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Effect of photon propagation on a near-zero-refractive-index medium
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We present a model describing the transmission of light through atomic media with a vanishing index of
refraction. Zero-index materials are of particular interest as the infinite phase velocity of light within the material
offers the potential to manipulate electromagnetic waves to mediate dipole-dipole interactions over extended
distances. We focus on the preparation of near-zero-index (NZI) conditions based on atomic coherence using two
distinct atomic media as exemplary of generic NZI materials. We establish a model based on the Maxwell-Bloch
equations to describe the propagation of a light pulse through these media. To investigate the sustainability of
NZI under minimal light conditions, we assume single-photon intensity of the propagating pulse. Specifically,
we examine whether the spatial phase change of the photon remains near zero as it traverses the medium. We
employ a finite-element numerical approach to solve the coupled Maxwell-Bloch equations describing the photon
propagation. Our results indicate that the presence of a photon within the medium will disrupt the NZI state, thus
disallowing the establishment of enhanced dipole-dipole interactions over large distances.
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I. INTRODUCTION

The study of media with near-zero refractive index (NZI)
has been growing recently because of their unique ability
to modify the propagation characteristics of electromagnetic
waves [1–8]. This opens up various potential applica-
tions relevant for next-generation optical devices, ranging
from unconventional wavefront manipulation to enhanced
light-matter interactions [9–15]. If the refractive index n ex-
perienced by light of a particular frequency in some medium
goes to zero, the wave number k is expected to vanish, which
means that the wavelength of the light and the phase velocity
go to infinity. This implies that the phase of the light field does
not vary in space throughout the medium. Also, full transmis-
sion of light through zero-index channels of arbitrary shape is
theoretically possible due to the suppression of emission and
absorption processes, which has been called “supercoupling”
[1–4, 16–18].

Based on these unique properties it has been proposed
that an NZI medium can be used to couple distant dipoles as
strongly as if there was no medium (and no distance) between
them. This is because the NZI medium behaves as an “elec-
tromagnetic point” for light entering at one port and exiting at
another; the light’s response is insensitive to the NZI channel’s
size and shape and the orientation of the ports [2, 4, 19]. It is as
if the space is shrunk down, and the dipole-dipole coupling is
as strong as if the medium were not there and they were closer
together. Numerical simulations have verified the possibility
of this phenomenon [3, 4]. This effect relies mainly on the lack
of spatial phase change of light in the medium; light entering
is always in phase with light exiting, so light emitted by one
dipole can be always in phase with light reaching the other
across the NZI medium.

The dipole-dipole interaction is mediated by photons as
each dipole either emits or absorbs a single photon [20–24].
Distant coupling depends strongly on the lack of phase change

of light throughout the NZI medium. However, it is possible
that an NZI response in the medium is fragile; the presence
of light may affect the response of the medium to it, which
could ruin a prepared NZI response, and cause spatial phase
change of the light. This brings us to the central question of
this paper: does a single photon ruin its own NZI in an atomic
medium?

There are two main approaches for obtaining NZI (or other
“exotic” values of index, such as negative or very high):
control of atomic media via external fields [25–27], and the
design of metamaterials with desired electromagnetic proper-
ties [6,9,28–31]. We choose the former approach to serve as
a general example of propagation under NZI, which is more
straightforward to achieve, at least theoretically. A general
schematic for how light traversing an NZI atomic medium
could couple distant dipoles is shown in Fig. 1.

In this paper, we present a model for light propagation in
atomic media to identify the characteristic absence of spa-
tial phase change with NZI. First, we describe the general
approach taken, which involves a pulse containing a single
photon traveling through a gas consisting of atoms of a partic-
ular structure, prepared to give an NZI response for the light.
Then we propose a medium consisting of three-level atoms
and explain how NZI can be prepared for it. Then we derive
a Maxwell-Bloch model for the propagation of the light and
the atomic response. We describe the numerical simulation
technique used to solve the equations of motion and discuss its
results. Finally, we follow these steps for a different medium
which consists of five-level atoms.

II. GENERAL APPROACH

We suppose that a pulse of light is traveling in vacuum.
The light encounters an ensemble of atoms, which are initially
prepared to give an NZI response for the incoming light.
Expectation values for the field and atomic variables will be
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calculated as functions of time and space using Maxwell-
Bloch equations as the pulse proceeds through the medium.
The index of refraction is also treated as a function of time and
space, so that its instantaneous value affects the light, even as
the light possibly changes the index through its own effect on
the medium.

We arbitrarily choose the propagation to be in the ẑ direc-
tion, with a general polarization in the transverse direction.
Since the NZI response is experienced only by a particular
field frequency, and for the sake of simplicity, we assume that
the field is monochromatic with frequency ν and mode â. The
field has the complex wave number k(z, t ) = n(z, t )k0, where
k0 is the vacuum wave number. We use the form

E(z, t ) = 1
2E (z, t )ε̂E ein(z,t )k0z−iνt + c.c. (1)

for the electric field. Using the expectation value of the
quantum electric-field operator, where V is the quantization
volume,

〈Ê〉(z, t ) =
√

h̄ν

2ε0V
〈â〉(z, t )ein(z,t )k0z−iνt + c.c., (2)

the envelope E (z, t ) is identified with
√

2h̄ν/ε0V 〈â〉(z, t ). 〈â〉
will be calculated as the field travels through the medium. In
order to see whether the minimum amount of light affects
its own refractive index as it interacts with the atoms, the
envelope of the pulse is chosen so that the field contains one
photon initially. We use a Gaussian distribution for 〈â†â〉(z, t ),
which travels along z with speed c before encountering the
medium. We assume that the field is in a coherent state with
a real eigenvalue for simplicity, so that we have 〈â〉(z, t ) =√

〈â†â〉(z, t ). The form of 〈â〉(z, t ) in vacuum before encoun-
tering the medium therefore is

〈â〉(z � 0, t ) =
[

1√
2πσs

e(−z−zi−ct )2/(2σ 2
s )

]1/2

, (3)

where σs is the standard deviation of the distribution and
zi is the initial position of its maximum. For the numerical
simulations that follow, 〈â〉(0, 0) is the value at the boundary
to the medium that enters initially.

We suppose that there is an ensemble of atoms along z from
z = 0 to z f . The atoms are identical and do not interact with
each other. Depending on the structure of the atoms and how
the incoming field couples to them, we choose external control
fields, the ensemble density, and other parameters such that
the incoming field should experience NZI, at least initially.

We will only calculate the field from z = 0 to z f , when it is
inside the medium. We do not consider impedance matching
or reflection at the boundary; in effect, the pulse given by
Eq. (3) is the light that actually enters the medium to ensure
that only one photon propagates through, after any reflection
may have occurred in reality, although this may be suppressed
with NZI materials [9].

Next, a set of Maxwell-Bloch equations is derived which is
used to calculate the probe field’s propagation and the atomic
response [32,33]. From these results, we calculate the index
of refraction and phase of the light. The instantaneous value
of the index, which will be calculated differently depending
on the atomic structure, may suggest whether there was any
spatial phase change, but the effects of the overall index will

FIG. 1. Schematic of dipole-dipole interaction across the NZI
medium. A field consisting of a single photon propagates through a
medium consisting of atoms with a particular structure, prepared for
NZI. The photon may interact with atoms along the way, possibly
affecting its own refractive index, and couples dipoles located on
either side of the medium. Other control fields may be present in
order to prepare the NZI, but are not shown.

ultimately be evident by looking at the phase of the field. Any
spatial variation in the phase would suggest that the effective
index is not zero. The effective index may contain contri-
butions not represented by the instantaneous index n(z, t ) in
Eq. (1).

The Maxwell equation for 〈â〉(z, t ) determines how it
changes in time and space through the medium. The Bloch
equations are first-order differential equations in time for the
atomic variables 〈σ̂i j〉(z, t ), where the operator σ̂i j = |i〉〈 j| for
states |i〉 and | j〉, but through coupling to 〈â〉(z, t ) these gain
spatial dependence. We do not distinguish between individual
atoms; rather the atomic expectation values are averages and
treated as continuous in space.

Throughout this paper, all expectation values, fields, field
amplitudes, and the refractive index are functions of z and t ,
but this explicit dependence may be dropped.

III. PROPAGATION THROUGH THREE-LEVEL ATOMS

A. Theoretical model

To address the requirement for an NZI model that can
equally incorporate the effect of an additional light field or a
single photon, we initially consider a medium composed of
the �-type atoms shown in Fig. 2 as the simplest possible
case. With incoherent pumping on the transition coupled to
the probe field, NZI can be obtained. Although incoherent

FIG. 2. Three-level atom coupled to external fields, with incoher-
ent pumping from |1〉-|3〉. �inc is the incoherent pumping rate, �1 and
�2 are population decay rates, g〈â〉 is the effective Rabi frequency of
the probe field, � is the Rabi frequency of the pump field, and 	1

and 	2 are detunings.
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pumping gives a phenomenological pump rate that can come
from a variety of effects, its origin is irrelevant to our theoret-
ical purpose and results.

The probe field couples to the |1〉-|3〉 transition, which is
an electric dipole transition. This is treated quantum mechan-
ically with dipole operator d̂, whose elements are assumed
real, and coupling strength g = √

ν/(2h̄ε0V )d . This transition
has the decay rate �1. The other transition is driven by a pump
field, treated semiclassically with Rabi frequency �, and has
the decay rate �2. The fields are detuned from the atomic
resonances of their respective transitions by 	1 and 	2. The
single-atom Hamiltonian for this system, under the rotating
wave approximation and in a rotating frame, is

Ĥ/h̄ = 	1σ̂11 + 	2σ̂22 − (gâσ̂31 + �σ̂32 + H.c.). (4)

There is a polarization induced by the probe field, which
we take to be linear in the field: P = ε0χE. This depends on
the coherence between levels |1〉 and |3〉 as follows:

P = N〈d̂〉 = Nd(〈σ̂13〉 + 〈σ̂31〉), (5)

which leads to

χ = 2Nd〈σ̂13〉
ε0E

= 2Natomsg

ck0

〈σ̂13〉
〈â〉 (6)

for the susceptibility, where Eq. (1) was used for E, E was
substituted in terms of 〈â〉, and d was substituted in terms of
g; N is the ensemble density, and Natoms is the total number of
atoms in the medium.

Because g is in units of frequency, it will later be written
in terms of some rate � for the sake of convenience in the nu-
merical calculations. Therefore, χ effectively depends on the
factor �/ck0, which is also present in other equations through-
out this paper. We can use it as a scale factor that relates
a dimensionless spatial variable with a dimensionless time
variable, which then determines the speed of the pulse in the
numerical simulation, and choose a value for it that makes the
numerics more practical. This is why �/ck0 will be specified
in the following results.

The index is

n = √
εμ =

√
1 + χ

=
√

1 + 2Natomsg

ck0

〈σ̂13〉
〈â〉 , (7)

where the relative permittivity is 1 + χ , and the relative
permeability is assumed to be 1 because there is negligible
magnetization for visible wavelengths in atomic media. The
sign of n must be initially chosen so that Im(n) � 0, meaning
that there is no gain in the case of �inc = 0, to be physical. The
goal is to obtain a susceptibility χ as close to −1 as possible
through choice of parameters so that the index n is near zero.
This corresponds to “epsilon near zero,” as it is called in the
metamaterial literature [1–4, 18].

Next, Bloch equations are derived from the Lindblad mas-
ter equation, ˙̂ρ = − i

h̄ [Ĥ , ρ̂] +
∑

m

�m[L̂mρ̂L̂†
m − 1

2
(L̂†

mL̂mρ̂ + ρ̂L̂†
mL̂m )] with

the Hamiltonian (4); the summation is over all the involved
operators L̂m (â and σ̂i j), with associated decay rates �m.

These are

∂〈σ̂12〉
∂t

≈ (i	1 − i	2 − �inc/2)〈σ̂12〉 − ig〈â〉〈σ̂23〉∗

+ i�∗〈σ̂13〉,
∂〈σ̂13〉

∂t
≈ (i	 − �1/2 − �2/2 − �inc/2)〈σ̂13〉

− ig〈â〉(〈σ̂33〉 − 〈σ̂11〉) + i�〈σ̂12〉,
∂〈σ̂23〉

∂t
≈ (i	2 − �1/2 − �2/2)〈σ̂23〉 + ig〈â〉〈σ̂12〉∗

− i�(〈σ̂33〉 − 〈σ̂22〉),

∂〈σ̂11〉
∂t

≈ ig(〈â†〉〈σ̂13〉 − 〈â〉〈σ̂13〉∗) + �1〈σ̂33〉
− �inc〈σ̂11〉,

∂〈σ̂22〉
∂t

≈ i�(〈σ̂23〉 − 〈σ̂23〉∗) + �2〈σ̂33〉,
∂〈σ̂33〉

∂t
≈ ig(〈â〉〈σ̂13〉∗ − 〈â†〉〈σ̂13〉)

+ i�(〈σ̂23〉∗ − 〈σ̂23〉) − (�1 + �2)〈σ̂33〉
+ �inc〈σ̂11〉. (8)

We make the mean-field approximation which assumes that
there are no correlations between the field and atoms, and
we neglect interactions among atoms, so that these equa-
tions contain only expectation values of single operators.
These approximations are made in the first approach for
the sake of simplicity in the numerical calculations to fol-
low, partly to limit the number of equations that must be
solved, and also because these calculations would otherwise
involve some difficulty in determining appropriate boundary
conditions for certain variables. This is described further in
Secs. III B and IV B.

In order to find parameters that give χ = −1, we solve
Eq. (8) in the steady state. To do this, we assume that there
is a constant effective Rabi frequency from the probe field
throughout the medium, �eff = g〈â〉(0, 0), using the initial
value of the pulse given by Eq. (3) at the boundary. This is
approximately as if the relatively flat “tail” of the pulse begins
inside the medium from z = 0 to z f . We choose a set of typical
parameters except for Natoms and 	1, and solve for 〈σ̂13〉 as if
it were for a single atom.

The solution for Re(〈σ̂13〉) is similar to the well-known
result for three-level atoms [32,33] without incoherent pump-
ing, but the addition of incoherent pumping causes a dip in
Im(〈σ̂13〉) below zero, centered at 	1 = 0. We choose the
point where Im(〈σ̂13〉) = 0 and Re(〈σ̂13〉) is negative as our
working point. Here, there is no attenuation or gain, but the
negative real part can be scaled to as close to −1 as possible
by increasing the total number of atoms in the medium. Using
Eq. (6), we find that Natoms = 5.941 55 × 105 gives χ ≈ −1
and therefore n = 5.523 × 10−4–3.103 × 10−13. The result
for n is shown in Fig. 3.

The final necessary piece of the model is an equation for
the propagation of 〈â〉. First, we use Maxwell’s equations ∇ ×
E = − ∂B

∂t and ∇ × H = ∂D
∂t in a medium with linear polariza-

tion P = ε0χE, together with the form (1) for electric field
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FIG. 3. Real part (blue, solid) and imaginary part (red, dashed) of
the refractive index n as a function of 	1/�. We chose the value for
	1 where Im(〈σ̂13〉) = 0 and Re(〈σ̂13〉) is negative, which was 	1 =
−0.235�. Then we chose Natoms such that χ ≈ −1 and therefore n
is near zero: Re(n) = 5.523 × 10−4, Im(n) = −3.103 × 10−13i. This
working point is circled on the graph. The other parameters are 	2 =
0, g = 0.01�, � = 1�, �1 = �2 = �, and �/ck0 = 0.1.

and analogously for the polarization, to derive an equation for
the evolution of E ∝ 〈â〉 in the medium. However, because n
is a function of z and t , this equation contains terms involving
derivatives of n and is practically extremely difficult to solve,
even numerically. Although we are interested in treating the
refractive index as a function of space and time so that it can
affect the field in “real time” and vice versa, at this stage we
treat n as a constant so that we can neglect any term involving
a derivative of n. This would not affect the results if n were
to remain at its initial, near-zero value, or at least if it varied
much more slowly than E or P . If the results show that n stays
near zero, then this would suggest that this approximation is
valid. If n varies quickly in time or space away from zero, then
this would suggest that this approximation is not valid, but this
would confirm that the NZI response is fragile anyway.

In any case, the finite-element method that we will use,
described in Sec. III B, further justifies this approximation,
because we will simulate the propagation over small steps in
space and time where the index can be assumed to be constant.
With this simplification, we obtain

∂2E
∂z2

+ 2ink0
∂E
∂z

− n2k2
0E − ε0μ0

(
∂2E
∂t2

−2iν
∂E
∂t

− ν2E
)

= μ0

(
∂2P
∂t2

− 2iν
∂P
∂t

− ν2P
)

. (9)

At this point, the slowly varying envelope approximation
(SVEA) is often made in order to drop certain terms when
nk0|E | 	 | ∂E

∂z | or ν|E | 	 | ∂E
∂t | is valid. However, since here

the index is supposed to be near zero, we cannot make the
SVEA to neglect any spatial derivatives, although we use it to
drop the two terms involving second-order time derivatives to

get

∂2E
∂z2

+ 2ink0
∂E
∂z

− n2k2
0E + ε0μ0

(
2iν

∂E
∂t

+ ν2E
)

= μ0

(
−2iν

∂P
∂t

− ν2P
)

. (10)

Finally, E is replaced with
√

2h̄ν/ε0V 〈â〉, P is replaced with
2Nd〈σ̂13〉, and d is put in terms of g to arrive at

1

k2
0

∂2〈â〉
∂z2

+ 2in

k0

∂〈â〉
∂z

+ 2i

ck0

∂〈â〉
∂t

+ (1 − n2)〈â〉

= −4iNatomsg

c2k2
0

∂〈σ̂13〉
∂t

− 2Natomsg

ck0
〈σ̂13〉. (11)

The system of Eqs. (8) and (11) must be solved numerically,
with the parameters and initial conditions required for NZI.

B. Numerical simulation description

The set of Maxwell-Bloch equations (8) and (11) must
be solved numerically in space and time with appropriate
boundary conditions in z and initial conditions in t . Some of
these conditions are known at z = 0 and at t = 0, but none at
other points in z or t , where we cannot place any constraints
on the system. For 〈â〉, we have boundary conditions at z = 0
and initial conditions at t = 0, supplied by Eq. (3) as the
pulse enters the medium. For the atomic variables 〈σ̂i j〉, initial
conditions can be found by solving the steady-state Bloch
equations before the pulse enters, but we do not have any
boundary conditions. Also, we want to treat n as a variable
during the propagation in order to allow it to be affected by
〈â〉 and vice versa. However, the Maxwell equations were
derived assuming that n is constant, so we must simulate the
system in a way that is consistent with this derivation while
also allowing the index to vary.

These complications on top of an already complicated
system of equations make it very difficult to solve. To get
past these issues, we use a custom finite-element algorithm in
conjunction with NDSOLVE in MATHEMATICA. This procedure
is illustrated in Fig. 4. We imagine a grid over the z-t region
where the system is to be solved, with boxes of size dz × dt .
NDSOLVE is used to evolve the system over the region of each
box individually, stepping along z and then t ; beginning at one
corner of a box, NDSOLVE gives a solution out to dz and dt .
Boundary and initial conditions are updated at each step. At
z = 0, we use Eq. (3) for boundary conditions for 〈â〉. The
pulse is placed far enough outside the medium so that the
value of the tail at z = 0, t = 0 is small; in all cases described
in the results of Secs. III C and IV C, this value is about 0.003.

Inside the medium, we use values from solutions at previ-
ous steps for boundary conditions. At the boundary z = 0, we
have a continuous function for 〈â〉. To reduce numerical error
and allow the atomic variables to evolve realistically under the
effect of 〈â〉 at z = 0, we use the Bloch equations to evolve
them with the continuous pulse function, instead of using
constant values for 〈â〉 supplied step by step. When 〈â〉 falls
below a certain threshold, chosen to be 10−7, at some z in the
medium, we cut off the simulation there to save computation
time since there is essentially no light left.
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FIG. 4. Illustration of numerical procedure. The z-t region is
divided into rectangles of side length dz and dt . Each corner of each
box lies at a point on a grid. At z = 0, boundary values are taken from
the pulse of Eq. (3). At t = 0, initial values are obtained from the
pulse for 〈â〉, or steady-state solutions to the Bloch equations (8) and
(B1). Otherwise, boundary conditions are obtained from previous
solutions. The program manually steps along z, then t . At each blue
circle, NDSOLVE is initialized and run from that (z, t ) coordinate, out
to z + dz and t + dt to solve Eqs. (8) and (11), or Eqs. (B1) and (18)
from Sec. IV A, until solutions are obtained over the entire region.
The filled-in green boxes indicate regions where NDSOLVE has given
a solution.

The instantaneous index n is calculated after each step
according to Eq. (7), with current values for the field and
atomic variables. The current value for n at that z, t point on
the grid is replaced as a constant in the Maxwell equation for
the NDSOLVE calculation that originates at that point. For small
step sizes, we can justify approximating n as constant, which
in turn justifies the approximations made by neglecting deriva-
tives of n in the derivation of the Maxwell equation (11).

In numerical calculations, we use dimensionless variables
ζ = k0z and τ = �t and rewrite the Maxwell-Bloch equa-
tions in terms of these variables. We set the spatial step size
dζ = k0dz by choosing the number of steps in space, zsteps,
and we set the temporal step size dτ = �dt by choosing the
number of steps in time, tsteps. The relative step size dζ/dτ

effectively sets the speed of propagation in the medium in the
simulation.

C. Results

We now present results for numerical simulations of the
model described in Sec. III A via the method described in
Sec. III B.

Results are given in Figs. 5–7 for the same parameters as
in Fig. 3, with additional plots in Appendix A. They show
that there is spatial phase change in the field, and that the
instantaneous refractive index n given by Eq. (7) moves away
from its initial near-zero value.

The phase of 〈â〉eink0z−iνt is shown in Fig. 5. There is clear
spatial variation for low z, especially before zk0 = 6. There

FIG. 5. Phase of 〈â〉eink0z−iνt in time and space. The index does
not remain near zero. There is regular phase variation along t as
expected, but there is also spatial phase change due to the nonzero
index (with no spatial phase change, we would see no variation along
any horizontal line on the plot). This is especially noticeable near the
boundary where the pulse enters, and before zk0 = 6 (this region is
indicated by the dashed black box). Past there, the phase does not
significantly change in z. The dashed red line indicates the path of the
beginning of the pulse; below the line, the system is in the prepared
NZI steady state. The white region in the upper left corner is where
the simulation was cut off. Parameters are Nphotons = 1, σs = 10π/k0,
zi = −120/k0, �1 = �2 = �, �inc = 0.3�, 	1 = −0.235�, 	2 = 0,
g = 0.01�, � = �, �/(ck0 ) = 0.1, and Natoms = 5.941 55 × 105. We
set z f = 4π/k0, zsteps = 200, t f = 70/�, and tsteps = 400.

is also a slight change along the line t� = (70/8π )zk0 (just
above the red line in Fig. 5), which is the path of the front
tail of the pulse that enters the medium at z = 0, t = 0; this
becomes more difficult to see as z increases. For most of the
z-t region, however, there is little spatial variation, and the

FIG. 6. The full field in time and space (in arbitrary units). Ir-
regularities in the field, especially before zk0 = 6, indicate spatial
phase variation due to a nonzero index (this region is indicated by
the dashed black box). Parameters are the same as in Fig. 5.

033705-5



MCCUTCHEON, OSTERMANN, AND YELIN PHYSICAL REVIEW A 110, 033705 (2024)

FIG. 7. n in time and space, with two different scales each for the
real and imaginary parts. Both the real and imaginary parts change
from the initial near-zero value most drastically near z = 0, before
settling towards zero for larger z. The white regions in the upper left
corners are where the simulation was cut off; other white regions
are where the values go beyond the range shown. Parameters are the
same as in Fig. 5.

field envelope 〈â〉 travels through with very little change. The
full field is shown in Fig. 6, where these effects are also seen.

Figures 7 and 8 show how the index immediately varies
from its initial near-zero value. At z = 0, the real part moves
to about 1.0 and the imaginary part moves to about 0.55 within
the first few time steps. The index then continues to vary,
especially for low z (just inside the medium) while the pulse
is entering. The real part of n goes from a maximum of about
1.0 down to a minimum of about −2.3 at z = 0. Further inside
the medium, the extent of this variation generally decreases
until the index settles near zero again, even where there is
a significant amount of the pulse present. Figure 9 shows
how the index evolves in time at a point halfway through the
medium. The index still varies from near zero, leading to some
spatial phase change, but to a lesser extent than near z = 0.

FIG. 8. n as a function of time at z = 0. Both the real and imagi-
nary parts increase from near zero in the first time step, then continue
to vary as the pulse enters the medium. In the last few time steps,
Im(n) begins to rise quickly, but this is because the pulse has mostly
passed (〈â〉 has fallen to about 10−7), and χ in Eq. (7) begins to
diverge. This is when the simulation is cut off at this point in z.
Parameters are the same as in Fig. 5.

FIG. 9. n as a function of time, halfway through the medium. It
varies, but stays closer to zero overall than it does nearer to z = 0.
Parameters are the same as in Fig. 5.

D. Discussion

The refractive index does not remain near zero as a pulse
of light propagates into the medium consisting of three-level
atoms, even for a single photon. The index rises from zero
in the first time step. A zero instantaneous index as given
by Eq. (7) relies on 〈â〉 and 〈σ̂13〉 to remain in the same
proportion, as precisely prepared via choice of 	1, Natoms,
and other parameters. As 〈â〉 grows at and near the bound-
ary of the medium, 〈σ̂13〉 does not evolve at the same rate;
even though at the boundary the atomic variables are evolved
continuously according to the Bloch equations (8) with 〈â〉
given by Eq. (3), their evolution is not precisely proportional
to that of 〈â〉, so the balance is broken: the susceptibility χ

immediately changes from −1 and therefore the n changes
from near zero. Further into the medium, the index does vary
but to a lesser extent, staying near zero over a large region
even while there is a significant amount of the pulse traveling
through. It is interesting that this happens not later in time near
the boundary as the coherence builds up there, but further in
space, even where the pulse is just beginning to reach. The
slight variation along the front tail of the pulse is due to a
growing imaginary part that 〈â〉 gains from interacting with
the medium.

The variation in index is not particularly surprising, due
to the fragile nature of the required proportionality between
〈â〉 and 〈σ̂13〉. Furthermore, according to the Kramers-Kronig
relations, the refractive index varies quickly with frequency;
therefore, after being prepared near zero for a single fre-
quency, it is likely that it quickly moves away from zero if
the light affects the medium’s response at all. This can be
seen from Fig. 3, where the index (and susceptibility) varies
quickly with frequency at the working point chosen; |dn/d	1|
is large in the vicinity of 	1 = −0.235�.

Other simulations with different parameters were run to
test the robustness of the numerical method and the results
shown here. For a wider pulse, which has a slower rate of
change at the medium’s boundary, the extent of the variation
in index was only slightly reduced, but was still qualitatively
similar and showed similar spatial phase change. For a pulse
containing more than one photon, the variation in index was
slightly increased but was qualitatively similar, with similar
spatial phase change. Finally, if instead of a pulse, the incom-
ing field envelope rises to some steady value, the index varies
while the field envelope rises, but eventually reaches a steady
value as well. For a small field amplitude or a slow rise, it may
be possible to obtain a steady-state value for the index that is
near zero. Future work will explore the causes of these effects
and their NZI potential.
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FIG. 10. Five-level atom coupled to external fields. g〈â〉 and
gB〈â〉 are effective Rabi frequencies on transitions coupled to the
probe field. �1, �2, and �3 are pump-field Rabi frequencies. 	 − δ

and 	 are detunings.

All of these results suggest that any field with a time-
dependent amplitude near the boundary ruins its NZI, even
for a slowly varying amplitude and with as little light as one
photon. Even though the instantaneous index may stay near
zero in part of the medium, the field will experience some
phase change in space during its propagation. The observation
of significant spatial phase change immediately upon entering
the medium, even if over a limited region, curtails the possi-
bility of dipole-dipole coupling over NZI channels of arbitrary
size and shape.

IV. PROPAGATION THROUGH FIVE-LEVEL ATOMS

A. Theoretical model

Since the index is apparently fragile for the three-level
atomic medium due to the strict requirement placed on χ and
its sensitivity to the probe frequency, we move on to a medium
consisting of the five-level atoms shown in Fig. 10. This
structure was chosen because previous work has shown that it
is capable of giving a negative-index response to a probe field
with low attenuation, so by scaling the density or varying other
parameters, an NZI response should also be possible [26,34].
In this case no incoherent pumping is required to achieve NZI
like in the three-level structure presented in Sec. III A. Also,
the pump fields largely set the response to the probe field,
which has less of an effect on the atomic variables than for
the three-level structure. This suggests that it may be easier to
maintain the NZI.

An electric field E and a magnetic field B, belonging to the
same “probe field,” each couple to a transition: the magnetic
field couples to the |1〉-|3〉 transition which has the magnetic
dipole operator m̂ (assumed real) and coupling strength gB,
and the electric field couples to the |2〉-|4〉 transition which
has the electric dipole operator d̂ (assumed real) and coupling
strength g. These transitions have the same characteristic fre-
quency. There are pump fields with Rabi frequencies �1, �2,
and �3 on the other three transitions.

The detunings are 	 = ν − (ω4 − ω1) and δ = ν�3 −
(ω4 − ω3), where ν�3 is the frequency of the pump field on
|3〉-|4〉, and ωi is the frequency corresponding to the atomic
state |i〉. The decay rates involved are �31, �42, �43, �51,
and �52, where �i j is the decay rate from |i〉 to | j〉. The

single-atom Hamiltonian is

Ĥ/h̄ = (δ − 	)σ̂33 − 	σ̂44 − (gâσ̂42

+ gBâσ̂31 + �1σ̂51 + �2σ̂52 + �3σ̂42 + H.c.). (12)

Without any detuning in the |1〉-|2〉-|5〉 subsystem, there is
two-photon resonance, and electromagnetically induced trans-
parency occurs which creates a dark superposition of states |1〉
and |2〉 [26,32]. Essentially all of the population accumulates
in this dark state. For a probe field on the two transitions from
the dark state, the response can be treated to linear order in
E and B to a good approximation, as the probe field only
perturbs the atom from the dark state.

The field �3 induces a cross-coupling between electric and
magnetic components of the probe field which is key to a zero
(or negative) index. This cross-coupling is seen in the form
of the induced polarization and the induced magnetization,
which are most generally

P = ε0χ̄eeE + cε0χ̄ebB,

M = cε0χ̄beE + χ̄bb

μ0
B, (13)

where the χ̄i j are susceptibility tensors. This means that
the calculation of the index is not as straightforward as in
Sec. III A. Also, there will be additional terms in the Maxwell
equation due to the presence of magnetization, and the Bloch
equations will be more complicated due to the additional
levels.

First, a new expression for the refractive index must be
found. Using ∇ × E = − ∂B

∂t and ∇ × H = ∂D
∂t , all but E are

eliminated. Assuming the form (1) with a completely gen-
eral polarization, the tensor equation is reduced to a scalar
equation which can be solved for n, but two approximations
are made. First, n is treated as a constant for the reasons
described in Sec. III A. Second, the amplitude E is assumed
to be constant; otherwise the expression for n would contain
many terms with derivatives of E . This approximation is not
necessary, but made here simply to make the following nu-
meric simulations more tractable; however, this is justified by
the numerical method for the same reason that treating n as a
constant is justified. The result is

n = (χeb + χbe) +
√

4(1 + χee)(1 − χbb) + (χeb + χbe)2

2(1 − χbb)
,

(14)

where, for example, χeb = ε̂
†
E χ̄ebε̂B. The four χi j must be

calculated using the Bloch equations, and a set of parameters
found such that Re(n) is near zero.

Equation (13) can also be reduced to scalar form:

P = ε0χeeE + cε0χebB = 2Nd〈σ̂24〉,
M = cε0χbeB + χbb

μ0
B = 2Nm〈σ̂13〉. (15)

The coherences 〈σ̂13〉 and 〈σ̂24〉 are solved for in the steady
state in terms of other 〈σ̂i j〉, to first order in the probe field.
Then the four χi j can be identified. In terms of g and gB rather
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FIG. 11. Real part (blue, solid) and imaginary part (red, dashed)
of the refractive index as a function of 	/�. At 	 = −0.0993�, we
find Re(n) = −4.597 × 10−17 and Im(n) = 0.0498 (circled). Here,
Im(n), representing the amount of absorption, is near a minimum and
so is expected to be more stable than in the three-level case. Other
parameters are Natoms = 5 × 105, δ = 0, g = 0.01�, gB = 0.001�,
�1 = �2 = �3 = �, �31 = (1/137)2�, �42 = �43 = �51 = �52 =
�, and �/ck0 = 0.1.

than d and m, they are

χee = 8Natomsg2

ck0

× i[�31 + 2i(δ − 	)]〈σ̂22〉
[�31 + 2i(δ − 	)](�42 + �43 − 2i	) + 4|�3|2

,

χeb = 16NatomsggB

ck0

× �3〈σ̂21〉
[�31 + 2i(δ − 	)](�42 + �43 − 2i	) + 4|�3|2

,

χbe = 16NatomsggB

ck0

× �∗
3〈σ̂12〉

[�31 + 2i(δ − 	)](�42 + �43 − 2i	) + 4|�3|2
,

χbb = 8Natomsg2
B

ck0

× i(�42 + �43 − 2i	)〈σ̂11〉
[�31 + 2i(δ − 	)](�42 + �43 − 2i	) + 4|�3|2

.

(16)

Equations (14) and (16) suggest that the index experienced
by the probe field will be fairly stable, since the response
is mostly determined by 〈σ̂11〉, 〈σ̂22〉, and 〈σ̂12〉(∗), which are
largely fixed by the pump fields, even without the presence of
the probe field. Equations (16) are substituted into Eq. (14)
and parameters are chosen to obtain NZI. An example is
shown in Fig. 11. We get Re(n) = −4.597 × 10−17 at 	 =
−0.0993�, and also Im(n) = 0.0498, which means there is
fairly low attenuation; in any case, attenuation or gain will
affect the amplitude of the field, but not its phase, so this does
not matter for the present purpose.

Next, Bloch equations are derived from the Lindblad mas-
ter equation with Eq. (12), with the mean-field approximation
as in Sec. III A. These are given in Appendix B.

Finally, there is a contribution to the Maxwell equation due
to the magnetization. After reducing the full Maxwell’s equa-
tions to one scalar equation, we have

∇2E − ε0μ0
∂2

∂t2
E = μ0

∂2

∂t2
P + μ0

∂

∂t

∂

∂z
M, (17)

where E (z, t ) = 1
2E (z, t )ein(z,t )k0z−iνt and analogously for P,

M, and B. These forms are substituted in Eq. (17), then E is
replaced with

√
2h̄ν/ε0V 〈â〉, P and M with Eq. (15), and χi j

with Eq. (16). Finally, with the same approximations made as
in Sec. III A, we obtain

1

k2
0

∂2〈â〉
∂z2

+ 2in

k0

∂〈â〉
∂z

+ 2i

ck0

∂〈â〉
∂t

+ (1 − n2)〈â〉

= −4iNatomsg

c2k2
0

∂〈σ̂24〉
∂t

− 2Natomsg

ck0
〈σ̂24〉

+ 2inNatomsgB

(ck0)2

∂〈σ̂13〉
∂t

+ 2inNatomsgB

ck0
〈σ̂13〉

− 2iNatomsgB

ck0

∂〈σ̂13〉
∂z

+ 2NatomsgB

c2k0

∂2〈σ̂13〉
∂z∂t

. (18)

B. Numerical simulation

To solve the set of Maxwell-Bloch equations (B1) and (18),
we use the method described in Sec. III B for all the reasons
described there. The instantaneous index n is calculated after
each step according to Eq. (14).

However, there is an additional difficulty in this case. This
comes from the terms involving 〈σ̂13〉, related to the magne-
tization, in Eq. (18). These include spatial derivatives of an
atomic variable, which means a boundary condition in z is
required to solve the equations. For atomic variables, we only
have valid initial conditions in t . Setting a boundary condition
for an atomic variable, for example, at z = 0, implies that we
know the value of that variable at z = 0 for all time, which is
a constraint that we cannot justifiably place.

Instead, we use the finite-difference method to approximate
these terms at each step, using values from previous solu-
tions. At z = 0, t = 0, we do not have previous solutions for
〈σ̂13〉, so we approximate by solving the Bloch equations in
the steady state using values of the pulse at −dz and/or
−dt . Furthermore, looking to future work, in order to include
higher-order expectation values like 〈â(†)σ̂i j〉 as a better ap-
proximation, this kind of approach would be necessary for
dealing with spatial derivatives of these variables for any
atomic medium.

C. Results

We present results for the model described in Sec. IV A,
using the numerical method described in Secs. III B and IV B.

The results show that the effective index does not remain
near zero, as there is spatial phase change in Fig. 12, most no-
ticeably along the path of the front tail of the pulse beginning
at z = 0, t = 0. This is also seen in the full field, shown in
Fig. 13. However, compared to the three-level results, Fig. 14
shows that the instantaneous index stays much closer to zero
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FIG. 12. Phase of 〈â〉. The index does not remain near zero.
There is a spatial phase change right above the red line, along the path
of the beginning of the pulse. This becomes sharper the further the
pulse travels into the medium. This is caused by a nonzero effective
index, which leads to a growing imaginary part of 〈â〉. Besides
that, there is little to no variation along z. Parameters are Nphotons =
1, σs = 10π/k0, zi = −120/k0, �31 = �/1372, �42 = �43 = �51 =
�52 = �, 	 = −0.0993�, δ = 0, g = 0.01�, gB = 0.001�, �1 =
�2 = �3 = �, and Natoms = 5 × 105 (the same as in Fig. 11). We
set z f = 4π/k0, zsteps=200, t f = 70/�, and tsteps=400.

FIG. 13. The full field in time and space, with two different
scales for clarity (in arbitrary units). The effect of the overall index
is seen along the path of the beginning of the pulse and just above
it. White regions are where the values go beyond the range shown.
Parameters are the same as in Fig. 12.

FIG. 14. n in time and space. Each part stays near its initial value,
but changes slightly with the field as a growing 〈â〉 perturbs the
atomic medium further from its initial steady state. Parameters are
the same as in Fig. 12.

overall, and the effective index stays closer to zero over a
larger z-t region.

D. Discussion

There is a clear disturbance in the phase along the line
t� = (70/8π )zk0, where the initial part of the tail of the pulse
propagates. This suggests that despite the NZI preparation, the
initial interaction between the photon and the medium causes
a sudden phase change which is carried through the rest of
the propagation, starting small and difficult to see but growing
the further the pulse travels. Mathematically, the spatial phase
change in this case comes more from the imaginary part of 〈â〉
that grows from the beginning of the propagation (see Fig. 27),
rather than from the instantaneous n. This is also present in the
three-level results of Sec. III C, but is less pronounced there
since the imaginary part grows much more slowly.

Simulations for other parameters suggest that this sharp
phase change can be reduced, but not eliminated, with a wider
pulse or by beginning with the peak of the pulse further
outside the medium. There is a less prominent phase change
above that line, at later times, when the pulse grows to its
peak and then decreases. As in Sec. III C, the index likely
varies from its initial value according to the Kramers-Kronig
relations. The spatial phase variations suggest that even a
single photon does ruin its effective NZI with the five-level
atoms as well.

Despite this phase change, the instantaneous index, as cal-
culated from Eq. (14), changes slightly with 〈â〉, but stays very
near zero. The probe field does affect the atomic variables,
but this effect is extremely small; 〈σ̂11〉, 〈σ̂22〉, and 〈σ̂12〉(∗) are
perturbed slightly from their initial steady-state values set by
the pump fields, leading to only a small change in n. Over
most of the z-t region, there is no significant spatial phase
variation (see Fig. 12).

We note again that the instantaneous n calculation ignores
terms involving derivatives of E ∝ 〈â〉, which might introduce
too much error and cause Eq. (14) to be invalid; a more accu-
rate calculation of the index could better explain the observed
phase changes not accounted for by n.

V. CONCLUSION

All of the results from the propagation of a field through
three- or five-level atomic media, prepared to give an NZI
response, strongly suggest that a single photon does indeed
destroy its own NZI. In the three-level case, the strong
variation in the instantaneous index with a time-dependent
incoming field amplitude shows that the NZI is particularly
delicate. For the five-level atoms, the instantaneous index
stays near zero, but phase plots show that the effective index
does not, because there is a sharp spatial phase change along
the front of the pulse as it propagates through the medium.

In both cases, we believe that the results are conclusive
within the approximations made. However, further study is
needed because of these approximations, the semiclassical na-
ture of the models, and the numerical error introduced by the
discrete method that was needed to perform the calculations.

The spatial phase variations seen in all of the results sug-
gest that it may be difficult or impossible to maintain NZI,
even for a single photon, which diminishes the promise of
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strong, distant dipole-dipole coupling as well as other appli-
cations. Although our calculations were for atomic media,
we predict that these conclusions also apply to metamateri-
als, where the light-matter interaction is still fundamentally
between photons and other particles, and where the Kramers-
Kronig relations are still valid.

Our findings motivate future work where some of
the performed approximations—especially the mean-field
approximation—are dropped, which should result in more
accurate results and further insights into the quantum dy-
namics of the studied models [35]. In addition, tailoring the
pulse shape or other parameters could be done to minimize
the spatial phase change. However, we do not expect these
improvements to alter the qualitative results.

The ultimate goal should be to move beyond these semi-
classical models and take a fully quantum approach. In this
case the pulse propagation could be solved using a Monte
Carlo treatment, which would more accurately capture the
quantum nature of the atom-field interaction.
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APPENDIX A: ADDITIONAL PLOTS FOR THE
THREE-LEVEL CASE

1. Contour plots

We present additional contour plots for the three-level case.
Figure 15 shows 〈â〉 and Fig. 16 shows 〈σ̂13〉 in time and
space.

2. Time plots at z = 0

We present additional plots in time for the three-level case.
Figure 17 shows 〈â〉 and Fig. 18 shows 〈σ̂13〉 as functions of
time at z = 0.

3. Time plots at z = 2π/k0 (halfway through the medium)

We present additional plots in time for the three-level case,
at the point halfway through the medium. Figure 19 shows 〈â〉
and Fig. 20 shows 〈σ̂13〉 as functions of time at z = 2π/k0.

4. Space plots at t = 0

We present additional spatial plots for the three-level case
to show how the NZI is prepared throughout the medium.

FIG. 15. Plot of the pulse 〈â〉. It begins purely real at z = 0 where
the pulse enters from vacuum, and the real part is roughly unchanged
throughout the propagation. It gains a small imaginary part after z =
0. Parameters are the same as in Fig. 5.

FIG. 16. Coherence of the probe-field transition. 〈σ̂13〉 is roughly
proportional to 〈â〉, except for a delay near z = 0, which is what
causes n to vary the most near the boundary. Parameters are the same
as in Fig. 5.

FIG. 17. 〈â〉 as a function of time at z = 0. Here, 〈â〉 matches the
pulse of Eq. (3). Parameters are the same as in Fig. 5.

FIG. 18. 〈σ̂13〉 as a function of time at z = 0. The real part is
roughly proportional to Re(〈â〉), except it lags for several time steps.
Parameters are the same as in Fig. 5.

FIG. 19. 〈â〉 as a function of time, at the point halfway through
the medium. The real part is nearly the same as at z = 0, but here an
imaginary part has developed. Parameters are the same as in Fig. 5.

FIG. 20. 〈σ̂13〉 as a function of time, at the point halfway through
the medium. Here, it is roughly proportional to 〈â〉, so n varies less
than at previous points in space. Parameters are the same as in Fig. 5.
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FIG. 21. 〈â〉 as a function of space at t = 0. This shows the
steady-state value initially prepared throughout the medium to give
NZI. Parameters are the same as in Fig. 5.

FIG. 22. 〈σ̂13〉 as a function of space at t = 0. This shows the
steady-state value initially prepared throughout the medium to give
NZI. Parameters are the same as in Fig. 5.

FIG. 23. n as a function of space at t = 0. This shows the
near-zero initial value initially prepared throughout the medium.
Parameters are the same as in Fig. 5.

FIG. 24. 〈â〉 as a function of space, when its peak is halfway
through the medium. Parameters are the same as in Fig. 5.

FIG. 25. 〈σ̂13〉 as a function of space, when the peak of 〈â〉 is
halfway through the medium. It is roughly proportional to 〈â〉, except
below zk0 = 4, where n varies the most. Parameters are the same as
in Fig. 5.

FIG. 26. n as a function of space, when the peak of 〈â〉 is halfway
through the medium. Both parts of n still vary away from zero the
most near z = 0 where the pulse is entering, but stay closer to zero
further inside the medium. Parameters are the same as in Fig. 5.

Figure 21 shows 〈â〉, Fig. 22 shows 〈σ̂13〉, and Fig. 23 shows
n as functions of space at t = 0.

5. Space plots when the field peak
is halfway through the medium

We present additional spatial plots for the three-level case
at the moment when the peak of the pulse is halfway through
the medium. Figure 24 shows 〈â〉, Fig. 25 shows 〈σ̂13〉, and
Fig. 26 shows n as functions of space at t = 29.4/�.

APPENDIX B: BLOCH EQUATIONS—THE
FIVE-LEVEL CASE

The Bloch equations derived from the Lindblad master
equation with Eq. (12) are

∂〈σ̂12〉
∂t

≈ ig∗〈â†〉〈σ̂14〉 − igB〈â〉〈σ̂23〉∗ − i�1〈σ̂25〉∗

+ i�∗
2〈σ̂15〉,

∂〈σ̂13〉
∂t

≈ [−i(δ − 	) − �31/2]〈σ̂13〉
− igB〈â〉(〈σ̂33〉 − 〈σ̂11〉) − i�1〈σ̂35〉∗ + i�∗

3〈σ̂14〉,
∂〈σ̂14〉

∂t
≈ (i	 − �42/2 − �43/2)〈σ̂14〉 + ig〈â〉〈σ̂12〉

− igB〈â〉〈σ̂34〉 − i�1〈σ̂45〉∗ + i�3〈σ̂13〉,
∂〈σ̂15〉

∂t
≈ − (�51 + �52)/2〈σ̂15〉 − igB〈â〉〈σ̂35〉

− i�1(〈σ̂55〉 − 〈σ̂11〉) + i�2〈σ̂12〉,
∂〈σ̂23〉

∂t
≈ [−i(δ − 	) − �31/2]〈σ̂23〉 − ig〈â〉〈σ̂43〉

+ igB〈â〉〈σ̂12〉∗ − i�2〈σ̂35〉 + i�∗
3〈σ̂24〉,

∂〈σ̂24〉
∂t

≈ (i	 − �42/2 − �43/2)〈σ̂24〉
− ig〈â〉(〈σ̂44〉 − 〈σ̂22〉) − i�2〈σ̂45〉∗ + i�3〈σ̂23〉,

∂〈σ̂25〉
∂t

≈ − (�51 + �52)/2〈σ̂25〉 − ig〈â〉〈σ̂45〉
+ i�1〈σ̂12〉∗ − i�2(〈σ̂55〉 − 〈σ̂22〉),
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∂〈σ̂34〉
∂t

≈ (iδ − �31/2 − �42/2 − �43/2)〈σ̂34〉

+ ig〈â〉〈σ̂23〉∗ − igB〈â†〉〈σ̂14〉
− i�3(〈σ̂44〉 − 〈σ̂33〉),

∂〈σ̂35〉
∂t

≈ [i(δ − 	) − �31/2 − �51/2 − �52/2]〈σ̂35〉

− ig∗
B〈â†〉〈σ̂15〉 + i�1〈σ̂13〉∗

+ i�2〈σ̂23〉∗ − i�3〈σ̂45〉,
∂〈σ̂45〉

∂t
≈ (−i	 − �42/2 − �43/2 − �51/2 − �52/2)〈σ̂45〉

− ig∗〈â†〉〈σ̂35〉 + i�1〈σ̂14〉∗ − i�2〈σ̂24〉∗,
∂〈σ̂11〉

∂t
≈ − igB〈â〉〈σ̂13〉∗ + ig∗

B〈â†〉〈σ̂13〉 − i�1〈σ̂15〉∗

+ i�∗
1〈σ̂15〉 + �31〈σ̂33〉 + �51〈σ̂55〉,

∂〈σ̂22〉
∂t

≈ − ig〈â〉〈σ̂24〉∗ + ig∗〈â†〉〈σ̂24〉 − i�2〈σ̂25〉∗

+ i�∗
2〈σ̂25〉 + �42〈σ̂44〉 + �52〈σ̂55〉,

∂〈σ̂33〉
∂t

≈ igB〈â〉〈σ̂13〉∗ − ig∗
B〈â†〉〈σ̂13〉 − i�3〈σ̂34〉∗

+ i�∗
3〈σ̂34〉 − �31〈σ̂33〉 + �43〈σ̂44〉,

∂〈σ̂44〉
∂t

≈ ig〈â〉〈σ̂24〉∗ − ig∗〈â†〉〈σ̂24〉 + i�3〈σ̂34〉∗

− i�∗
3〈σ̂34〉 − (�42 + �43)〈σ̂44〉,

∂〈σ̂55〉
∂t

= i�1〈σ̂15〉∗ − i�∗
1〈σ̂15〉 + i�2〈σ̂25〉∗

− i�∗
2〈σ̂25〉 − (�51 + �52)〈σ̂55〉. (B1)

FIG. 27. 〈â〉 in space and time, with two different scales for the
imaginary part. White regions are where the values go beyond the
range shown. At z = 0, 〈â〉 is purely real, but gains an imaginary part
upon entering the medium. Both parts widen and grow as the pulse
travels further into the medium.

APPENDIX C: ADDITIONAL PLOTS FOR THE
FIVE-LEVEL CASE

1. Contour plots

We present additional contour plots for the five-level case.
Figure 27 shows 〈â〉 in time and space.

2. Time plots at z = 0 and z f

We present additional plots in time for the five-level case.
Figure 28 shows Re(n) as a function of time at z = 0. Fig-
ure 29 shows Re(n) and Fig. 30 shows 〈â〉 as functions

FIG. 28. Re(n) as a function of time at z = 0. It increases very
slightly with 〈â〉, then returns to its initial value after the pulse passes.
Im(n) does not appreciably change from its initial value.

FIG. 29. Re(n) as a function of time at z = z f . It increases
slightly more than at z = 0 due to a growing 〈â〉 further into the
medium, but is still very near zero. Im(n) does not appreciably
change from its initial value.

FIG. 30. 〈â〉 as a function of time at z = z f . [At z = 0, 〈â〉 is
identical to Fig. 17, where it is given by Eq. (3).] There is an apparent
discontinuity or rapid oscillation at t� = 34, which can be traced
back to z = 0, t = 0, where the pulse first begins interacting with
the medium. This corresponds to the sharp spatial phase change just
above the red line in Fig. 12.
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of time at z = 2π/k0 (halfway through the medium). For the
five-level case, 〈â〉 as a function of time at z = 0 is the same

as in the three-level case (Fig. 17) since the pulses entering at
the boundaries are identical.
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