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Quantum technology is highly relevant to manipulating photon states, for which the quantum waveguide
serves as a primary building block. It is a vital task to explore the statistics of tens-of-photons states in
quantum waveguides coupled to quantum emitters, such as optical cavities (OCs), two-level atoms (TLAs), and
Jaynes-Cummings emitters (JCEs). However, the related theoretical framework has not been established. Here,
we use matrix-product-state theory and show that although OCs do not change the second-order photon-photon
correlation g(2), they can tune the occupation ratio of bunching photons η. What is more, the states scattered
by TLAs and JCEs exhibit extremely different statistical behaviors in tens-of-photons cases with respect to
those in few-photon ones. The scattering effects from JCEs tend to those from OCs as photon number n → ∞,
and photon-photon correlation due to JCEs reaches a maximum value as n increases. We anticipate these
distinguishable results for tens-of-photons states will be a starting point for multiphoton manipulation in quantum
waveguides.
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I. INTRODUCTION

The dynamics of quantum many-body systems [1–6]
present intriguing challenges that consistently captivate re-
searchers’ attention. Notably, the intricate dynamics of mul-
tiphoton phenomena have been extensively explored [7–13]
since photons are optimal carriers for quantum information.
Manipulating photons is a pivotal technology for optical
quantum computers [14]. The realm of waveguide-QED
systems [15–19], which encompasses one-dimensional (1D)
waveguides and quantum emitters like optical cavities (OCs)
[20–22], two-level atoms (TLAs) [23], and Jaynes-Cummings
emitter (JCEs) [15], provides a straightforward yet effective
platform for the study of the multiphoton manipulation.

Building upon these systems, researchers have contributed
a lot of theoretical [7–13,21,23–25] and experimental [26–28]
studies pertaining to multiphoton transport [16,21,23,24,26],
correlations [12,24,28,29], bunching and antibunching be-
haviors [29], entanglements [25,27,30], bound states [31],
and more. In these reported works, researchers pro-
posed the Bethe-ansatz approach [7], Lehmann-Symanzik-
Zimmermann reduction [21,32,33], Green’s-function decom-
position of multiple-particle-scattering matrices [34], input-
output formalism [35–38], Feynman-diagram formalism [21],
and so on. According to these methods, the statistics for the
few-photon states scattered by quantum emitters like OCs
[21], TLAs [11], and JCEs [11,36] have been studied. As for
few-photon cases, the TLA results in a bunching behavior
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in the transmitted state but in an antibunching behavior in
the reflected state [29]. The OCs lead to the photon-blockade
effects in the strong-coupling regime [21].

Recalling the philosophy of “more is different” [39] by
Anderson, novel phenomena should appear in the scattering
process of the states with many more than one photon. Regret-
fully, the methods listed above suit only the systems involving
a few (generally, no more than four) photons. The main chal-
lenge they face is the exponential growth of the Hilbert spaces.
To overcome it, we turn to matrix-product-state (MPS) theory
[40–43], which draws inspiration from the principles of the
density-matrix renormalization group [44,45] and offers an
intelligible framework for studying 1D quantum many-body
states [40,42]. This theory has been adeptly employed in ex-
amining the temporal evolution of strong-correlation systems
[42,46,47], including 1D spin chains [1,48,49] and the Bose-
Hubbard model [50].

In waveguide-QED systems, MPS theory has found ap-
plication in the scattering behavior of few-photon states
[51,52]. This study expands the MPS theory to investi-
gate the statistical properties of tens-of-photons states within
waveguide-QED systems, scattered by OCs, TLAs, and JCEs.
The efficacy of MPS theory is validated by demonstrating that
scattering events involving OCs preserve the straight-product
property of the initial Fock states, as evidenced by the second-
order correlation function g(2) ≡ 1 − 1

n (n is the total photon
number). But the scattering of OCs tunes the occupation ratio
of bunching photons η. However, the states scattered by TLAs
and JCEs exhibit extremely different statistical behaviors in
tens-of-photons cases with respect to few-photon ones. As
n increases, the photon-photon correlations induced by JCEs
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FIG. 1. (a) Schematic of a quantum emitter side coupled to the
Sth cavity of a cavity chain whose lth cavity is located at xl =
(l − 1)d . An incident pulse with n photons is demonstrated. (b) and
(c) Tensor networks for the MPS and MPO with physical indices {σl}
and {σl , σ

′
l }, respectively.

reach a maximum value when the pulse has several photons
from the perspective of transmission, and JCE-induced scat-
tering tends to resemble the OC-induced scattering as n →
∞. What is more, η monotonously grows as n increases for
all three types of quantum emitters but remains less than that
in the initial states.

This work is organized as follows. In Sec. II, the framework
of the MPS method is introduced for the scattered states.
Section III discusses the photon-number distributions, trans-
missions, second-order correlation functions, and occupation
ratios of bunching photons for tens-of-photons states. Finally,
the conclusions and outlook are summarized in Sec. IV.

II. METHOD

We use the waveguide-QED system drawn in Fig. 1(a)
as the cornerstone to present the way to establish the MPS
framework. To meet the requirements of the MPS framework,
the waveguide is approximated as a cavity chain, with site
number L, lattice constant d , and nearest-neighbor hopping
J/2. All the cavities hold identical eigenfrequencies ωW . The
Sth cavity is coupled to the quantum emitter, and the incident
n-photon pulse is denoted by the orange curve and solid dots.
The chain dispersion is ε = ωW − J cos(kd ) [53,54]. Such a
lattice is described by the Hamiltonian,

Ĥ = ĤW + ĤE + ĤI , (1)

where ĤW , ĤE , and ĤI respectively correspond to the cavity
chain, quantum emitter, and interaction between them. They
read

ĤW =
L∑

l=1

ωW â†
l âl − J

2

L−1∑
l=1

(â†
l âl+1 + H.c.), (2)

ĤE = ωcâ†
c âc + ωaσ̂

+σ̂− + �(â†
cσ

− + σ+âc), (3)

ĤI = V0(â†
Sâc + H.c.). (4)

Here, the Planck constant is set to h̄ = 1 for convenience. â†
l

(âl ) represents the creation (annihilation) operator of the lth
cavity in the chain. ĤE takes the JCE as an example, where
â†

c (âc) is the creation (annihilation) operator of the cavity

in the JCE and σ+ (σ−) is the raising (lowering) operator
of the corresponding TLA. � describes the Rabi coupling
between them. If the quantum emitter is an OC or TLA, ĤE

can be simplified, i.e., taking ωa = � = 0 for the OC case
or taking ωc = � = 0 for the TLA case. V0 measures the
coupling between the quantum emitter and the Sth cavity in
the chain. If the emitter is a TLA, âc in Eq. (4) should be
changed to σ̂−.

To apply the MPS method, we write the multiphoton states
in the following MPS form, whose tensor network is presented
in Fig. 1(b):

|�〉n =
∑
{σ}

M[n]σ1
1 M[n]σ2

2 · · · M[n]σL
L |σ1σ2 · · · σL〉, (5)

where σl is the occupation number on the lth site and
n is the total one with σl � n. {σ} represents the set of
{σ1, σ2, . . . , σL}. The matrix of M[n]σl

l rests on the lth site [see
Fig. 1(b)], where [n] means that there are n excitations in |�〉n.
M[n]σ1

1 is a one-row matrix, while M[n]σL
L is a one-column one.

We take the n-photon Gaussian pulse

|i〉n =
∑

l1,l2,...,ln

φl1φl2 · · · φln â†
l1

â†
l2

· · · â†
ln
|∅〉 (6)

as an example, where |∅〉 is the vacuum state. The coeffi-
cient φl reads φl = N

∑
k e−(k−k0 )2/k2

w e−ik(xl −x0 ), with N being
the normalized constant and the wave vector k = 2π

L l (l =
1, 2, . . . , L). This φl , with the central wave vector k0, the
central energy ε0 = ωW − J cos k0d , the central position x0,
and the width 2k−1

w , guarantees the invariance of |i〉n under
the exchange of any two photons. Note that |i〉n is a product
Fock state.

The first step for the MPS theory is to transform |i〉n into
the form of Eq. (5). This is not a trivial task, especially for the
cases with large n and L, because of the exponential increase
of the Hilbert space. The relation |i〉n = (

∑
ln

φln â†
ln

)|i〉n−1

suggests that we establish an iterative relation between the
MPS forms of |i〉n and |i〉n−1. The procedure (see Sec. A 1) in-
cludes (1) writing the single-occupation state φl1 â†

l1
|∅〉 in the

MPS form, (2) constructing the MPS form of |i〉1 by superpos-
ing the MPSs of all φl1 â†

l1
|∅〉, (3) deriving the iteration relation

between the MPSs of φln â†
ln
|i〉n−1 and |i〉n−1, and (4) similar to

step 2, constructing the MPS form of |i〉n by superposing the
MPSs of all φln â†

ln
|i〉n−1. Note that the physical freedom of the

quantum emitter can be neglected temporally in this procedure
since it can be added by expanding the physical dimension of
the Sth site (see Appendix A 1 b).

The next step is to construct the matrix-product operator
(MPO) for e−iĤτ , i.e.,

Ô[n]
τ =

∑
{σ,σ ′}

Q
[n]σ1σ

′
1

1 Q
[n]σ2σ

′
2

2 · · · Q[n]σLσ ′
L

L

× |σ1σ2 · · · σL〉〈σ ′
1σ

′
2 · · · σ ′

L|, (7)

where τ is a short time and Q
[n]σl σ

′
l

l is a matrix with 0 �
σl , σ

′
l � n. Its tensor network is denoted in Fig. 1(c). The

second-order Trotter decomposition is used, that is, e−iĤτ ≈
e−iĤoddτ/2e−iĤevenτ e−iĤoddτ/2 [40], where Ĥodd and Ĥeven are
the Hamiltonians of the odd and even bonds, respectively.
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For convenience, the Hamiltonian of the lth bond is de-
noted as ĥl . Since [ĥl , ĥl+2] = 0, the equations e−iĤoddτ/2 ≡
e−iĥ1τ/2e−iĥ3τ/2 · · · and e−iĤevenτ ≡ e−iĥ2τ e−iĥ4τ · · · are strict;
their last terms are determined by the parity of L. The method
for constructing the MPO of e−iĥl τ is shown in Appendix A 2.

The time evolution of the MPS can be implemented by iter-
atively applying the MPO of e−iĤτ on |i〉n (see Appendix A 3).
The calculation errors primarily stem from Trotter decomposi-
tion and the truncation of both the MPS and MPO [42,47,55].
They can be mitigated by decreasing the time step and in-
creasing the matrix dimensions of the MPS and MPO; see the
convergence test of the calculation in Appendix A 4. For all
the calculated results in this work, the deviations of the total
occupation numbers from their initial values always remain
below 0.01.

III. RESULTS AND DISCUSSION

A. Time evolution of photon-number distribution

With the above MPS method, the system state at time t
(units of τ0 = d/J) can be obtained by applying Ô[n]

τ on |i〉n

a total of t/τ times. Accordingly, the photon-number distri-
butions nl ≡ 〈â†

l âl〉 can be found; see the cases for n = 2 and
10 in Fig. 2, where ε0 is tuned with the quantum emitters, i.e.,
ε0 = ωc = ωa. Figures 2(a) and 2(b) indicate that the trans-
mission for the OC case is independent of n. However, unlike
the OC, the TLA leads to a dependence of the transmission on
n [see Figs. 2(c) and 2(d)]; that is, the transmission increases
as n increases. On the contrary, the transmission decreases as
n increases for the JCE case [see Figs. 2(e) and 2(f)]. That is
because the JCE acts like an OC when n is much larger than
1. What is more, this method is universal and can be used for
other types of incident pulses; see the double-peak pulses with
n = 2 and 10 in Appendix B.

B. Transmission and correlation function

To explore the bunching and antibunching effects of the
scattered states, we can calculate the second-order correlation

function, i.e., g(2)
l ≡ 〈â†

l â†
l âl âl 〉
n2

l
for the final state | f 〉n after the

scattering process. Note that g(2)
l ≡ 1 − 1

n for any product
Fock states |i〉n (see the proof in Appendix C). nl/n and g(2)

l of
| f 〉n at t = 160τ0 are plotted in Fig. 3. For comparison, nl/n
of |i〉n is shown by the purple curve in Fig. 3(a). The MPS
effectiveness is demonstrated by two known facts, namely,
nl/n in the OC-scattered states is independent of n [see the
black curve in Fig. 3(a)], and the scattering of OCs does
not change g(2)

l [see the two curves in Fig. 3(b)]. The latter
fact implies that the OCs cannot break the straight-product
property of the initial Fock states or induce photon-photon
correlation.

However, the circumstances for TLAs and JCEs are
changed [see Figs. 3(c)–3(f)]. The dependence of nl/n and
g(2)

l on n shows that the photon-photon correlation is induced.
When n = 1, there is no photon-photon correlation, and thus,
the distribution nl/n in the TLA case is identical to that in
the OC case [compare the black lines in Figs. 3(a) and 3(c)].
Because of the single-excitation property of TLAs, the trans-
mission grows as n increases in Fig. 3(c). The stimulated and
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FIG. 2. Variations of the photon-number distributions with time
scattered by (a) and (b) OCs, (c) and (d) TLAs, and (e) and (f)
JCEs. The total photon number n = 2 (n = 10) for the left (right)
column. Parameters: L = 256, S = 128, k0 = 0.5π , kw = 0.05π/d ,
x0 = 64d , ωa = ωc = ωW , V0 = 0.4J , and � = 0.15J .

spontaneous emissions of TLAs are, respectively, responsible
for the bunching of the transmitted photons (g(2)

l > 1) and the
antibunching of the reflected photons (g(2)

l < 1) when n = 2
[see the blue line in Fig. 3(d)] [29]. As n → ∞, the single-
excitation property of the TLA results in most of the incident
photons being transmitted without feeling the TLA. That is,
g(2)

l should gradually approach 1 for the transmitted photons,
becoming larger than 1 for the reflected ones [see the red line
in Fig. 3(d)].

The transmission in the JCE case decreases as n increases,
the opposite of what occurs in the TLA case [see Figs. 3(c)
and 3(e)]. This is due to the JCEs being a composite of an
OC and a TLA. Once the TLA is excited by a photon, the
OC will dominate the scattering of the remaining photons.
Accordingly, as n → ∞, the distribution of nl/n in the JCE
case tends to that in the OC one [compare the red line in
Fig. 3(e) with the black line in Fig. 3(a)]. JCEs also lead
to different bunching and antibunching behaviors from those
induced by TLAs. For example, the transmitted and reflected
photons for n = 2 in Fig. 3(f) are antibunching (g(2)

l < 1)
and bunching (g(2)

l > 1), respectively, the opposite of those
in Fig. 3(d). Because the TLA no longer strongly influences
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FIG. 3. Normalized photon-number distribution (left column)
and second-order correlation functions (right column) of the final
n-photon states scattered by (a) and (b) OCs, (c) and (d) TLAs,
and (e) and (f) JCEs. The gray regions in the right column are not
considered because all nl are small in them. The parameters are
identical to those in Fig. 2.

the incident states as n → ∞, g(2)
l approaches unity for both

transmitted and reflected photons [see the red line in Fig. 3(f)].
Accordingly, it is the OC rather than the TLA in the JCE that
predominantly governs the scattering process when n → ∞,
fully different from few-photon cases. These physical behav-
iors remain the same for the incident pulse with double peaks
(see Appendix B).

The above discussion yields two points that merit further
exploration. First, given that OCs do not induce photon-
photon correlation and the scattering effect of a JCE tends
to that of an OC as n → ∞, how does the photon-photon
correlation strength induced by JCEs vary with n? Second,
how do OCs, TLAs, and JCEs affect the phenomenon of
photon bunching from the perspective of the occupation ratio
of bunching photons?

C. Correlation effect of the JCE

This section explores the first point from the perspective of
transmission, i.e., T = ∑

l>S nl/n for the final state, taking the
tuning case of ε0 = ωc = ωa as an example. The transmission
decreases as n increases [see the black line with squares in
Fig. 4(a), whose horizontal axis is inversely proportional].
Such a transmission decrease should be attributed to the
photon-photon correlation induced by the TLA in the JCE.
As n 	 1, the TLA in the JCE is consistently excited during
the scattering process and no longer significantly impacts the

(a) (b)

FIG. 4. (a) Variation of the transmission scattered by a JCE with
n (black squares) with respect to that of Tc + (TJ − Tc )/n (red cir-
cles). (b) Difference between the black squares and red circles in (a).
The gray lines and dots in (a) and (b) show the limitation of n → ∞.
The parameters are identical to those in Fig. 2.

transmission, resulting in the transmission being primarily
determined by the OC. If we neglect the photon-photon cor-
relation, that is, assume that only the first arriving photon is
scattered by the JCE while all the rest are scattered by the
OC, we can deduce that the transmission of an n-photon pulse
equals [TJ + (n − 1)Tc]/n = Tc + (TJ − Tc)/n, where Tc and
TJ are the transmissions of the single-photon state (i.e., |i〉1)
scattered by the OC and JCE, respectively. The expression
of Tc + (TJ − Tc)/n is plotted as the red line with circles
in Fig. 4(a). Both lines converge toward Tc as n → ∞ (see
the gray dot). Since the photon-photon correlation is fully
neglected in the red line with circles, the difference between
the two lines in Fig. 4(a), illustrated in Fig. 4(b), reflects
the strength of the photon-photon correlation induced by the
JCE. The bump in the transmission difference implies that
the photon-photon correlation exerts a strong influence on the
incident pulse as it holds several particles.

D. Occupation ratio of bunching photons

This section focuses on how the three types of quantum
emitters influence photon bunching behaviors, using the oc-
cupation ratio of bunching photons in n-photon states. The
occupation ratio of |σl〉n is defined as ρ

[n]
l (σl ) = |n〈σl | f 〉n|2

(see Fig. 5 for n = 2 and 10). When n = 2 (the left column),
the probability of |2〉2 is always far less than that of |1〉2 for
all OC, TLA, and JCE cases, even as g(2)

l > 1 [see Figs. 3(d)
and 3(f)]. This is because the probability of |0〉2 approaches 1,
leading to ρ

[2]
l (1) 
 1. Using ρ

[2]
l (σl ), we have

g(2)
l = 2ρ

[2]
l (2){

ρ
[2]
l (1) + 2ρ

[2]
l (2)

}2 .

Since both ρ
[2]
l (1) and ρ

[2]
l (2) are far less than 1, g(2)

l > 1 as
long as ρ

[2]
l (2) � 0.5{ρ[2]

l (1)}2 and subsequently, ρ
[2]
l (2) 


ρ
[2]
l (1) 
 1. As n increases, the probabilities of |σl�2〉n in-

crease remarkably (comparing the left and right columns in
Fig. 5).

The occupation ratio of bunching photons in multiphoton
states, η

[n]
l = 1 − 1

nl
ρ

[n]
l (1), is plotted in the left column of

Fig. 6. For three types of quantum emitters, we can roughly
say that all η

[n]
l increase as n increases. However, this vari-

ation behavior is not consistent with that of g(2)
l (compare
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FIG. 5. Occupation probabilities of Fock states on every site in
the final states ρ

[n]
l (σl ). The parameters are identical to those in

Fig. 2.
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FIG. 6. η
[n]
l (left column) and η̄ (right column) of the final states

scattered by (a) and (b) OCs, (c) and (d) TLAs, and (e) and (f) JCEs.
The gray regions in left column are not considered because all nl are
small in them. The parameters are identical to those in Fig. 2.

the right column of Fig. 3 with the left column of Fig. 6).
Such inconsistence implies that g(2)

l cannot fully capture the
photon-bunching behavior. To measure the photon-bunching
behaviors of the transmitted and reflected pulses, we therefore
turn to the average occupation ratios of bunching photons,

which are defined as η̄t =
∑

l>S nl η
[n]
l∑

l>S nl
and η̄r =

∑
l<S nl η

[n]
l∑

l<S nl
for the

transmitted and reflected pulses, respectively.
In the right column of Fig. 6, η̄t and η̄r are plotted as a func-

tion of n. They both monotonously increase as n increases,
and thus, the more photons the pulse includes, the greater the
bunching behavior is. g(2)

l cannot lead to such a result (see the
right column of Fig. 3). Some g(2)

l in the reflected pulse in the
JCE case as n = 2 are evidently larger than those as n = 10
[see Fig. 3(f)]. In addition, η̄t and η̄r are always smaller than
the average probabilities of bunching photons in the initial
states [see Fig. 6(b)] for all three types of quantum emit-
ters. Accordingly, the scattering process enhances the photon
antibunching behavior from the perspective of multiphoton
occupation. We also have η̄r > η̄t for OCs and JCEs and
η̄r < η̄t for TLAs. These could be attributed to the transmitted
and reflected pulses of the three cases having different photon-
photon correlation and photon-bunching behavior.

IV. CONCLUSION AND OUTLOOK

MPS theory for the waveguide-QED systems was es-
tablished to identify the statistics of tens-of-photons states
scattered by OCs, TLAs, and JCEs. We showed that the
scattering of OCs retains the straight-product property of the
initial Fock states, i.e., g(2)

l ≡ 1 − 1
n , but changes the occupa-

tion ratio of bunching photons. However, both of them can
be changed by the scattering of TLAs and JCEs, and there-
fore, TLAs and JCEs can induce photon-photon correlations,
which leads to the variation of pulse forms, transmissions,
and second-order correlation functions with n. Especially, we
found that the scattering effects of JCEs tend to those of
OCs when n → ∞, and from the perspective of transmission
there is a maximum in the photon-photon correlation induced
by JCEs when the incident states involve several photons.
What is more, different bunching and antibunching behaviors
between few-photon and tens-of-photons cases were revealed.
The occupation ratio of the bunching photons in the scattered
states monotonously grows as the photon number increases
for all three types of quantum emitters but is always less than
that in the initial states.

Multiphoton interference [56,57] is a key resource in pho-
tonic quantum information processing [58,59], which plays a
basic role in the task of multiphoton quantum key distributions
[60], simulations [61], entanglement generations [18,25,57],
and computations [57], among others [58,59]. This work de-
veloped the MPS method for quantum waveguides to study
multiphoton statistics, holding potential for promoting the
research of quantum informatics and techniques.
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APPENDIX A: DETAILS OF THE CALCULATION

1. Constructing |i〉n in MPS form

The n-photon initial state considered is written in Eq. (6),
whose Hilbert space grows exponentially as the photon num-
ber increases. In this section, we introduce the specific
procedures for constructing the n-photon initial state |i〉n in
the MPS form.

a. Direct construction

Let us consider a Fock state with n photons dis-
tributed among m sites. These sites are labeled i1, i2,
. . . , and im, with the corresponding occupation states
denoted as |ni1 , ni2 , . . . , nim〉. The MPS representation of
|ni1 , ni2 , . . . , nim〉 reads

|ni1 , ni2 , . . . , nim〉 =
∑
{σ}

M[n]σ1
1 M[n]σ2

2 · · · M[n]σL
L |σ1σ2 · · · σL〉,

(A1)

where the total photon number n = ∑m
α=1 niα . The matrices

have the form

M[n]σl
l =

{
1, σl = nl ,

0, σl �= nl ,
l ∈ {i1, i2, . . . , im},

M[n]σl
l =

{
1, σl = 0,

0, σl �= 0,
l /∈ {i1, i2, . . . , im}.

(A2)

Using the above method, we are able to construct the MPS
for arbitrary Fock states and thus their superposition. Let us
take the superposition of J MPSs, denoted |aj〉, as

|A〉 =
J∑
j=1

Cj |a j〉, (A3)

where the MPS for the Fock state |a j〉 has the form

|a j〉 =
∑
{σ}

M[n]σ1
[ j]1 M[n]σ2

[ j]2 · · · M[n]σL
[ j]L |σ1, σ2, . . . , σL〉. (A4)

Here, the subscript [ j] denotes the jth Fock state. The MPS
for the superposition state, denoted as

|A〉 =
∑
{σ}

A[n]σ1
1 A[n]σ2

2 · · · A[n]σL
L |σ1, σ2, . . . , σL〉, (A5)

can be obtained by the following transformation:

A[n]σl
l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
C

1
L

1 M[n]σl
[1]l , . . . ,C

1
L
J M[n]σl

[J ]l

)
, l = 1,(

C
1
L

1 M[n]σl
[1]l , . . . ,C

1
L
J M[n]σl

[J ]l

)T
, l = L,

diag
(
C

1
L

1 M[n]σl
[1]l , . . . ,C

1
L
J M[n]σl

[J ]l

)
, else.

(A6)

Hence, the MPS for

|i〉n =
∑

l1,l2,...,ln

φl1φl2 · · · φln â†
l1

â†
l2

· · · â†
ln
|∅〉

can be constructed in principle. However, the aforementioned
approach is impractical in real operations due to the large
number of Fock states involved in a superposition. For exam-
ple, if there are three photons in the waveguide with L = 256,
the number of Fock states is C1

L + 2C2
L + C3

L = 2 796 416. As
a result, it is essential to find an efficient method for construct-
ing the MPS (see the following section).

b. Iterative method

In the case of the Gaussian state given in Eq. (6), the it-
erative method relies on the relationship |i〉1 = ∑

l1
φl1 â†

l1
|∅〉.

The detailed procedures are presented below.
Let us start by constructing the MPS for |i〉1. First, we write

the single-occupation state φl1 â†
l1
|∅〉 in the MPS by taking its

matrix set {M[1]σl
[l1]l } as

M[1]0
[l1]l =

{
1, l �= l1,
0, l = l1,

M[1]1
[l1]l =

{
0, l �= l1,
φl1 , l = l1.

(A7)

For the superposition state |i〉1 = ∑
l1

φl1 â†
l1
|∅〉, the matrix set

{M[1]σl
l } of the MPS representation can be written as

M[1]σl
l =

⎧⎪⎪⎨⎪⎪⎩
(
M[1]σl

[1]l , M[1]σl
[2]l , · · · , M[1]σl

[L]l

)
, l = 1,(

M[1]σl
[1]l , M[1]σl

[2]l , · · · , M[1]σl
[L]l

)T
, l = L,

diag
(
M[1]σl

[1]l , M[1]σl
[2]l , · · · , M[1]σl

[L]l

)
, else.

(A8)

That is,

|i〉1 =
∑
{σ }

M[1]σ1
1 M[1]σ2

2 · · · M[1]σL
L |σ1, σ2, . . . , σL〉. (A9)

Note that the superposition coefficients are involved in
{M[1]σl

[l1],l } [see Eq. (A7)].
The information provided thus far pertains to single-

occupation states. For multioccupation states, one can derive
the matrix set {M[n]σl

[ln]l } for the state φln â†
ln
|i〉n−1 from the ma-

trix set {M[n−1]σl
l } associated with the state |i〉n−1, using the

relations

M[n]σl
[ln]l

l=ln===
{

φln
√

σlM
[n−1]σl −1
l , 1 � σl � n,

0, σl = 0,
(A10)

M[n]σl
[ln]l

l �=ln===
{

0, σl = n,

M[n−1]σl
l , 0 � σl � n − 1.

(A11)

Subsequently, the MPS representation for the superposition
state involving φln â†

ln
|i〉n−1 can be obtained through a proce-

dure similar to Eq. (A8),

M[n]σl
l =

⎧⎪⎪⎨⎪⎪⎩
(
M[n]σl

[1]l , M[n]σl
[2]l , . . . , M[n]σl

[L]l

)
, l = 1,(

M[n]σl
[1]l , M[n]σl

[2]l , . . . , M[n]σl
[L]l

)T
, l = L,

diag
(
M[n]σl

[1]l , M[n]σl
[2]l , . . . , M[n]σl

[L]l

)
, else.

(A12)

Given the MPS representation of the single-occupation state
|i〉1 in Eq. (A9), one can derive the n-photon state |i〉n step by
step.

The above iterative method does not include the quantum
emitter. Here, we discuss how to incorporate the physical
dimension of the quantum emitter. For site S, we treat the
Sth cavity and the quantum emitter as a unified system.
Consequently, the state space expands from σS to (σS, σc),
(σS, σa), or (σS, σc, σa) when considering an OC, a TLA, or a
JCE, respectively. Here, σS represents the photon occupation
number in the Sth cavity of the chain, σc denotes the pho-
ton occupation number in the OC, and σa indicates whether
the TLA is excited or not. For the OC, when σc = 0, we
have M[n](σS,σc )

S = M[n]σS
S ; otherwise, M[n](σS ,σc )

S = 0. For the
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TLA, when σa = 0, we have M[n](σS ,σa )
S = M[n]σS

S ; otherwise,
M[n](σS,σa )

S = 0. What is more, for the JCE, when σc = σa = 0,
we have M[n](σS ,σc,σa )

S = M[n]σS
S ; otherwise, M[n](σS ,σc,σa )

S = 0.
This approach can give the MPS representation for the n-
photon initial state |i〉n, as illustrated in Fig. 1(a).

It is crucial to note that the dimensions of the matrices will
grow exponentially as we perform the procedure |i〉n−1 →
|i〉n. Therefore, it becomes necessary to compress the matri-
ces, typically achieved through singular-value decomposition
(SVD), at each step. Moreover, for computational efficiency,
it is highly advantageous to transform the MPS into either
the left-canonical or right-canonical form during the process
[42]. This canonicalization simplifies various calculations and
reduces the computational cost associated with MPS-based
methods.

2. Constructing e−iĤτ in MPO form

In this section, we will outline the process of constructing
the MPO for e−iĤτ as given in Eq. (7).

We begin with the second-order Trotter decomposition,

e−iĤτ = e−iĤoddτ/2e−iĤevenτ e−iĤoddτ/2 + O(τ 3), (A13)

where Ĥodd and Ĥeven represent the Hamiltonians acting on the
odd and even bonds. They are

Ĥodd =
∑
l∈odd

ĥl , Ĥeven =
∑

l∈even

ĥl , (A14)

with

ĥl = 1

2
ωW (â†

l âl + â†
l+1âl+1) − J

2
(â†

l âl+1 + H.c.)

+
{

1
2ωW (â†

1â1δl,1 + â†
LâLδl,L−1), l �= S−1, S,

1
2 (ĤE + ĤI ), l = S−1, S.

(A15)

Because [ĥl , ĥl+2] = 0, the equations e−iĤoddτ/2 =
e−iĥ1τ/2e−iĥ3τ/2 · · · and e−iĤevenτ = e−iĥ2τ e−iĥ4τ · · · are
strict, and their last terms depend on the parity of L. After
substituting the bond Hamiltonian ĥl into Ĥodd and Ĥeven, our
objective is to find the MPO for the operator of e−iĥl τ , which
can be solved using the following steps. First, calculate the
matrix representation of e−iĥl τ on the basis set of {|σl , σl+1〉},
denoted as D[n]

(σl σl+1 ),(σ ′
l σ

′
l+1 ) = 〈σl , σl+1|e−iĥl τ |σ ′

l , σ
′
l+1〉, where

σl is the physical index of the lth site. Then, exchange its
second and third subscripts to get D̄[n]

(σl σ
′
l ),(σl+1σ

′
l+1 ). Third,

decompose D̄[n]
(σl σ

′
l ),(σl+1σ

′
l+1 ) into the form

D̄[n]
(σl σ

′
l ),(σl+1σ

′
l+1 ) =

Ds∑
ds=1

U [n]
(σl σ

′
l ),ds

V [n]†
ds,(σl+1σ

′
l+1 ) (A16)

using the SVD, where Ds is the number of the nonzero singu-
lar values. Note that the singular values have been moved into
U and/or V . Finally, the matrices of the MPO on the lth and
(l + 1)th sites can be obtained by reshaping U [n] and V [n]†,
that is,

U [n] → (
Q

[n]σl σ
′
l

l

)
1,Ds

, V [n]† → (
Q

[n]σl+1σ
′
l+1

l+1

)
Ds,1

.

Accordingly, the MPO for e−iĥl τ can be expressed as

e−iĥl τ =
∑

{σl σl+1}

∑
{σ ′

l σ
′
l+1}

Q
[n]σl σ

′
l

l Q
[n]σl+1σ

′
l+1

l+1

× |σl , σl+1〉〈σ ′
l , σ

′
l+1|. (A17)

The procedure is similar for e−iĥl τ/2. Using Eq. (A17), the
MPO for both e−iĤoddτ/2 and e−iĤevenτ can be obtained, that is,

e−iĤoddτ/2 =
∑
{σ,σ ′}

Q
[n]σ1σ

′
1

odd,1 Q
[n]σ2σ

′
2

odd,2 · · · Q[n]σLσ ′
L

odd,L

× |σ1σ2 · · · σL〉〈σ ′
1σ

′
2 · · · σ ′

L|, (A18)

e−iĤevenτ =
∑
{σ,σ ′}

Q
[n]σ1σ

′
1

even,1 Q
[n]σ2σ

′
2

even,2 · · · Q[n]σLσ ′
L

even,L

× |σ1σ2 · · · σL〉〈σ ′
1σ

′
2 · · · σ ′

L|. (A19)

Then the matrices of the MPO in Eq. (A13) have the form

Q
[n]σl σ

′′′
l

l =
∑
σ ′

l σ
′′
l

Q
[n]σl σ

′
l

odd,l ⊗ Q
[n]σ ′

l σ
′′
l

even,l ⊗ Q
[n]σ ′′

l σ ′′′
l

odd,l , (A20)

where ⊗ represents the Kronecker product between matrices.
In this way, the MPO of e−iĤτ is successfully constructed,

namely,

e−iĤτ =
∑
{σ,σ ′}

Q
[n]σ1σ

′
1

1 Q
[n]σ2σ

′
2

2 · · · Q[n]σLσ ′
L

L

× |σ1σ2 · · · σL〉〈σ ′
1σ

′
2 · · · σ ′

L|. (A21)

3. Time evolution

Once the n-photon initial MPS |i〉n and time evolution
MPO e−iĤτ are constructed, the MPS of |�(t + τ )〉 at time
t + τ can be obtained by applying the MPO to the MPS of
|�(t )〉 at time t . The method of direct application [42] is used
in this work, i.e.,

Ô[n]
τ |�(t )〉n =

∑
{σ,σ′}

∑
{α}

Q
[n]σ1σ

′
1

1;α0,α1
Q

[n]σ2σ
′
2

2;α1,α2
· · · Q[n]σLσ ′

L
L;αL−1,αL

× |σ1, σ2, . . . , σL〉〈σ ′
1, σ

′
2, · · · , σ ′

L|
×

∑
{σ ′′}

∑
{β}

M
[n],σ ′′

1
1;β0,β1

M
[n],σ ′′

2
2;β1,β2

· · · M[n],σ ′′
L

L;βL−1,βL

× |σ ′′
1 , σ ′′

2 , . . . , σ ′′
L 〉

=
∑
{σ}

∑
{α,β}

M ′[n]σ1
1;α0β0,α1β1

M ′[n]σ2
2;α1β1,α2β2

· · ·

× M ′[n]σL
L;αL−1βL−1,αLβL

|σ1, σ2, . . . , σL〉
=

∑
{σ}

∑
{γ}

M ′[n]σ1
1;γ0,γ1

M ′[n]σ2
2;γ1,γ2

· · · M ′[n]σL
L;γL−1,γL

× |σ1, σ2, . . . , σL〉
≡ |�(t + τ )〉n. (A22)

The matrix M ′[n]σl
l is given by

M ′[n]σl
l;γl−1,γl

=
∑
σ ′

l

Q
[n]σl σ

′
l

l;αl−1,αl
M

[n],σ ′
l

l;βl−1,βl
, (A23)
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FIG. 7. Convergence of nl for the final states scattered by
(a) OCs, (b) TLAs, and (c) JCEs, respectively. The bond dimensions
D are taken to be 25 (black squares), 27 (red circles), and 30 (blue
triangles) in the calculations. The parameters are identical to those in
Fig. 2.

where γl = (αlβl ). The bond dimension of the matrices in the
MPS increases every time the MPO is applied to it. The SVD
is used to perform bond-dimension compression.

4. Convergence of the MPS method

In the whole process of calculating the final states | f 〉n,
the computation complexity can be roughly measured by the
element number of the MPS, i.e., (n + 1)[2D + (L − 3)D2] +
ZE , with D being the bond dimension of the matrices. Here,
ZE = (n + 1)2D2, 2(n + 1)D2, and 2(n + 1)2D2 for the OC,
TLA, and JCE cases, respectively. The choice of the value D
is relevant to n. Generally, the larger n is, the larger D should
be. In this section, we test the convergence of the MPS method

by calculating nl = n〈 f |â†
l âl | f 〉n for the final states scattered

by the OC, TLA, and JCE (see Fig. 7).
The errors of the MPS method are mainly from Trotter

decomposition and the truncations of the MPS and MPO.
Figure 7 shows that the results of nl are convergent as D
reaches 25 for n = 10.

APPENDIX B: INCIDENT PULSE WITH DOUBLE PEAKS

To prove the universality of this method for other pulse
types, we calculate nl and g(2)

l for the incident pulses
with double peaks, where n = 2 and 10 are taken as ex-
amples. The wave function of the incident pulse is φ′

l =
N ′ ∑

k e−(k−k0 )2/k2
w {e−ik[xl −(x0+�x)] + e−ik[xl −(x0−�x)]}, with N ′

being the normalized constant and �x being the center po-
sition shift. The results are shown in Fig. 8, presenting
correlation behaviors similar to those of Gaussian pulses (see
the right columns of Figs. 3 and 8).

Additionally, the MPS method developed here can also
deal with other cases in the field of quantum waveguides,
for example, a waveguide coupled to more than one quantum
emitter. Another case is to analyze the decay of quantum
waveguide systems. The decay effect can be introduced by
two ways. One is to add an imaginary part to the eigen-
frequency of each mode considered, such as ω̃W = ωW −
iγw/2, with γw being the decay rate. The alternative ap-
proach involves employing the master equation, in which
the MPS should be substituted with the MPO of the density
matrix.

FIG. 8. Variations of nl with time (left and middle columns) and g(2)
l at t = 160τ0 (right column) for (a)–(c) OCs, (d)–(f) TLAs, and

(g)–(i) JCEs. The total photon number n = 2 (n = 10) for the left (middle) column and �x = 12. The gray regions in the right column are not
considered because all nl are small in them. The parameters are identical to those in Fig. 2.
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FIG. 9. Normalized second-order correlation functions for the
n-photon product Fock state in Eq. (C1).

APPENDIX C: PROOF OF g(2)
l ≡ 1 − 1

n FOR n-PHOTON
PRODUCT FOCK STATES

In this Appendix, we investigate the second-order correla-
tion function g(2)

l for an n-photon product Fock state, which
does not have any photon-photon correlation between any
photons. The state has a form similar to Eq. (6) in the main
text, i.e.,

|�〉n =
∑

l1,l2,...,ln

ψl1ψl2 · · ·ψln â†
l1

â†
l2

· · · â†
ln
|∅〉, (C1)

where ψl is a random number satisfying
∑

l |ψl |2 = 1, which
guarantees universality and normalization. We first consider
the case of n = 1; the probabilities with one and zero pho-
tons on the lth site are taken to be ρ

[1]
l (1) and ρ

[1]
l (0) = 1 −

ρ
[1]
l (1), respectively. For the n-photon case without photon-

photon correlation, the probability of σl photons occupying
the lth site can be written as

ρ
[n]
l (σl ) = Cσl

n

{
ρ

[1]
l (0)

}n−σl {
ρ

[1]
l (1)

}σl
. (C2)

Then 〈n̂l〉 and 〈n̂2
l 〉 can be represented as

〈n̂l〉 =
n∑

σl =0

σlρ
[n]
l (σl )

=
n∑

σl =0

σlC
σl
n

{
ρ

[1]
l (0)

}n−σl {
ρ

[1]
l (1)

}σl
, (C3)

〈n̂2
l 〉 =

n∑
σl =0

σ 2
l ρ

[n]
l (σl )

=
n∑

σl =0

σ 2
l Cσl

n

{
ρ

[1]
l (0)

}n−σl {
ρ

[1]
l (1)

}σl
. (C4)

Substituting Eqs. (C3) and (C4) and ρ
[1]
l (0) = 1 − ρ

[1]
l (1) into

g(2)
l = 〈n̂2

l 〉−〈n̂l 〉
〈n̂l 〉2 leads to g(2)

l ≡ 1 − 1
n . To confirm this, g(2)

l is
plotted for the product Fock states in (C1) in Fig. 9, where ψl

takes arbitrary value.
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