp[iα(t ′)] in Eq. (D1) with
u(t ′) exp[iα(t ′)] = J(t ′) [recall Eq. (B4)]. Doing this, we can
write Eq. (D1) approximately as

θa(t ) ≈ −1

2

∫ t

−∞
dt ′tr[ζ∗(t ′)J(t ′)] + c.c. (D2)

However, from Eq. (69) we have that J(t ′) = −2i
∫ t ′

−∞
dt ′′ζ(t ′′). Putting this into Eq. (D2), the term inside the trace
is ζ∗(t ′)ζ(t ′′), which is much smaller than unity. Thus θa(t ) is
approximately zero.

APPENDIX E: A CONSERVED QUANTITY

We define the operator Q̂,

Q̂ ≡ 1
2 a†T

a + b†T
b, (E1)

which is a conserved quantity with respect to the full
Hamiltonian in Eq. (32), that is,

[Q̂, H̄NL(t )] = 0. (E2)

However, Q̂ is not a conserved quantity with respect to the
effective Hamiltonian in Eq. (46). In this Appendix we show
that the average value of Q̂ in the Gaussian limit is nonetheless
a conserved quantity.

We begin with expectation value of Q̂ using the ket in the
Gaussian limit given by Eq. (57),

〈Q̂〉 ≡ 〈ψ̄G(t )|Q̂|ψ̄G(t )〉
= 1

2 tr[W †(t )W (t )] + [β∗(t )]Tβ(t ). (E3)

In what follows we drop the time dependence of W (t ) and
β(t ) for convenience. This quantity is conserved if its time
derivative is zero

d〈Q̂〉
dt

= 0. (E4)

Putting Eq. (E3) into Eq. (E4), we obtain

1
2 trA + B = 0, (E5)
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where we have defined

A ≡ dW †

dt
W + W † dW

dt
, (E6)

B ≡
∑

l

(
dβ∗

l

dt
βl + β∗

l

dβl

dt

)
. (E7)

Now we use the differential equations for βl and W in
Eqs. (52) and (51) to simplify A and B. First, to simplify B
we put Eq. (52) into Eq. (E7),

B = i
∑
i,k, j

γk jiβi[V ∗W †]k j − i
∑
i,k, j

γ ∗
k jiβ

∗
i [VW T]k j

= i
∑
k, j

[ζ]k j[V ∗W †]k j − i
∑
k, j

[ζ∗]k j[VW T]k j

= i tr(ζW ∗V †) − i tr(ζ∗WV T). (E8)

Next we simplify A by putting Eq. (51) into Eq. (E6) and
obtain

A = 2iV Tζ∗W − 2iW †ζV ∗. (E9)

Putting Eqs. (E9) and (E8) into Eq. (E5),

0 = 1
2 tr(2iV Tζ∗W − 2iW †ζV ∗) + i tr(ζW ∗V †)

−i tr(ζ∗WV T)

= i tr(ζ∗WV T) − i tr(ζV ∗W †) + i tr(ζW ∗V †)

−i tr(ζ∗WV T),

and since W ∗V † = V ∗W † the right-hand side is zero.
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