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Heisenberg-limit spin squeezing with the spin Bogoliubov Hamiltonian
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It is well established that the optimal spin squeezing under a one-axis-twisting Hamiltonian follows a scaling
law of J−2/3 for J interacting atoms after a quench dynamics. Here, we prove analytically and numerically that
the spin squeezing of the ground state of the one-axis-twisting Hamiltonian actually reaches the Heisenberg limit
J−1. By constructing a bilinear Bogoliubov Hamiltonian with the raising and lowering spin operators, we exactly
diagonalize the spin Bogoliubov Hamiltonian, which includes the one-axis twisting Hamiltonian as a limiting
case. The ground state of the spin Bogoliubov Hamiltonian exhibits excellent spin squeezing, which approaches
the Heisenberg limit in the case of the one-axis-twisting Hamiltonian. It is possible to realize experimentally the
spin-squeezed ground state of the one-axis-twisting Hamiltonian in dipolar spinor condensates, ultracold atoms
in optical lattices, spins in a cavity, or alkali atoms in a vapor cell.
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I. INTRODUCTION

Development of the methods for realizing squeezed spin
states (SSSs) or entangled spin states has been a vigorous
frontier in quantum-enhanced precision measurements for
more than three decades [1–3], because such strongly corre-
lated quantum states may lead to significant improvements
in atomic clocks [4–8], optical or atomic interferometers
[7,9,10], frequency standards [11,12], and gravitational wave
detection [9,13,14]. The uncertainty principle predicts that
relative measurement precision approaches the standard quan-
tum limit (SQL) J−1/2 for uncorrelated J particles in a
quantum interferometer, and the Heisenberg limit (HL) J−1

for some special squeezed or entangled quantum states [15].
Generating atomic spin squeezing has been proposed and
demonstrated with a variety of methods, including quantum
nondemolition measurements [16], squeezing transferring
[17–19], and dynamical evolution [1–3], in systems such as
atom-cavity interaction systems [20–22], interacting trapped
ions [23,24], and Bose-Einstein condensates (BECs) [25–31].

A nonlinear atomic interaction induces spin squeezing after
a quench dynamics from a coherent spin state (CSS). It is
generally believed that the spin squeezing parameter of J
interacting atoms may achieve J−2/3 under a one-axis-twisting
(OAT) Hamiltonian and J−1 under a two-axis-twisting (TAT)
Hamiltonian [2]. However, the SSSs generated with the dy-
namical evolution slip away quickly after the optimal time.
The long-lived ground SSSs are thus desired and have been
explored recently in a spinor BEC by Chapman’s group [32]
and in a trapped-atom clock system by Reichel’s group [33].

We investigate in this article the ground SSS of a
spin Bogoliubov Hamiltonian. By constructing a bilinear
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Bogoliubov Hamiltonian with spin operators, which includes
the OAT Hamiltonian as a limiting case, we prove analytically
and numerically that the spin squeezing of the ground SSS
of the spin Bogoliubov Hamiltonian (as well as the OAT
Hamiltonian) reaches the HL J−1 with a weak external field.
Our theoretical results may be realized potentially in many
experiments, such as dipolar spinor BEC [34–45], ultracold
atoms in an optical lattice [7,46–52], and spins in a cavity or
in a vapor cell [19,22,53–66].

II. LMG MODEL

The Lipkin-Meshkov-Glick (LMG) model, originally in-
troduced in nuclear physics in 1965, has been widely studied
in many quantum spin systems, such as spinor BEC, Rydberg-
dressed atomic gas, and cold atoms in optical lattices [67–71].
The entanglement properties as well as spin squeezing of this
model in its ground state have been discussed in much of
the literature on mean-field theory [72–74], by treating the
quantum effect as small fluctuations, and using the Holstein-
Primakoff transformation in the thermodynamic limit [75].
Different from previous methods, we explore an exact ana-
lytical approach to diagonalize the Hamiltonian for certain
parameters and focus on the spin-squeezed ground state.

The Hamiltonian of the LMG model reads

H = η
(
J2

x + γ J2
y

) + �Jz, (1)

where Jx,y,z are collective spin operators, η the interaction
strength, γ the anisotropic parameter, and � the effective
external field. At zero external field � = 0, this Hamiltonian
becomes an OAT Hamiltonian HOAT ∝ J2

x,z if γ = 0, 1 and
a TAT Hamiltonian HTAT ∝ (J2

x − J2
y,z ) if γ = −1, 1/2, after

dropping the constant term with J2 = J2
x + J2

y + J2
z .
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III. CONSTRUCTION OF BOGOLIUBOV HAMILTONIAN

To diagonalize the Hamiltonian Eq. (1), we construct a
diagonal “Bogoliubov” Hamiltonian HB through the Bogoli-
ubov transformation of the spin lowering/raising operator
J± = Jx ± iJy, inspired by the concept of squeezed light [76].
We prove that the constructed Bogoliubov Hamiltonian HB is
a special case of the LMG model Eq. (1).

Spin lowering and raising operators obey the canonical
commutation relation, [J+, J−] = 2Jz and [J±, Jz] = ∓J±. A
Dicke state |J, M〉 (M = −J,−J + 1, . . . , J) is the eigenstate
of the spin operator Jz, satisfying the relation Jz |J, M〉 =
M |J, M〉. Since Jz = 1

2 (J+J− − J−J+), a Dicke state is

|J, M〉 = 1

(J + M )!

(
2J

J + M

)1/2

JJ+M
+ |J,−J〉 .

Unlike the annihilation operator â of a photon, the spin lower-
ing operator J− has only one eigenstate |J,−J〉, which is the
vacuum state and satisfies J− |J,−J〉 = 0.

Similar to generalized creation and annihilation operators,
we define the following generalized spin lowering and rais-
ing operators, A+ = μ∗J+ − νJ−, A− = A†

+ = μJ− − ν∗J+.
To maintain the commutation relation [J+, J−] = [A+, A−],
we require |μ|2 − |ν|2 = 1. We construct the following diag-
onal Hamiltonian using A±, the Bogoliubov Hamiltonian,

HB = A+A−. (2)

By assuming μ = cosh θ and ν = eiϕ sinh θ , one finds
HB = Jz + cosh 2θ (J2

x + J2
y ) − cos ϕ sinh 2θ (J2

x − J2
y ) −

i
2 sin ϕ sinh 2θ (J2

+ − J2
−). When ϕ = π , we obtain a specific

spin Bogoliubov Hamiltonian as

HB = Jz + cosh 2θ
(
J2

x + J2
y

) + sinh 2θ
(
J2

x − J2
y

)
. (3)

It is obvious that HB in Eq. (3) is a special case of the
LMG Hamiltonian Eq. (1), where γ = exp(−4θ ) and η/� =
exp(2θ ) must be satisfied. For a large enough θ , the Bogoli-
ubov Hamiltonian becomes effectively the OAT Hamiltonian,
HOAT = exp(2θ )J2

x .

A. Spin vacuum state

The ground state of the Bogoliubov Hamiltonian HB is the
eigenstate of the operator A−,which is a spin vacuum state
satisfying

A− |χ〉 = 0 |χ〉 . (4)

This state can be expanded in the Dicke basis as |χ〉 =∑J
M=−J CM |J, M〉. By substituting the definition of A−, we

find the following recursion relation,

CM+2 = ν∗

μ
CM

√
(J − M )(J + M + 1)

(J − M − 1)(J + M + 2)
. (5)

It is straightforward to calculate the general formula in terms
of the coefficient C−J ,

C−J+2K =
(

ν∗

μ

)K J!

(J − K )!K!

√
(2J − 2K )!(2K )!

(2J )!
C−J , (6)

K = 0, 1, . . . , J . Since 〈J, J| A− |χ〉 = 0 and CJ−1 = 0, it is
easy to find that C−J+2K+1 = 0 for K = 0, 1, . . . , J − 1.

By further utilizing the normalization condition∑J
K=0 |C−J+2K |2 = 1, we obtain

C−J = 1√
F

(
1
2 ,−J, 1

2 − J,
∣∣ ν
μ

∣∣2) , (7)

where F[a, b, c, x] represents the hypergeometric function.

B. Spin squeezing of the spin vacuum state

Similar to a photon squeezed state, the spin vacuum state
is also spin squeezed. To characterize the spin squeezing,
two kinds of spin squeezing parameters were introduced by
Kitagawa et al. and Wineland et al., respectively [2,3],

ξ 2
S = (�Jn⊥ )2

(J/2)
, ξ 2

R = 2J (�Jn⊥ )2

|〈 �J〉|2 , (8)

where subscript n⊥ refers to an arbitrary axis perpendicular to
the mean spin 〈 �J〉, where the minimum of (�Jn⊥ )2 is obtained.
The inequality ξ 2

i < 1 (i = S, R) indicates that the state is
spin squeezed, compared to a CSS with ξ 2

i = 1. The relation
between the two squeezing parameters is ξ 2

R = (J/|〈 �J〉|)2ξ 2
S .

Since J � |〈 �J〉| always holds, one finds ξ 2
S � ξ 2

R [48]. The
equality is taken at J = |〈 �J〉|, when a CSS is considered. The
spin squeezing parameter ξ 2

R relates directly to the phase sen-
sitivity of a quantum interferometer, which takes the general
form as

�φ = (�Jn⊥ )

|〈 �J〉| = ξR√
J
. (9)

Obviously, the phase sensitivity of a CSS is �φ = 1/
√

J ,
which is denoted as the SQL [15]. By contrast, an SSS is
expected to achieve a phase sensitivity below the SQL but
above the HL, i.e., 1/J � �φ < 1/

√
J [15]. It follows im-

mediately that 1/J � ξ 2
R < 1. On the other hand, ξ 2

S may
approach zero, not constrained by the HL. For instance, a
Dicke state |J, M 
= 0〉 has a constant spin size J and zero
spin variance along the z direction, resulting in ξ 2

S = 0.
To calculate the parameters ξ 2

S and ξ 2
R of the spin vacuum

state, we need to find the spin average 〈Jn〉 and the minimal
variance perpendicular to the mean-spin direction (MSD),
i.e., �Jn⊥ . Since the operators Jx,y are a linear combination
of A±, it follows immediately that 〈χ | Jx,y |χ〉 = 0. By fur-
ther employing the commutator [A+, A−] = 2Jz, we find that
〈χ | Jz |χ〉 
= 0, thus the MSD of the state |χ〉 is along the z
direction. The minimal variance must be in the x-y plane and
the covariance matrix is defined as


xy =
( 〈

J2
x

〉
Cov(Jx, Jy)

Cov(Jx, Jy)
〈
J2

y

〉
)

, (10)

with Cov(Jx, Jy) = (〈[Jx, Jy]+〉 − 〈Jx〉〈Jy〉)/2 being the co-
variance between Jx and Jy, and [X,Y ]+ = XY + Y X denot-
ing the anticommutator. The eigenvalues of the covariance
matrix are

λ± = 1
2

[〈
J2

x + J2
y

〉 ± √〈
J2

x − J2
y

〉2 + 4 Cov(Jx, Jy )2
]
. (11)

After a straightforward calculation the eigenvalues are
simplified as λ± = 1

2 [(F − K ) ±
√

(F − K )2 − G2], where
F = J (J + 1), G = 〈Jz〉, and K = 〈J2

z 〉. Obviously we find
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FIG. 1. Squeezing parameters ξ 2
S and ξ 2

R of the ground state
of (a) the spin Bogoliubov Hamiltonian HB Eq. (3) and (b) the
anisotropic LMG Hamiltonian HA. In (a), the spin squeezing param-
eters ξ 2

R, ξ 2
S and spin average |〈Jz〉|/J of state |χ〉 are denoted by

red, blue, and cyan solid lines, respectively. The same values of the
ground state that are calculated numerically by directly diagonalizing
the Hamiltonian HB are denoted by red circles, blue diamonds, and
cyan triangles. The numerical and analytical results agree exactly
with each other, indicating that the spin vacuum state |χ〉 is in-
deed the ground state of the Hamiltonian HB. For large values of
θ , ξ 2

R approaches HL (lower black dotted line), while ξ 2
S decreases

exponentially to zero. The spin average |〈Jz〉|/J also decreases ex-
ponentially to zero. For the SQL (upper pink dotted line) ξ 2

S,R = 1
and for the HL ξ 2

R = 1/J . The cyan cross, pink pentagram, and
blue square denote respectively the spin average, ξ 2

R , and ξ 2
S for the

optimal SSS generated through dynamical evolution under the TAT
Hamiltonian Eq. (1) with γ = −1, � = 0. Similarly, in (b) ξ 2

R (red
solid line with circles) for the ground state of the OAT Hamiltonian
(at a large value of η/�) approaches the HL. Accordingly, ξ 2

S (blue
dashed line with diamonds) and |〈Jz〉|/J (cyan dashed-dotted with
triangles) decrease exponentially. The spin size is J = 1000.

that min(�Jn⊥ )2 = λ− [48]. The squeezing parameters
become

ξ 2
S = 2λ−

J
,

ξ 2
R = 2Jλ−

|〈Jz〉|2 = J

2λ+
. (12)

In the limit θ → ∞, we approximate (ν∗/μ)K ≈ 1 −
2K exp(−2θ ) and the spin average becomes [77]

〈Jz〉 ≈ −J2 exp(−2θ ). (13)

Accordingly, the eigenvalues of covariance matrix are λ+ ≈
J2/2 and λ− ≈ (J2/2) exp(−4θ ). Finally, we find that the
squeezing parameters are

ξ 2
R ≈ 1

J
, ξ 2

S ≈ J exp(−4θ ). (14)

In addition, the Bogoliubov Hamiltonian in Eq. (3) reduces
effectively to the OAT Hamiltonian in the limit of θ → ∞.
Therefore, we prove that the spin squeezing of the ground
state for an OAT Hamiltonian is approaching HL, surpassing
the constraint of ∝J−2/3 for dynamic evolution governed by
the same Hamiltonian. Moreover, the resulting ground state
of HB is categorized as the generalized intelligent state (GIS)
which minimizes the Robertson-Schrödinger uncertainty rela-
tion [78–80]. It is straightforward to find that λ+λ− = G2/4 =
〈Jz〉2/4, indicating that |χ〉 is an intelligent state [81].

We present in Fig. 1(a) the squeezing parameters ξ 2
R and

ξ 2
S , as well as the spin average 〈Jz〉/J , of the state |χ〉 for a
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FIG. 2. (a) Probability amplitudes of the ground state |χ〉 (red
circles) and |SSS〉 (blue crosses) in the basis of {|J, M〉 , M = −J,

−J + 2, . . . , J}. The odd-M amplitudes are zero (not shown). The
parameters are J = 1000 and θ = 3. The inset shows the probability
amplitude for θ = 9. (b) Infidelity of the state |χ〉 and a Dicke |ψD〉.
Obviously the spin-squeezed ground state of the OAT Hamiltonian is
a Dicke state.

spin size J = 1000. These quantities vary with the parameter
θ . The coefficients CM of the ground state |χ〉 are analyti-
cally calculated using the recursion relation Eq. (6) and the
coefficient C−J . It is then straightforward to calculate the spin
average 〈χ |Jz|χ〉 and the spin squeezing parameters ξ 2

R and
ξ 2

S . We also present the spin squeezing parameters ξ 2
R and

ξ 2
S of the optimal SSS, which is generated numerically by

evolving the system from an initial CSS |J, J〉 under the TAT
Hamiltonian HTAT = J2

x − J2
y [2]. As a comparison, we plot in

Fig. 1(b) the same quantities of the ground state of a special
anisotropic LMG Hamiltonian with γ = 0, HA = ηJ2

x + �Jz.
As η � �, the Hamiltonian HA effectively reduces to the OAT
Hamiltonian. Because it is challenging with the analytical
method, the ground state of HA is calculated numerically for
J = 1000.

As shown in Fig. 1(a), the spin squeezing parameter ξ 2
R

approaches the HL quickly in the large θ region (θ > 3). The
parameter ξ 2

S and the spin average 〈Jz〉 decrease exponentially
to zero approximately described by Eqs. (13) and (14), re-
spectively. In the small θ region (θ < 3), the spin average
is almost a constant while the spin squeezing parameters
ξ 2

S,R decrease exponentially. This feature is especially useful
for quantum-enhanced metrology [15,48,82–85]. At θ ≈ 3,
the squeezing parameters ξ 2

S,R of the ground state |χ〉 and
of the optimal SSS of HTAT are close to the HL. On the
other hand, the spin averages are quite different, 〈χ |Jz|χ〉 =
−0.89J and |〈SSS|Jz|SSS〉 = 0.59J . Similarly in Fig. 1(b),
the spin squeezing parameters ξ 2

R also approach the HL as
η/� becomes large. In the limit case, both Figs. 1(a) and
1(b) show that the spin squeezing of the ground state of the
OAT Hamiltonian is at the HL, in stark contrast to earlier
understanding [48,86].

A typical ground state of the Bogoliubov Hamiltonian |χ〉
is presented in Fig. 2(a) for θ = 3. As a comparison, the
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optimal spin-squeezed state |SSS〉 under the TAT Hamiltonian
is also shown. Both |χ〉 and |SSS〉 are real functions. Besides
the odd-M coefficients CM being zero, the even-M coefficients
of |SSS〉 are positive while that of |χ〉 are alternatively posi-
tive and negative. Clearly, these two states are very different,
though the spin squeezing parameter ξ 2

R of them is close to the
HL. As shown in the inset, the state |χ〉 at θ = 9 is similar
to a Dicke state |ψD〉 with Jx |ψD〉 = 0. We then plot the
infidelity of the state |χ〉 and |ψD〉 in Fig. 2(b) with 1 − F =
1 − | 〈χ | ψD〉|2. As θ increases to a large value, the infidelity
approaches zero exponentially, indicating the spin-squeezed
ground state |χ〉 of the OAT Hamiltonian is in fact a Dicke
state.

Here, we note that the spin squeezing parameter ξ 2
R of

the Dicke state previously considered was ill defined because
its spin average is zero and other parameters, such as the
Dicke squeezing parameter and Mach-Zehnder phase sensitiv-
ity [40,41,48,86], were introduced to characterize the strong
entanglement of the state. These parameters exhibit Heisen-
berg scaling. However, the spin squeezing parameter ξ 2

R is
in fact well defined and converges to the Heisenberg limit
1/J , even though the spin average is zero [15,87]. Such a
finite (nonzero) spin squeezing parameter ξ 2

R is due to the
identical asymptotic behavior of the nominator, 2J (�Jn⊥ )2,
and the denominator, |〈Jz〉|2, as exp(−2θ ) approaches zero
[see Eqs. (12)–(14)]. In addition to investigating the squeez-
ing and entanglement properties of squeezed states, one may
also employ many-body correlators to explore the many-body
nonlocality of such states [88].

IV. POSSIBLE EXPERIMENTAL PLATFORMS

There are a variety of experimental platforms to potentially
realize the HL spin-squeezed ground state |χ〉. First, a dipolar
spinor BEC is an ideal test bed of the LMG model, where the
atoms macroscopically occupy internal hyperfine states that
can be treated as collective spin states. Under a single-mode
approximation, the spin-dependent effective Hamiltonian of
the condensate with a magnetic dipole-dipole interaction in an
external magnetic field along the z direction is [34,39,43,45]

He = −DJ2
z + E

(
J2

x − J2
y

) + �Jz, (15)

where J = ∑
αβ â†

αFαβ âβ is the collective condensate spin
operator and Jη (η = x, y, z) its η component. The constants
D and E depends on the density and geometry of the con-
densate and � on the external magnetic field. By tuning the
isotropic parameter γ = (D − E )/(D + E ) and the field � =
0, this Hamiltonian takes the form of the OAT model, i.e.,
HOAT ≈ −DJ2

z for γ ≈ 1 and HOAT ≈ 2EJ2
x for γ ≈ 0, and

the TAT model HTAT ≈ E (J2
x − J2

y ) for γ = −1, or HTAT ≈
2E (J2

x − J2
z ) for γ = 1/2. We have omitted the constant term

proportional to J2.
Second, the nonlinear atom interaction in a two-component

BEC is described by an OAT Hamiltonian HOAT = ηJ̃z
2
,

where J̃x,y,z is the pseudospin operator constituted by two
different modes of the condensate and η the intermode in-
teraction strength. The system can be regarded as a BEC
with atoms in two internal hyperfine (or Zeeman) states or
a BEC in a double-well potential. The interaction between the

pseudospin modes for both cases is finely tunable in experi-
ment [35–38,40–42,44].

Third, both OAT and TAT Hamiltonians may be exper-
imentally realized in a system of spins in a cavity, where
the interaction between the spins and the cavity is described
by the Hamiltonian HTC = ωmâ†â + ωBJz + g(â†J− + âJ+),
where â (â†) is the annihilation (creation) operator of the
cavity field with a mode frequency ωm, Jα (α = z,±) the col-
lective spin operator, ωB the Zeeman splitting of the spins, and
g the interaction strength. After the Schrieffer-Wolf transfor-
mation eRHe−R with R = (g/�m)(â†J− − âJ+), �m = |ωB −
ωm|, the Hamiltonian of the spin part is approximated to
HOAT ≈ (2g2/�m)J2

z , indicating that the effective spin interac-
tion is mediated by the cavity mode [22,53–61,63–65]. When
the system subjects to a parametric two-photon driving, the
spin interaction term becomes a TAT Hamiltonian HTAT ≈
[2λg2/(�m�c)](J2

x − J2
y ) with λ being the driving amplitude

and �c the detuning between the cavity and driving frequency
[62].

Fourth, ultracold atoms loaded in an optical lattice are
described by the Bose (Fermi)-Hubbard model in which the
site-dependent spin operator can be reduced to a collective
spin operator in the Mott phase. Both OAT and TAT Hamil-
tonians may be induced by applying an additional weak
light to the system [46–50,52]. The effective Hamiltonian
depends on the phase φ of the light, and becomes an OAT
Hamiltonian HOAT ≈ ∓h̄χφJ2

x,z, for φ = π, 2nπ/N with n =
±1,±2, . . . ± (N/2 − 1), where N is the atom number and
χφ the effective coupling strength. When the system is driven
by two lights, the effective Hamiltonian becomes a TAT model
HTAT ≈ h̄χφJ2

z − h̄χπJ2
x . This approach is also suitable for the

preparation of a squeezed state in Rydberg atom arrays [7,51].
Fifth, for two species of atoms coupled through a dipole-

dipole interaction in a vapor cell (represented by their
collective spin operators S and J), periodically driving the
system can transform the interspecies dipolar interaction into
a nonlinear intraspecies interaction, resulting in both effective
OAT and TAT Hamiltonians [19,66]. As for a continuous
driving, the OAT Hamiltonian is realized as HOAT = χeffS2

z ,
where χeff = −g2/(2� f ) with g being the dipolar coupling
strength between two species and � f the difference between
the magnitudes of two external dc fields applied to the two
species of spins, respectively. Realization of a TAT Hamilto-
nian needs an extra ac field applied to the S species, which
yields HTAT = χeff(S2

x − S2
y ).

V. CONCLUSION

We construct a diagonal bilinear spin Bogoliubov Hamil-
tonian, which includes the one-axis-twisting Hamiltonian as
a limiting case, by employing the spin lowering and rais-
ing operators. We prove analytically and numerically that
the ground state of the spin Bogoliubov Hamiltonian (and
the one-axis-twisting Hamiltonian) exhibits Heisenberg-limit
spin squeezing ξ 2

R ∝ J−1 for an arbitrary spin J in a certain
parameter regime, in contrast to previous scaling ξ 2

R ∝ J−2/3

under the one-axis-twisting Hamiltonian by quench dynamics.
Such a spin-squeezed ground state may be realized experi-
mentally in dipolar spinor BECs, ultracold atoms in an optical
lattice, and spins in a cavity or in a vapor cell.
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