
PHYSICAL REVIEW A 110, 033703 (2024)

Optical coherence transfer in atom arrays
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A J = 0 to J = 1 to J = 0 ladder scheme can be used as a prototype for probing optical coherence transfer in
an atom array. Two incident σ− polarized fields drive transitions from the ground state to the intermediate state
and the intermediate state to the uppermost state in the atoms. The uppermost state is taken to be a long-lived
Rydberg level. In the absence of any atom-atom interactions, excitation to the Rydberg level is not allowed,
owing to the selection rules. However, dipole-dipole interactions can provide a transfer of the state amplitude
associated with the m = −1 sublevel in one atom to the m = +1 sublevel in another atom. The overall process
of field excitation and optical coherence transfer can then lead to an excitation of the Rydberg level. One can
then apply a readout pulse to obtain phase-matched emission from the array. For a linear array of atoms, the
phase-matched signal can increase more rapidly than N2, where N is the number of atoms in the array. For arrays
that are invariant under a rotation δφ < π about the z axis, however, it turns out that the total field intensity
vanishes identically in the phase-matched direction. For such arrays, the Rydberg state population can serve as a
measure of the optical coherence transfer.

DOI: 10.1103/PhysRevA.110.033703

I. INTRODUCTION

Optical coherence transfer (OCT) is a process in which
a dipole coherence between states in an atom that are sepa-
rated by an optical frequency is transferred to another atom,
owing to atom-atom interactions. The quantum information
“explosion” has rekindled an interest in collective decay and
cooperative Lamb shifts [1–7] in atomic ensembles and ar-
rays, both of which involve OCT between the atoms. In most
theories of the collective decay and cooperative Lamb shifts
[8–13], the atoms are modeled as two-level systems, with the
magnetic structure of the levels not taken into account. There
are some papers that include the magnetic sublevel structure
[14–16], but these papers do not focus on the fundamental
underlying process of OCT. Moreover, we are unaware of
any experiments in arrays that directly probe this coherence
transfer [17,18].

Actually, we are interested in the somewhat more esoteric
OCT illustrated schematically in Fig. 1. Imagine that we use
a σ− polarized field E1 to prepare a state in which each atom
is in a coherent superposition of its ground state |g〉 and its
m = −1 intermediate state | − 1〉 in an array of N atoms. In
other words, atom j is prepared so it has nonvanishing density
matrix elements ρ

( j)
gg , ρ

( j)
g,−1, ρ

( j)
−1,g,, and ρ

( j)
−1,−1. Dipole-dipole

interactions between this atom and atom j′ can result in OCT
and population transfer, creating density matrix elements ρ

( j′ )
gg ,

ρ
( j′ )
g1 , ρ

( j′ )
1,g,, and ρ

( j′ )
11 in atom j′. We want to stress that we

are concerned here with transfer of optical coherence with
a change in magnetic quantum number (OCT-M) and not in
transfer of population. In all the cases to be considered below,
the contributions to the measured signals arising from popu-
lations ρ

( j)
11 are negligibly small and can be safely ignored. A

second σ− polarized field E2 then completes the transition to
the Rydberg state |e〉. In the absence of interactions, there is
no Rydberg excitation, owing to selection rules. The Rydberg

state population then serves as a measure of the OCT-M.
Alternatively, one can apply a readout pulse on the Rydberg
to upper transition to produce phase-matched emission on the
lower transition.

It is not all that surprising that OCT-M has not received
a great deal of attention, since effects related to OCT-M of-
ten average to zero in disordered atomic samples, such as
those encountered in hot or cold atomic vapors. However
for particular atom arrays in one, two, or three dimensions,
the OCT-M can provided the dominant contribution to cer-
tain spectroscopic signals and also significantly modify the
collective decays and/or cooperative Lamb shifts, especially
for atom separations less than a wavelength. Specifically, we
show that in a one-dimensional atom array, the OCT-M can
lead to phase-matched signals that are dramatically enhanced
in certain directions, even when the atoms are separated by
greater than a wavelength. On the other hand, for arrays pos-
sessing a certain type of axial symmetry, we will show that the
total signal radiated by the array in the phase-matched direc-
tion vanishes identically [19]. For such geometries, one must
rely on the Rydberg state population or non-phase-matched
emission to provide evidence for the OCT-M.

II. ATOM-FIELD GEOMETRY

We consider an array of N fixed atoms, each having the
level scheme shown in Fig. 1. The ground state is a J = 0
state denoted by the ket |g〉 and the uppermost excited state
is a long-lived J = 0 Rydberg state denoted by the ket |e〉.
The intermediate state is a J = 1 state whose sublevels are
denoted by the kets |m〉 (m = −1, 0, and 1). The frequency
differences between the intermediate states and the ground
state are denoted by ωmg and those between the uppermost
excited state and the intermediate states are denoted by ωem. A
static magnetic field is applied in the z direction, giving rise to
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FIG. 1. The atom-field geometry proposed in this work. The atoms are subjected to two optical field pulses incident in the z direction. The
first field drives the g to m = −1 transition in one atom and the second field completes the two-photon excitation process in another atom,
with the transfer between the m = −1 and m = +1 sublevels accomplished via the dipole-dipole interaction. There is a magnetic field present
(Zeeman splitting equal to ωB) which allows for a resonant transfer, when the first field is detuned by 2ωB from the g to m = −1 transition.

a frequency splitting of ωB between adjacent intermediate sub-
levels. The atoms are located at positions R j ( j = 1, . . . , N).
Two atoms are shown in the figure. The atoms are subjected
to two optical field pulses incident in the z direction.

The first pulse has frequency ω1 and propagation vector
k1 = k1ẑ, is σ− polarized, and is detuned from the ground to
m = −1 transition by

δ1 = ω1 − ω−1g = 2ωB. (1)

In other words, the first field is resonant with the ground to
m = +1 transition, but cannot drive this transition owing to
the selection rules. Choosing the frequency in this manner will
allow for a resonant interaction-induced transition between
the m = −1 level in one atom and the m = +1 level in another
atom. The Rabi frequency of the first field is denoted by

�1(t ) = 2χ1(t ) = 2χ1e−t2/T 2
. (2)

The second pulse has frequency ω2 and propagation vector
k2 = k2ẑ, is σ− polarized, and is detuned from the excited to
m = +1 transition by

δ2 = ω2 − ωe1. (3)

This field completes the “two-photon” transition from the
ground to Rydberg level. The Rabi frequency of the second
field is denoted by

�2(t ) = 2χ2(t ) = 2χ2e−t2/T 2
. (4)

It is assumed that the Rabi frequencies are approximately
constant over the transverse directions of the sample—that is,
they are independent of Xj and Yj .

In the absence of any atom-atom interactions, there will be
no excitation of the Rydberg level in any atom since the sec-
ond field has the wrong polarization to complete the excitation
from the m = −1 sublevel. For the second field to complete
the excitation, dipole-dipole interactions must induce transi-
tions between the m = −1 and m = +1 sublevels in different
atoms. The primary focus of our investigation is to see if
such transfers are possible and to examine the experimental
consequences associated with these transfers.

A simple measure of the OCT-M is provided by the Ry-
dberg state population. In general the dependence of the
OCT-M population signal on N will be greater than linear

owing to the fact that the number of OCT-M transfers in-
creases with increasing N . The actual dependence depends on
the array geometry. An enhanced OCT-M signal, varying at
least as N2, can be obtained if a σ−-polarized readout pulse is
applied on the upper transition at some time t � T following
the excitation pulses. The readout pulse can then lead to a
phase-matched signal on the m = 1 to g transition. We shall
see that this is possible, in general, but not for arrays that are
invariant under a rotation δφ < π about the z axis. For such
arrays, the total signal radiated in the phase-matched direction
vanishes identically.

From source-field theory, the field intensity radiated on the
m = 1 to g transition is proportional to [20]

I (θ, φ; t ) = 3γ2

8π

1 + cos2 θ

2

N∑
j=1

[〈
σ

( j)
11 (tr )

〉

+
N∑

j′ �= j=1

〈
σ

( j)
1g (tr )σ ( j′ )

g1 (tr )
〉
e−ik·R j j′

]
, (5)

where

k = (
ω1g/c

)
(sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ), (6)

γ2 = 2γ is the intermediate-state decay rate, θ and φ are the
polar angles of the emitted radiation, R j j′ = R j − R j′ , σ

( j)
11 (tr )

is the m = 1 sublevel population operator for atom j evaluated
at the retarded time tr = t − D/c (D is the distance to the
detector), σ ( j)

1g (tr ) is a raising operator for atom j, and σ
( j′ )
g1 (tr )

is a lowering operator for atom j′.
To simplify the calculations, we make a number of assump-

tions that are not critical to the overall qualitative nature of
the results. The fields are taken to be sufficiently weak or
the detunings sufficiently large to justify a perturbation theory
approach. Specifically, it is assumed that

γ T � 1, (7a)

|�|/γ � 1, (7b)

δ1T � 1, (7c)
χ1χ2

δ1
T � 1, (7d)

χ2T � 1, (7e)
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where � is a complex, interaction-induced transfer rate. More-
over, we assume that the readout pulse is a σ−-polarized π

pulse having frequency ωe1, propagation vector k2 = k2ẑ, and
a duration much less than 1/γ2. In that limit,〈

σ
( j)
11 (t )

〉 ≈ 〈
σ ( j)

ee (t )
〉
, (8a)〈

σ
( j)
1g (tr )σ ( j′ )

g1 (tr )
〉 ≈ 〈

σ ( j)
eg (t )σ ( j′ )

ge (t )
〉
e−ik2Z j j′ , (8b)

where t is the time that the readout pulse is applied. As a
consequence, the time-integrated field intensity is given by

I (θ, φ) = 3

8π

1 + cos2 θ

2

N∑
j=1

[〈
σ ( j)

ee

〉

+
N∑

j′ �= j=1

〈
σ ( j)

eg σ ( j′ )
ge

〉
e−ik2Z j j′ e−ik·R j j′

]
, (9)

where the atomic operators are now taken to be time-
independent Schrödinger operators and the expectation values
are taken with respect to the state vector of the system, eval-
uated at the time of the readout pulse. We can define the
interference term as

Iint (θ, φ) = 3

8π

1 + cos2 θ

2

N∑
j=1

×
N∑

j′ �= j=1

〈
σ ( j)

eg σ ( j′ )
ge

〉
e−ik·R j j′ e−ik2Z j j′ (10)

and the population term as

Ipop(θ ) = 3

8π

1 + cos2 θ

2

N∑
j=1

〈
σ ( j)

ee

〉
, (11)

with

I (θ, φ) = Ipop(θ ) + Iint (θ, φ). (12)

The interference term represents the contribution to the signal
intensity resulting from the interference of the fields radiated
by different atoms, whereas the population term is the sum of
the field intensity radiated by each atom. The total Rydberg
population Ne produced by the excitation scheme is given by

Ne =
N∑

j=1

〈
σ ( j)

ee

〉
. (13)

The requirement that |�|/γ � 1 implies that k1Rj j′ � 1
(for j �= j′). It is assumed that Rj j′ is sufficiently large to al-
low us to neglect Rydberg-Rydberg interactions, which could
result in dephasing of the ground-Rydberg state coherence.
For such separations, the dipole blockade mechanism does not
play a role. In practice, the Rydberg level should be chosen
with the lowest possible value of principal quantum number
for which decay from the Rydberg level on the timescale of
the experiment is negligible. However, we should note that it
is also possible to use a highly excited Rydberg level for which
the dipole blockade is operational; in this limit, there is only
a single Rydberg excitation in the array and ground-Rydberg
dephasing does not occur.

III. CALCULATION OF THE SIGNAL

Since we are using a perturbation theory approach, the
calculation is fairly straightforward. First we assume the
ground-state amplitude of atom j′ to be c( j′ )

g ≈ 1. In an in-

teraction representation, the intermediate-state amplitude c( j′ )
−1

created by the first pulse is then governed by the evolution
equation,

ċ( j′ )
−1 ≈ −γ c( j′ )

−1 − iχ1(t )eik1Z j′ e−iδ1t . (14)

When the inequalities given in Eqs. (7) are satisfied, the solu-
tion of this equation is

c( j′ )
−1 ≈ −i

χ1(t )eik1Z j′ e−iδ1t

(γ − iδ1)
. (15)

For our atom-field geometry, all the atoms are excited by the
pulse, with the state amplitudes differing only by a spatial
phase factor.

To lowest order in the dipole-dipole interaction and ne-
glecting retardation in the atom-atom interactions, the state
amplitude created by the first field in atom j′ can be trans-
ferred the m = 1 sublevel in atom j according to

ċ( j)
1 = −γ c( j)

1 − γ e2iωBt
N∑

j′ �= j=1

G1,−1(R j j′ )c
( j′ )
−1 , (16)

where [21]

G1,−1(R j j′ ) = −3

2

√
8π

15
h2(k1Rj j′ )Y22(θ j j′ , φ j j′ )

= −3

4
h2(k1Rj j′ ) sin2 θ j j′e

2iφ j j′ , (17)

h2 is a spherical Hankel function, Y22 is a spherical harmonic,
and (θ j j′ , φ j j′ ) are the spherical angles of R j j′ . Again, assum-
ing that inequalities (7) are satisfied and taking δ1 = 2ωB, we
find

c( j)
1 ≈ i

χ1(t )

(γ − iδ1)

N∑
j′ �= j=1

G1,−1(R j j′ )e
ik1Z j′ . (18)

Now the second field acts to result in a Rydberg state
amplitude whose time derivative is determined by

ċ( j)
e = −iχ2(t )eik2Z j e−iδ2t c( j)

1

≈ χ1(t )χ2(t )eik2Z j

(γ − iδ1)

N∑
j′ �= j=1

G1,−1(R j j′ )e
ik1Z j′ . (19)

When inequalities (7) hold, it then follows that, following the
pulse,

c( j)
e ≈ BFje

i(k1+k2 )Z j , (20)

where

Fj =
N∑

j′ �= j=1

G1,−1(R j j′ )e
−ik1Z j j′ (21)

is an interaction-induced structure factor and

B =
∫ ∞

−∞
dt

χ1(t )χ2(t )e−iδ2t

(γ − iδ1)
(22)

is an amplitude for two-photon excitation.
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At the time of the readout pulse, the only component of
the state vector that contributes to the expectation values
in Eqs. (10) and (11) is

∑N
j=1 c( j)

e |e〉 j , where c( j)
e is given

by Eq. (20) and |e〉 j is a ket corresponding to atom j in
state |e〉 and all the other atoms in state |g〉. It then fol-
lows that the contribution from the interference term to the
radiated field intensity, given by Eq. (10), can be evaluated
as

Iint (θ, φ) = 3

8π

1 + cos2 θ

2

N∑
j=1

×
N∑

j′ �= j=1

c( j)
e

[
c( j′ )

e

]∗
e−ik·R j j′ e−ik2Z j j′

= 3

8π

1+ cos2 θ

2
|B|2

N∑
j=1

×
N∑

j′ �= j=1

FjF
∗
j′ e

ik1Z j j′ e−ik·R j j′ (23)

and contribution from the population term can be evaluated
as

Ipop(θ ) = 3

8π

1 + cos2 θ

2

N∑
j=1

∣∣c( j)
e

∣∣2

= 3

8π

1 + cos2 θ

2
|B|2S, (24)

where

S =
N∑

j=1

|Fj |2. (25)

The total intensity is given by

I (θ, φ) = 3

8π

1 + cos2 θ

2
|B|2

∣∣∣∣∣∣
N∑

j=1

Fje
ik1Z j e−ik·R j

∣∣∣∣∣∣
2

, (26)

and the total Rydberg population is given by

Ne =
N∑

j=1

∣∣c( j)
e

∣∣2 = |B|2S. (27)

It is important to recall that we have assumed that k1Rj j′ �
1 (for j �= j′) or, equivalently, that |G1,−1(R j j′ )| � 1. The
actual dependence of the signal on N depends on the array
geometry.

For example, if the atoms form a linear chain in the z
direction, G1,−1(Zj j′ ) = 0, Fj = 0, and both the interference
and population terms vanish. Moreover, for arrays that are in-
variant under a rotation δφ < π about the z axis, even though
Fj �= 0, it is possible to show that the total intensity in the
phase-matched direction, which is proportional to |∑N

j=1 Fj |2,

vanishes. To prove that
∑N

j=1 Fj = 0, we expand the factor

h2(k1Rj j′ )Y22(R̂ j j′ )e−ik1Z j j′ (for j′ �= j) appearing in Eq. (17)

10 20 30
k1d

0.5

1

1.5

S

FIG. 2. A plot of S = ∑N
j=1 |Fj |2 versus k1d for a cubic array of

64 atoms. In this case,
∑N

j=1 Fj = 0, but there is still a contribution
to the Rydberg population that serves as a measure of the OCT-M.

as [21]

h2(k1Rj j′ )Y22(R̂ j j′ )e
−ik1Z j j′

= il1+l2 (−1)l2 e−ik1Z j j′
√

20π (2l1 + 1)(2l2 + 1)

×
(

l1 2 l2
0 0 0

)(
l1 2 l2
m1 −2 m2

)

× hl1 (k0R>) jl2 (k0R<)Y1m1 (R̂>)Y2m2 (R̂<), (28)

where
(
...

...

)
is a 3- j symbol, jl (x) is a spherical Bessel func-

tion, R> (R<) is the larger (smaller) of Rj and Rj′ , and a
summation convention is implicit in the right-hand side of the
equation. The three- j symbol vanishes unless m2 + m1 = 2.
Consequently, under a rotation δφ about the z axis, the right-
hand side of Eq. (28) is multiplied by a factor of exp(2iδφ).
However, if the distribution is invariant under the rotation
δφ, Eq. (28) must be also be invariant under this rotation
when summed over j and j′ (with j′ �= j). This implies that∑N

j=1 Fj = exp(2iδφ)
∑N

j=1 Fj . For δφ < π , the only way

this equality can be satisfied is if
∑N

j=1 Fj = 0. In other words,
if there exists an azimuthal rotation δφ < π for which the
array is unchanged, then

∑N
j=1 Fj = 0.

As an example, consider a cubic array of N = n3 atoms
located at positions

R j ( jx, jy, jz ) = d ( jxx̂ + jyŷ + jzẑ), (29)

with jx, jy, and jz each taking on values from −(n − 1)/2
to (n − 1)/2. This array is invariant under a rotation of π/2
about the z axis, implying that

∑N
j=1 Fj = 0. As a conse-

quence, in the phase-matched direction (θ = φ = 0), k =
k1ẑ and I (0, 0) = 0. That is, in the phase-matched direction,
Ipop(θ ) and Iint (θ, φ) have equal magnitudes but opposite
signs, exactly canceling one another. For this array, the most
direct way to establish that the OCT-M has occurred is to
measure the Rydberg population Ne = |B|2S �= 0. In Fig. 2 we
plot S as a function of k1d for n = 4 (64 atoms). The positions
of the local maxima and minima in this figure are determined
by a complicated interplay of all the phase factors appearing
in the summation in Eq. (21). That is, if we write

Fj =
N∑

j′ �= j=1

Aj j′e
i� j j′ , (30)
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1000
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2000

S

FIG. 3. The solid red curve is a plot of S versus N for a cubic
array of N atoms with k1d = 2π . The dashed blue curve is a plot of
0.001 91N1.5. The dependence on N is greater than linear owing to
the fact that the OCT-M rate depends on N.

where

Aj j′ = |G1,−1(R j j′ )|e−ik1Z j j′ , (31a)

� j j′ = Arg[G1,−1(R j j′ )e
−ik1Z j j′ ], (31b)

there are certain values of k1d that lead to maxima and min-
ima.

In Fig. 3 we plot S as a function N for k1d = 2π . As can be
seen the dependence of S on N is greater than linear, varying
approximately as 0.001 91N1.5 (dashed blue curve) over this
range of N , reflecting the fact that interactions are needed
to produce a nonvanishing S. For a cubic array the depar-
ture from linear dependence is significant since the falloff of
h2

2(k1Rj j′ ) as R−2
j j′ is partially canceled by the R2

j j′d� volume
element measured from a particular R j .

The conclusive evidence for the transfer of coherence is
provided by the factor |B|2 factor in Eq. (24), which varies
as e−δ2

2 T 2/2. If we had used a density matrix approach to
calculate the intensity, there would be both “two-photon” and
“stepwise” contributions to the signal [19], both of which are
maximum when δ2 = 0. The two-photon contribution corre-
sponds to OCT and the stepwise contribution corresponds
to a population transfer. For our atom-field parameters, the
population transfer term is (γ2/ωB)2 times smaller than the
coherence transfer term and can be neglected.

A. Linear chain in the x direction

One way to obtain a nonvanishing phase-matched signal
is to take an equally spaced linear chain in the x direction in
which the spacing d of adjacent atoms is an integral multiple
q of λ1 = 2π/k1. In that limit, eik1Z j j′ = 1, k · R j j′ = 2π ( j −
j′)q sin θ cos φ, and the expression for the radiated intensity
reduces to

I (θ, φ) = 3

8π

1 + cos2 θ

2
|B|2

∣∣∣∣∣∣
N∑

j=1

Fje
−i2π jq sin θ cos φ

∣∣∣∣∣∣
2

,

with

Fj =
N∑

j′ �= j=1

G1,−1(R j j′ ) = −3

4

N∑
j′ �= j=1

h2[2π |( j − j′)|q].

(32)

FIG. 4. A plot of α (solid red curve) and β (dashed blue curve)
as a function N for N atoms on the x axis with k1d = 20π .

In addition, if k1d = 2πq � 1, we can approximate

Fj ∼ −i
3

8πq

N−1∑
j′ �= j=0

1

|( j − j′)|

= −i
3

4k1d
[2Eu + PG(1 + j) + PG(N − j)], (33)

where Eu is Euler’s constant and PG is the polygamma func-
tion. For our perturbative approach to remain valid in this
limit, we must require that |Fj | � 1. For large values of N ,
PG(N ) ∼ ln(N ). In the forward direction, (θ, φ) = (0, 0); we
might expect therefore that

α =
∣∣∣∣∣∣
4k1d

3

N∑
j=1

Fj

∣∣∣∣∣∣
2

∝ [N ln(N )]2. (34)

In Fig. 4 we plot α and β = 3.1N2[ln(N )]2 as a function of N
for k1d = 20π (the result is independent of k1d for k1d � 1);
as can be seen the results agree to a good approximation over
this range of N . We can see there is a [ln(N )]2 enhancement
over an N2 dependence owing to the dependence of the OCT-
M transfer on the number of atoms. There is a similar [ln(N )]2

enhancement of the Rydberg population; that is, S varies as
N[ln(N )]2. For this linear array, the enhancement factor is
smaller than that of the three-dimensional cubic array.

For N � 1, the intensity pattern consists of many narrow
resonances. In effect the signal is a maximum for any values of
θ and φ for which q sin θ cos φ = n, where n is a non-negative
integer. There are resonances that occur for both continuous
and discrete values of the spherical angles. In Fig. 5, we plot
I (θ, φ)/|B|2 as a function of θ and φ for q = 2 and N = 10.
The interference term is negative and cancels most of the
population at all points except those giving rise to construc-
tive interference. This is similar to what occurs in an N-slit
diffraction pattern when the slit widths are much less than a
wavelength—the background constant intensity pattern from
each of the slits is canceled at all points except those giving
rise to constructive interference. In other words, most of the
radiated intensity is concentrated in the constructive interfer-
ence peaks. For the parameters of Fig. 5 this corresponds to
approximately 98% of the energy.
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FIG. 5. A plot of the total intensity, I (θ, φ)/|B|2, as a function of
θ and φ for k1d = 2πq = 4π and N = 10.

IV. DISCUSSION

We have studied the transfer of optical coherence between
atoms in an array. In particular, we have determined under
what conditions it is possible to transfer coherence between
the m = −1 state and the ground state in one atom to a
coherence between the m = +1 state and the ground state in
another atom. For atoms on a line, there is a dramatic effect
that could be tested experimentally. If the atoms are located
on the z axis, there is no transfer, but if they are on the x
axis, many constructive interference peaks should be seen. We
have considered only the simplest experimental schemes for
detection of the OCT-M. In doing so, we found that, for arrays

that are invariant under a rotation δφ < π about the z axis,
the total intensity in the phase-matched direction vanishes.
To observe OCT-M-induced phase-matched emission using
such an array, one could modify the readout procedure. If
one uses a σ− readout pulse whose frequency is resonant
with the e to m = −1 transition frequency rather than with
the e to m = +1 transition frequency, a second OCT-M can
resonantly transfer this excitation from the m = 1 level back
to the m = −1 level. In this double OCT-M protocol, there can
be σ− phase-matched radiation which is nonvanishing.

In the limiting case of two atoms, population transfer can
occur provided that both the atoms are not on the z axis. This
brings up an interesting point. Suppose that one of the atoms
is excited to its m = −1 sublevel and there is no magnetic
field. Some of the initial excitation is readily transferred to the
m = +1 sublevel in the other atom. The question then arises
how angular momentum can be conserved, given the fact that
the average dipole moment of each atom vanishes. If the atoms
are separated by less than a wavelength and if the atom-atom
interaction is modeled as a static dipole-dipole interaction
with the neglect of spontaneous emission, there is a simple
explanation for angular momentum conservation. The change
in the internal angular momentum of the atoms is converted
to orbital angular momentum of the atoms about their center
of mass. On the other hand, if the interaction between the
atoms is assumed to arise from interactions of each atom with
the transverse vacuum field (as in this paper), the situation
becomes more complex since the angular momentum of the
field must be taken into account to ensure overall angular
momentum conservation [22].
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