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Modeling beam propagation in a moving nonlinear medium
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Fully describing light propagation in a rotating, anisotropic medium with thermal nonlinearity requires
modeling the interplay between nonlinear refraction, birefringence, and the nonlinear group index. Incorporating
these factors into a generalized coupled nonlinear Schrödinger equation and fitting them to recent experimental
results reveals two key relationships: the photon drag effect can have a nonlinear component that is dependent
on the motion of the medium, and the temporal dynamics of the moving birefringent nonlinear medium create
distorted figure-eight-like transverse trajectories at the output. The beam trajectory can be accurately modeled
with a full understanding of the propagation effects. Efficiently modeling these effects and accurately predicting
the beam’s output position has implications for optimizing applications in velocimetry and beam steering.
Understanding the roles of competitive nonlinearities gives insight into the creation or suppression of nonlinear
phenomena like self-action effects.
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I. INTRODUCTION

Light propagation in a moving medium is subject to photon
drag. Drag was first predicted by Fresnel [1] and later exper-
imentally proved by Fizeau [2]. Depending on the direction
of medium motion relative to the optical path, light drag
can change the speed of light in the longitudinal direction
or shift the beam in the transverse direction. These changes
are typically minute and require sensitive measurements to be
observed [3]. However, it has been shown that a large group
index can enhance both longitudinal [4] and transverse [5]
light drag. Moreover, the light drag effect is linearly propor-
tional to the speed of the moving medium. In the case of
the transverse drag, fast transverse motion can be achieved
using the tangential component of rotational motion far from
the axis of rotation. In some cases, rotation is also helpful in
producing slow light effects [5]. However, rotation can add
complexity, particularly when considering birefringent media,
which requires additional considerations. Therefore, model-
ing light propagation subject to large transverse shifts must
account for the rotation rate, birefringence, and large group
indices. Moreover, if the light is intense, the impact of any
optical or thermal nonlinear response, acting both locally and
nonlocally, must also be considered. Transverse shifts from
photon drag have been modeled as a linear effect [1,2,5–7].
However, when thermal and optical nonlinearities become
significant, we must incorporate the nonlinear response effect
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on the group index, including the different time scales over
which they will impact the direction and the magnitude.

In this work, we introduce a general theory to describe
the interaction of linearly polarized light with a rotating bire-
fringent nonlocal nonlinear medium. Our model considers
rotation, birefringence, and nonlinear refraction, and by in-
corporating the nonlinear contributions to the material’s group
index, we extend the linear photon drag effect to the nonlinear
regime. All effects can be incorporated using an intensity- and
rotation-speed-dependent dielectric tensor, then we develop
generalized coupled nonlinear Schrödinger equations for the
ordinary (o-) and extraordinary (e-)beams to fully describe
the linear and nonlinear dynamics. As a result, we can plot
the distorted beam trajectories through the medium and their
transverse shifts.

Our theoretical work applies to any light propagation in a
rotating, linear, or nonlinear medium [8] and supports our pre-
vious experimental work [9]. Since the trajectories are tracked
and controllable, our work has implications for applications
in beam steering [10]. Moreover, modeling the polarization
response due to dielectric tensor could lead to manipulated
propagation of vector beams [11].

II. THE PHOTON DRAG EFFECT

As light travels through a moving medium, the speed of
light with respect to the laboratory frame changes, producing
light drag. However, analogously to how the different phase
velocities of the constituent frequencies of an optical pulse
determine its group velocity, the different phase shifts of
the constituent momentum components of an optical beam
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FIG. 1. Schematic of the linear, transverse photon drag effect. A
beam of light passing through an isotropic, lossless medium of length
L, moving transversely with speed v, is laterally shifted by �y, given
in Eq. (2).

determine its path. Medium movement can be either along
the propagation direction, producing an optical phase shift
and longitudinal drag [4], or perpendicular to propagation,
inducing transverse drag [7].

Focusing on the transverse drag case (Fig. 1), Carusotto
et al. [7] derives the transverse beam deflection (�y) for
monochromatic, collimated light interacting with an isotropic,
lossless, dispersive, linear medium of length L and in motion
with constant speed v.

Upon entering the moving medium at normal incidence,
the beam deflects from its direction of propagation by some
angle θ , as determined by its phase index n0 and group index
ng,

tan θ = v

c

(
ng − 1

n0

)
, (1)

where c is the speed of light in a vacuum. Thus, the transverse
shift describing the magnitude of the photon drag effect �y is

�y = vL

c

(
ng − 1

n0

)
, (2)

where L is the medium length. The group index can become
large in certain media in the presence of intense laser beams
(|ng| ≈ 106 [6, 12]), and thus the linear photon drag effect can
extend to a nonlinear regime. Therefore, we must consider
the lowest-order nonlinear corrections to the indices n0 and
ng. The corrections take the form �n = n2I arising from an
instantaneous Kerr-type nonlinearity where n2 is the nonlinear
refractive index and I is the input beam intensity. The phase
and group indices then become

nNL
0 = n0 + n2I,

nNL
g = n0

g + ng
2I, (3)

where n0
g is the linear group index and ng

2 is the nonlinear
group index,

ng
2 =

[
n2 + ω0

(
dn2

dω

)
ω0

]
. (4)

Here, nNL
g represents the overall change of the group index,

including the Kerr-like nonlinear response. Substituting nNL
g in

Eq. (2), we find the transverse shift including nonlinear photon
drag as

�yNL = L tan(θNL ) = Lv

c

(
nNL

g − 1

n0

)
, (5)

FIG. 2. A laser beam incident on a rotating medium far from the
center of rotation. Far from the center, the beam experiences the
tangential component of the velocity in the direction according to
the sign of the angular velocity � that rotates about the z axis. Two
frames of reference are also shown. The laboratory frame is shown
in (x, y, z) and the crystal frame is (x′, y′, z′).

where n2I � n0. When the magnitude of the group index is
very large, �yNL is positive (negative) for normal (anomalous)
dispersion [6,12,13], with nNL

g > n−1
0 (nNL

g < n−1
0 ), respec-

tively. While the nonlinearity experienced by a cw beam
propagating in a thermal medium can typically be approx-
imated as instantaneous [14], the coupling between thermal
nonlocality and medium motion introduces noninstantaneous
effects, as delineated by the generalization of Eq. (4) to non-
local nonlinear refraction in Eq. (28), elaborated upon in
Sec. III. We will later also elaborate further on the effect
of the speed of the medium on nNL

g . The nonlinear photon
drag effect can be tuned using the movement speed of the
medium, creating a range of transverse shifts. To this point,
the discussion has focused on the purely linear motion of
an isotropic medium, so we next transition to rotation-based
transverse drag.

III. ROTATION AND ANISOTROPY

A. Media in rotation

We can approximate rotation to fast translational motion
by considering the tangential component of rotation for a
beam far from the center of rotation (r > w0), where r is the
distance from the center of rotation to the center of the beam
and w0 is the beam radius as seen in Fig. 2. In the slow light
regime where |nNL

g | � n0, and accounting for the rotation, the
nonlinear photon drag effect becomes

�yNL ≈ Lr�

c
nNL

g , (6)

where � is the medium rotation speed.
The medium must easily rotate about the transverse plane

and have a large group index to maximize the nonlinear pho-
ton drag effect. A suitable candidate would be a ruby rod [12],
which has been used to investigate slow and fast light effects
[5,15–20]. Ruby also has measurable optical nonlinearities,
including Kerr-type nonlinearity [17,21–23], and in addition,
it is an anisotropic medium that exhibits birefringence. We
must account for the change in the group index but not the
phase index, since the group index can be much larger due
to strong local dispersion effects. Hence, our model must
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FIG. 3. Two frames of reference. The reference frames are lab-
oratory (x,y,z) and crystal (x’,y’,z’). The wave vector comes in at an
angle θ in the x-z plane.

incorporate the different refractive indices along its crystal
structure’s o and e axes. Motivated by this example, we will
incorporate a rotating reference frame with a birefringent,
nonlinear material into our model.

B. Rotating reference frame with anisotropy

Consider a solid, birefringent ruby rod rotating about the
z axis with a constant rotation speed, as in Fig. 2. We de-
scribe how incoming monochromatic light interacts with this
medium using a vector wave equation derived from Maxwell’s
equations

k×(k×E0) + ω2

c2
εE0 = 0, (7)

where k is the wave vector, ω is the frequency, ε is the
dielectric tensor, and E0 is a vectorial complex amplitude of
the electric field.

To properly describe the system, we must define the vec-
tor quantities in two reference frames: the laboratory frame
(x, y, z) and the rotating crystal frame (x′, y′, z′). In the labo-
ratory frame, the orthonormal basis of unit vectors is x̂, ŷ, ẑ.
The crystal rotates with constant angular velocity �, and away

from the center of rotation, the crystal moves with tangential
velocity v = �×r, where r = xx̂ + yŷ + zẑ. We write the
crystal frame as another orthonormal basis x̂′, ŷ′, ẑ′, and take
x̂′ = â0, where â0 is the crystal optic axis [24]. The crystal
frame coordinates are accessed by applying a rotation matrix
of an angle −�t about the z axis,

Rz(−�t ) =

⎛⎜⎝ cos (�t ) sin (�t ) 0

− sin (�t ) cos (�t ) 0

0 0 1

⎞⎟⎠, (8)

to the laboratory frame basis vectors and vice versa. In the
simplest case, the crystal basis is exactly aligned with the
crystal axes, but generally, the system has a tilt angle γ . We
suppose that γ rotates the x-z plane (i.e., about the y axis).
Now consider γ �= 0, as shown in Fig. 3.

An angular difference between reference frames γ further
induces a rotation considered to be between the optic axis â0

and the x-z plane, again setting x̂′ = â0 and ŷ′, ẑ′ accordingly.

The crystal frame becomes C
(

x
y
z

)
, with C = Ry(γ )Rz(−�t ),

such that⎛⎜⎝x′

y′

z′

⎞⎟⎠ =

⎛⎜⎝ cos(γ ) cos (�t ) cos(γ ) sin (�t ) sin(γ )

− sin (�t ) cos (�t ) 0

− sin(γ ) cos (�t ) − sin(γ ) sin (�t ) cos(γ )

⎞⎟⎠

×

⎛⎜⎝x

y

z

⎞⎟⎠, (9)

which comprises inverse rotation matrices about the z and y
axes Rz(−�t ) and Ry(γ ), respectively, as seen by the crystal
frame and shown in Fig. 3. Incoming light in the crystal frame
will see the ordinary (no) and extraordinary (ne) refractive in-
dices. We must consider the crystal symmetry when switching
reference frames and its effect on the dielectric tensor. Re-
turning to the laboratory frame, we apply C−1 to the dielectric
tensor; neglect terms O[(δn)2], assuming δn = no − ne � 1
(e.g., δn = −0.008 for a uniaxial ruby rod); and find

ε(�t, γ ) = C−1εC =

⎛⎜⎝cos(γ ) cos(�t ) − sin(�t ) − sin(γ ) cos(�t )

cos(γ ) sin(�t ) cos(�t ) − sin(γ ) sin(�t )

sin(γ ) 0 cos(γ )

⎞⎟⎠
⎛⎜⎝ε0n2

e 0 0

0 ε0n2
o 0

0 0 ε0n2
o

⎞⎟⎠

×

⎛⎜⎝ cos(γ ) cos(�t ) cos(γ ) sin(�t ) sin(γ )

− sin(�t ) cos(�t ) 0

− sin(γ ) cos(�t ) − sin(γ ) sin(�t ) cos(γ )

⎞⎟⎠

= ε0

⎛⎜⎝ n2
e + δn cos2(γ ) cos2(�t ) δn cos2(γ ) sin(�t ) cos(�t ) δn sin(γ ) cos(γ ) cos(�t )

δn cos2(γ ) sin(�t ) cos(�t ) n2
o + δn cos2(γ ) sin2(�t ) δn sin(γ ) cos(γ ) sin(�t )

δn sin(γ ) cos(γ ) cos(�t ) δn sin(γ ) cos(γ ) sin(�t ) n2
o + δn sin2(γ )

⎞⎟⎠. (10)

The optic axis is aligned to z such that the above transformations allow transfer into the laboratory frame even when the axis
of rotation (z′) is not perfectly aligned. We take the optical axis perpendicular to the axis of rotation. Factorizing and separating
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contributions to Eq. (10) as ε(γ ,�t ) = ε′ + ε′′(γ ,�t ), we arrive at two distinct contributions to the dielectric tensor [24],

ε′ = ε0

⎛⎜⎝n2
e 0 0

0 n2
o 0

0 0 n2
o

⎞⎟⎠, (11)

and ε′′(�t, γ ) is

ε′′(�t, γ ) = 2ε0δn cos2(γ )

⎛⎜⎝sin2(�t ) + sec2(γ ) − 1 − sin(2�t )/2 cos (�t ) tan(γ )

− sin(2�t )/2 sin2(�t ) sin (�t ) tan(γ )

− cos (�t ) tan(γ ) − sin (�t ) tan(γ ) tan2(γ )

⎞⎟⎠
γ=0−−→ 2ε0noδn

⎛⎜⎝ sin2(�t ) − 1
2 sin(2�t ) 0

− 1
2 sin(2�t ) − sin2(�t ) 0

0 0 0

⎞⎟⎠. (12)

Both the dielectric tensor and the interacting fields are needed to understand light propagation through the medium. So far, we
have described the dielectric permittivity, including birefringence, tilt angle, and medium rotation. Next, we will address the
fields. Using the expressions of Eqs. (11) and (12), we next establish the refractive index ellipsoids in two relevant cases: first
when there is perfect alignment between the crystal axis and the axis of rotation (γ = 0), then when a nonzero angular offset
must be considered (γ �= 0).

C. Propagating fields inside a rotating medium

1. Crystal perfectly aligned, γ = 0

Consider a monochromatic field propagating through a lin-
ear medium

E = E0eı(k·r−ωt ), (13)

under the assumption of weak birefringence (δn � 1) and
nonrelativistic rotation speeds, r� � c (for which ∂2

∂t2 εE �
ε ∂2

∂t2 E), ensuring that the time for the light to fully
propagate through the medium is short compared to all
other timescales.

Provided that ∇ · E � 0, k×(k×E) := −K2E, where
K2 := k21 − k ⊗ k, 1 is the identity matrix, × is a cross
product, ⊗ is the dyadic product, and k2 = k2

x + k2
y + k2

z , we
solve the vector wave equation Eq. (7) in the laboratory frame
as a linear system of variables satisfying A · E = 0, where
A = K2 − ω2

c2 ε. We only find nontrivial solutions of A · E
if the determinant of the coefficient matrix is non-null (i.e.,
K2 − ω2

c2 ε �= 0). Using the dielectric tensor in Eq. (10) and the
associated monochromatic field E for a rotating birefringent
medium, we can solve A · E = 0. We must suppose that the
initial wave vector k comes in at an angle θ between the optic
axis and the z axis, where at time t = 0, x̂ = x̂′ = â0 (see
Fig. 3). Neglecting all the terms O[(n2

o − n2
e )2] in A · E and

supposing that the crystal is perfectly aligned with the rotation
axis (γ = 0), the conditions for which the wave vector coor-
dinates kx, kz (ky = 0), with ne,i = √

εii, to resolve nontrivial
solutions in the laboratory frame are

k2
x

n2
e,2

+ k2
z

n2
e,2

= ω2

c2
, (14)

k2
x

n2
e,3

+ k2
z

n2
e,1

= ω2

c2
, (15)

where

ne,1(�t ) = ne + δn sin2(�t ),

ne,2(�t ) = no − δn sin2(�t ),

ne,3(�t ) ≡ no. (16)

Here, ne,i(�t ) = √
εii(�t, γ = 0), assuming δn � 1, where

i = 1, 2, 3 referring to the major diagonal components of the
matrix. The latter set of equations hold true only in the zero
tilt-angle case. Equations for the nonzero tilt-angle case are
reported in the Appendix. The quantities ne,1 and ne,2 rep-
resent the new refractive indices along x and y, respectively.
While in the crystal, the refractive indices ellipsoid reads as

(x′)2

n2
e

+ (y′)2

n2
o

+ (z′)2

n2
o

= 1, (17)

and in the laboratory frame, its expression is

x2

n2
e,1

+ y2

n2
e,2

+ z2

n2
o

= 1, (18)

as sketched in Fig. 4.
Equation (18) demonstrates that, even if the crystal is

uniaxial, the rotation in the laboratory frame results in a
biaxial-like crystal with time-dependent birefringence. In a
birefringent medium, two beams, the ordinary and extraordi-
nary, are typically seen at the output face (see the Appendix
for more details). At certain conditions, a fixed input polar-
ization state is sometimes purely ordinary or extraordinary,
resulting in only one beam at the output. This inherent
birefringence, or lack thereof, causes the incoming linearly
polarized light to interchange between o- and e-beams. Ul-
timately, predicting the exit position, angle, and relative
intensity will be necessary to compare to experiments. More
details on this are reported in the Appendix, including a modi-
fied Snell’s law to understand the separation in output between
o- and e-beams and the full derivation of the refractive indices
in the case of the presence of the tilt angle γ .
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FIG. 4. The refractive index ellipsoid in the laboratory frame.
Four refractive indices are labeled on the ellipsoid no as a projection
onto the z axis ne, which is equal to the length from O to N, defined
as ON , and ne,1 and ne,2 defined in Eq. (16). k represents the wave
vector of the incoming light, perpendicular to ON .

2. Crystal imperfectly aligned, γ �= 0

Assuming normal incidence and nonzero tilt angle, we find
the electric field for linearly polarized light interacting with
the medium as

E(x, y, z,�t, γ ) = Êo(�t, γ )A(x, y, z)eı[ko(�t,γ )·r−ωt]

+ Êe(�t, γ )B(x, y, z)eı[ke(�t,γ )·r−ωt],

(19)

where Êo = x̂′, Êe = ŷ′, and A(x, y, z) and B(x, y, z) are spa-
tially varying functions defined later. The rotation of the
linearly polarized light in a rotating birefringent medium leads
to linear dynamics in the output transverse trajectories produc-
ing figure-eight-like patterns. The crystal is aligned such that,
in the linear regime, the o-beam passes straight through, and
the e-beam rotates around the o-beam at a rotation speed of �.
The behavior of � on these trajectories is discussed later for
both linear and nonlinear regimes.

Because the output position of each of the birefringently
separated beams moves rapidly while also varying in relative
intensity, experiments can benefit from instead tracking the
center of intensity (COI) of the two beams [9]. Therefore,
to facilitate comparisons to such experiments, we also model
the COI. The COI can be constructed by first looking at the
positions of two beams (o- and e-) separately, then taking the
position of the average intensity of the two beams. For a ro-
tating, birefringent medium, COI trajectories typically follow
figure-eight-like patterns, with transverse displacement of the
figure eight indicating the mean transverse displacement of
the ordinary and extraordinary beams, while deformation of
the figure-eight pattern indicates strong thermal nonlinearity
leading to an index gradient, based on the results of Ref. [9].

Applying Eq. (7) to the newly found fields of Eq. (19), we
again find nontrivial solutions to A · E = 0 resulting in refrac-
tive indices in the crystal frame of the form (full derivation in
the Appendix)

ne,1(�t, γ ) � ne + δn cos2(γ )[sin2(�t ) + tan2(γ )],

ne,2(�t, γ ) � no − δn cos2(γ ) sin2(�t ),

ne,3(�t, γ ) � no − δn sin2(γ ). (20)

Here, ne,i(�t, γ ) = √
εii(�t, γ ) assuming δn � 1, where i =

1, 2, 3 referring to the major diagonal components of the
matrix. In the limit of γ = 0, one recovers Eq. (16). We now
model how the presence of the new refractive indices will alter
the beams’ propagation in the crystal.

We model the propagation of light starting from the stan-
dard vector wave equation for the electric field derived from
Maxwell’s equations [14] to obtain generalized coupled non-
linear Schrödinger equations (NLSEs) for the o- and e-beams.
We first substitute Eq. (19) and the eigenvalue solutions,
Eq. (20), into the vector wave equation. We then assume
∇ · E � 0, as the dielectric tensor dependence on the spatial
coordinates can be neglected in the limit v � c, which also
ensures its negligible temporal derivative. We further assume
weak birefringence, a slow-varying envelope, and paraxial
approximations,

Êo∇2[Aeı(ko·r)] + Êe∇2[Beı(ke·r)]

+ ω2
0

ε0c2
[Aeı(ko·r)εÊo + Beı(ke·r)εÊe] = 0 (21)

and by making the substitutions

A = a(x, y, z) exp

(
ı

(
neff2

o − n2
o

)
ω2

0

2k2
oc2

k′
o · r̂

)
,

B = b(x, y, z) exp

(
ı

[
neff2

e − n2
e cos(γ )2

]
ω2

0

2k2
e cos(γ )2c2

k′
e · r̂

)
(22)

into Eq. (21), we can find two coupled NLSEs that can be
written out for the o- and e-beams. a(x, y, z) and b(x, y, z),
are slowly varying envelope functions, and k′

o = ko + �k and
k′

e = ke + �k, where �k = − ω
c2 �×ri is the Lorentz trans-

formation with ri = (a0, 0, 0) such that �k = −ω0�rc−2ŷ =
�kŷ. However, we must also introduce a nonlinear index
gradient caused by nonlinear refraction, �nNL(I ), where I is
the beam intensity added to the dielectric tensor in Eq. (10)
(see the Appendix for details). The thermal nonlinear response
of �nNL is important only when the timescales of interactions
are long (i.e., noninstantaneous) and the nonlocal response
is strong. With these substitutions, we arrive at two coupled
nonlinear Schrödinger equations,

∂za = ı

2ko
∇2

⊥a − ıko

no
�nNLa − nNL

g,o

c
∂ya,

∂zb = ı

2ke cos2(γ )
∇2

⊥b + ıke

ne cos2(γ )
�nNLb

+ 2 tan(γ )[cos(�t )∂xb + sin(�t )∂yb] − nNL
g,e

c
∂yb,

(23)

where

nNL
g,o = ω2

0

(
neff2

o − n2
o

)
�k

2k3
oc2

(24)

and

nNL
g,e = ω2

0

[
neff2

e − n2
e cos2(γ )

]
�k

2k3
e cos4(γ )c2

. (25)
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Simulating these two coupled NLSEs, we can extract the
output COI transverse trajectories and the amount of trans-
verse shift. Simulations also showed that these effects of �nNL

are small (see the Appendix) in comparison to the nonlinear
response of the group index, largely due to the interaction
timescales being much shorter for the group index. �nNL is
described as a first-order nonlinear correction in the crystal
frame to the dielectric permittivity and is dependent on rota-
tion speed and tilt angle. In thermal media,

�n′
NL =

(
∂n

∂T

)
0

�T (r′), (26)

where ( ∂n
∂T )0 is the medium’s thermo-optic coefficient at ther-

mal equilibrium (steady-state response) and �T (r′) is the
temperature variation about the point r′ = (x′, y′, z′) [14].
Following the derivations in Ref. [14], �T (r′) for a station-
ary medium is governed by the three-dimensional (3D) heat
equation (

∂2
x′ + ∂2

y′ + ∂2
z′
)
�T (r′) = −γl |E′(r′)|2, (27)

with γl = (Llossρ0cPDT )−1, where Lloss is the loss character-
istic length, ρ0 the material density, cP the specific heat at
constant pressure, and DT the thermal diffusivity. Assuming
absorption is low (L � Lloss), we find �T (r′) ∼ �T⊥(r⊥′)
and ∂z′ I ′(r′) ∼ 0, and lastly, that

�nNL(�t, γ ) = n2

∫∫
d̃xd̃yKγ (�x,�y,�t )I (̃x, ỹ) − no,e,

(28)
where I (x, y) is a Gaussian intensity distribution of the beam
in Cartesian coordinates and Kγ is the nonlinear nonlocal
kernel function affected by the weak birefringence, written as

Kγ (�t, γ ) = K ′
{

cos(γ )(cos(�t )x + sin(�t )y)

− sin(�t )x + cos(�t )y

}
. (29)

Here, K ′ = n−1
2 ( ∂n

∂T )0G′
⊥ and G′

⊥ is a Green’s function rep-
resented by the geometry and boundary conditions of the
system.

Although �nNL can be large at times, we consider it as
small and focus on the discussion of the effects of the nonlin-
ear group index.

IV. INFLUENCE OF THE nNL
g

The group refractive indices for the o- and e-beams are
defined as

no,e
g = no,e +

(
ω

∂no,e

∂ω

)
ωo

. (30)

We can represent the individual dependencies on the rota-
tion speed and input intensities of the group indices for the o-
and e-beams by

no
g = no +

(
neff2

o − n2
o + ng

ong
2Ia

)
2n3

o

�x0

c
,

ne
g = ne +

(
neff2

e − n2
e + ng

eng
2Ib

)
2n3

e cos4(γ )

�x0

c
, (31)

TABLE I. Results of the phenomenological fit for nNL
g . Fit vari-

ables for the expressions in Eq. (36) in the nonlinear (P = 100
mW, I = 3.3×104 W/cm2) and highly nonlinear (P = 520 mW,
I = 6.4×105 W/cm2) regimes for low-to-mid speeds (� = 5 ∼ 100
deg/s) and mid-to-high speeds (� = 100 ∼ 9000 deg/s) are shown.

Intensity Speed range
(W/cm2) (deg/s) Variable Value

6.4×104 5 ∼ 100
(
n0

g/ng
2I0

)
α f � f 166 1.4 21

6.4×104 100 ∼ 9000
(
n0

g/ng
2I0

)
αs �s 11 151 576

3.3×105 5 ∼ 100
(
n0

g/ng
2I0

)
α f � f 617 80 49

3.3×105 100 ∼ 9000 (n0
g/ng

2I0) αs �s 51 486 1190

where

Ia � |(−h) sin(�t ) + v cos(�t )|2I0,

Ib � |h cos(�t ) + v sin(�t )|2I0. (32)

These intensities, Ia and Ib, are the individual intensities of the
o- and e-beams, respectively. The variables h and v represent
the input polarization in the laboratory frame, whether H- or
V-linear polarization. We have corrected the lowest order to
the ordinary and extraordinary refractive indices that neff

o ≈
no

g + 1
2 ng

2Ia and neff
e ≈ ne

g + 1
2 ng

2Ib. We can define a collective
nNL

g that describes the COI of these two beams as

nNL
g = n0

g + ng
2I, (33)

where I = Ia + Ib. Note that we approximate n0
g = (no

g + ne
g)/2

due to weak birefringence, and ng
2I � n0

g.
Since the nNL

g depends on both the optical and thermal
nonlinear responses, one can write the full nNL

g as

nNL
g = n0

g + ng
2,optI0 + ng

2,thermI0 (34)

and can be written as

nNL
g = n0

g + ng
2I0

(
αse

−(�−�0 )/�s − α f e−(�−�0 )/� f
)
, (35)

where �0 is an offset rotation speed. Equation (35) is a
simplified, compact form of nNL

g . These values are found by
comparing them to our experiment [9]. The behavior of nNL

g is
modeled by a piecewise function about a characteristic speed
�c, which captures the dynamics above and below �c. We use
the piecewise form for nNL

g in our simulations, written as

nNL
g = ng

2I0 ×
⎧⎨⎩
(
n0

g

/
ng

2I0
) − α f exp

(
−�−�c

� f

)
� � �c(

n0
g

/
ng

2I0
) + αs exp

(
−�−�c

�s

)
� � �c.

(36)
The two pieces of the function are each individually valid
in the asymptotic limit of extremely fast and slow rotation.
With this form, we aim to match the results [9] by setting
ng

2I0 = 0.11×107m2/W, and fit constants αs and α f are taken
to be 0.97 and 0.94, respectively. In Ref. [9], transverse beam
shifts and transverse output beam trajectories were measured
to quantify the deflection due to photon drag and other non-
linear effects and their effect on beam propagation. The tilt
angle used is γ = π/1800. Other fit values for the piecewise
function are summarized in Table I. Offsets are described by
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FIG. 5. Transverse trajectories of the o-beam (blue) and e-beam (red) for three input powers at positive/negative low/high rotation speeds.
Linear regime shows no transverse shift drag in either beam for different speeds [(a) � = −100 deg/s, (b) � = 100 deg/s, (c) � = −9000
deg/s, and (d) � = 9000 deg/s], while nonlinear regimes show increasing shift for a given speed. The magnitude of the shift is seen more
clearly in the o-beam movement. At the same time, the e-beam shows deviations from a circular trajectory. The transverse shifts are also
experienced by the e-beam, but since it is rotating, the local position changes, and the beam feels a different index gradient at each point.

(n0
g/ng

2I0), amplitudes α f and αs, and characteristic speeds
� f and �s for thermal and optical nonlinear responses, re-
spectively. All constants are strictly positive and retrieved
for low-to-mid (5 ∼ 100 deg/s) and mid-to-high (100 ∼ 9000
deg/s) rotation speeds.

With complete knowledge of the system and the dynamics
of nNL

g , nonlinear propagation of the two coupled NLSEs
is simulated using the split-step Fourier method (SSFM) to
extract the amount of transverse shift as well as the transverse
trajectories at the crystal output. The results of the simulated
coupled NLSEs are discussed in the following section. Fur-
thermore, the details of how the simulations are performed
are described in the Appendix.

V. RESULTS AND DISCUSSION

We simulate a 2-cm-long ruby crystal illuminated with
linearly polarized light for three input intensities, I =
1.3×102 (P = 200 µW), I = 6.4×104 (P = 100 mW), and
I = 3.3×105 W/cm2 (P = 520 mW), over a range of rotation
speeds � = 1–9000 deg/s to extract the amount of transverse
shift and the transverse trajectories at the crystal output.

Birefringence results in two distinct beams that propagate
through the medium when linear polarized light is used, so
the movement of both beams must be tracked. Figure 5 shows
the trajectories of the o-beam in blue and the e-beam in red
for three input powers in the low- and high-speed regimes
for positive and negative rotation speeds. The o-beam shows a
transverse shift with increasing intensity, while the revolving
e-beam starts to cross and form a twisted pattern in the non-
linear regimes. From Eq. (23), we see that the nonlinear group
index works on the y-derivative of the o- and e-beams, so

the rotation of the e-beam will see local variation in intensity
while also following rotation. As such, the circular trajectory
will distort. The distortions arise from the contributions of
both optical and thermal nonlinear response, where slower
rotation speeds distort based on thermal timescales and faster
speeds with optical timescales. Moreover, since the nonlin-
ear group index is intensity dependent, these distortions are
more dramatically seen for higher intensities. The optical and
thermal effects are both present via nNL

g , but contribute to a
different extent based on whether the rotation speed is above
or below a characteristic speed �0. The effects of distortions
produce a negative shift if the nonlinear contribution of the
group index is negative and larger than the linear group index.
A negative shift would take place when the thermal nonlinear
contribution is significantly larger than the nonlinear optical
contribution, necessitating large intensities and a medium with
a high damage threshold.

Due to the presence of two beams, their COI results in
transverse trajectories that create figure-eight-like patterns.
We can see in Fig. 6 that the linear dynamics of the COI
trace out a figure eight. The twisting of the e-beam trajec-
tories seen in Fig. 5 creates the twisted patterns seen in
the nonlinear regimes of Fig. 6. The transverse shift and
twisted patterns result from the thermal and optical nonlin-
ear response the crystal impinges on the light as it passes
through the crystal, resulting in distorted patterns for the
COI. The trajectory patterns get distorted and transversely
shifted relative to one another based on the nonlinear pho-
ton drag effect. Incorporating the birefringence, dispersion,
and nonlinear response, we have observed that simulations
produce transverse trajectories that match well with previ-
ous experiments [9]. The trajectories capture the linear and
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FIG. 6. COI trajectories at the output of a 2-cm-long ruby crystal for three input powers and three input speeds: (a) � = ±10 deg/s, (b)
� = ±100 deg/s, and (c) � = ±9000 deg/s. Simulated curves for the linear (P = 0.2 mW) regime show a figure-eight-like trajectory for
the COI. In contrast, nonlinear (P = 100 mW) and highly nonlinear (P = 520 mW) regimes show deviations from a figure-eight and lateral
displacement along y (the direction of motion of the crystal). Blue and orange curves correspond to positive and negative rotation speeds,
respectively.

nonlinear dynamics of the system with good agreement, as
seen in Fig. 6. The traced-out COI trajectories for three rota-
tion speeds of � = 10, 100, and 9000 deg/s correspond to (i),
(ii), and (iii), respectively.

Although the central positions of the o- and e-beams can
be tracked, the full electric field distribution should also be
considered. Figure 7 shows the evolution of the square of the
fields along z (top to bottom) and in time (left to right) for
three input powers P = 0.2 mW, P = 100 mW, and P = 520
mW at a rotation speed of � = 100 deg/s. At this rota-
tion speed, both optical and thermal nonlinear responses are
present. We examine the overlapped o- and e-fields along
z at three positions: z = L/3, z = 2L/3, and z = L, where
L = 2 cm. The linear (P = 0.2 mW) dynamics are shown in
Fig. 7(a), where beam size increases along z due to diffraction
and rotation in time. Figures 7(b) and 7(c) show imprinted
beam traces due to nNL

g creating an index gradient impacting
beam movement. At � = 100 deg/s, the observed effect from
nNL

g is both optical and thermal nonlinear response. Therefore,
any previous position of the beam is seen in nonlinear regimes
for a given instant in time. No trace beam is seen for low
intensity. The misshapen structure is a result of the overlapped
beams, and so the beams at z = L resemble the typical output
of a crystal with sufficient propagation.

Moreover, there is a significant increase in transverse
movement with increasing power, as expected with the in-
creased nonlinear deflection. Slower rotation speeds coincide
with the thermal nonlinear response, while high speeds apply
to optical effects that manipulate the fields over approximate

integer multiples of one full rotation. The timescale associated
with a full rotation is on the order of milliseconds, which is
closer to the timescale of the optical response. The transverse
shift can be extracted by looking at the average position of
these trajectories, and the deflection dynamics can be more
directly investigated.

Trajectories experience different amounts of transverse
shifts in positive or negative directions for positive or neg-
ative speeds. Extracting for different rotation speeds and
input powers, we plot the simulated transverse shifts against
experimentally measured data points and phenomenological
fits (dashed lines) in Fig. 8. The close agreement suggests
that our model fully describes the relevant linear and non-
linear processes producing transverse photon drag through a
rapidly rotation ruby rod under slow light conditions. The
phenomenological fit described by the continuous function in
Eq. (35) suggests the characteristic rotation speed as �c =
150 deg/s. However, we incorporate a piecewise function
into the coupled NLSE to better describe the dynamics in
the respective rotation speed ranges, resulting in the solid
curves showing excellent agreement with experimental data.
The fit reaches much larger transverse shifts around the tran-
sient regime of equal contributions of thermal and optical
nonlinear response. The exponentials in Eq. (35) tend to
larger values, causing larger than expected transverse shifts
when combined and fit collectively. As a result, the behav-
ior is better represented using the two exponential behaviors
separately as a piecewise function in Eq. (36) around the
transient regime.
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FIG. 7. Simulated propagation and rotation effects on the E-field squared distribution. The total E-field squared of the o- and e-beams is
plotted for three z positions within the ruby rod, z = L/3 cm, z = 2L/3 cm, and z = L, where L = 2 cm, and over eight different frames along
the rotation in time, where trev represents one full rotation, for a rotation speed of � = 100 deg/s for three regimes: (a) linear (P = 0.2 mW),
(b) nonlinear (P = 100 mW), and (c) highly nonlinear (P = 520 mW). Nonlinear effects can be observed, leaving imprinted traces of a beam
from the index gradient when the input power is sufficiently high P > 100 mW. The field trajectories widen with increasing power due to the
nonlinear deflection due to the nonlinear group index.

VI. CONCLUSIONS

We have developed a general theoretical model for the
nonlinear propagation of light in moving media, particularly
focusing on a rotating birefringent medium. Our theoretical
model extends linear photon drag theory to the nonlinear
regime by means of a nonlinear group index. A set of cou-
pled generalized nonlinear Schrödinger equations was used
to model the propagation of ordinary (o-) and extraordinary
(e-)beams through the rotating nonlocal nonlinear medium.
The coupled equations included a nonlinear group index,
birefringence, rotating reference frames, and nonlinear optical
and thermal responses that match the nonlinear dynamics
of the system. The model also converges toward the ex-
pected trajectory shape of the linear dynamics but laterally
shifts within the limits of fast and slow rotation speeds. The
model was used to produce and study o- and e-beam trajec-

tories, center of intensity trajectories, electric field evolution,
and the amount of transverse shift at the crystal output [9].

Our model accurately describes the dispersion and non-
linear response of beams propagating through a rotating
nonlinear medium, allowing for predictable propagation di-
rections and tunable control of the transverse shift at the
output of the crystal. The tunable control of transverse po-
sition using power and rotation speed could be applied to
beam-steering and sorting applications. Going forward, one
could study the effects of input polarization on the transverse
shift and beam distortion of different beam structures and
beams carrying orbital angular momentum. One could also
look at balancing dispersion and nonlinear effects to create
solitons that hold their shape in a moving dispersive medium,
suitable for classical communication or propagating nondis-
torted images.
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FIG. 8. The transverse shift in the nonlinear and highly non-
linear regime for various rotation speeds. The distribution shows a
log-normal-like distribution about � = 100 deg/s. The phenomeno-
logical fit (dashed lines) suggests a peak closer to � = 150 deg/s,
while the simulations and experimentally measured values suggest
� = 100 deg/s. The fit overestimates the amount of shift in the
transient regime around � = 150 deg/s as it is comprised of two
exponentials. As a result, the behavior is better represented in sim-
ulated data, which uses the two exponential behaviors separately
as a piecewise function in Eq. (36), capturing the transient regime
between optical and thermal contributions.
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APPENDIX: DETAILED CALCULATIONS, EXCEPTIONAL
CASES, AND SIMULATION METHODS

This article focuses on creating a model to predict the
beam path trajectory and evolution through a rapidly rotating,
birefringent medium that can experience Kerr and thermal
nonlinearities. The accompanying Appendix shows deriva-
tions in length from those seen in the main text—for example,
non-normal incident beam angle, which is often the case in
experiments. Furthermore, the angle dependence is affected
by the tilt angle relative to the axis of rotation and index gra-

dients. All of these components will modify the propagation
and transverse trajectories, as well as the transverse shifts.

A. Effects of misalignment on light propagation

Another key aspect is incorporating a modified Snell’s law
to treat the birefringence and understand the beam separation
with rotation. Looking at air-crystal and crystal-air interfaces,
assuming that the light illuminates at some angle of incidence
θ , the new ordinary and extraordinary refractive indices in the
lab frame are

no(�t ) = ne,2(�t ) (A1)

and

ne(�t, θ ) =
[

cos2(θ )

n2
e,1(�t )

+ sin2(θ )

n2
e,3(�t )

]− 1
2

, (A2)

where � is the rotation speed and t is the time.
Once the light enters the birefringent material, two angles

α and β emerge within the crystal. A small deviation in angle
can change the set of refractive indices and, therefore, the
transverse trajectories at the output. Using standard algebra
and modified Snell’s law [24],

α(�t, θ ) = arcsin

[
nair

no(�t )
sin(θ )

]
, (A3)

β(�t, θ ) = arcsin

[
nair

ne(�t, θ )
sin(θ )

]
− α(�t, θ ). (A4)

Upon propagation, the o-beam shifts transversely by a dis-
tance d ′, found as the tangent of the angle α multiplied by the
crystal length L,

d ′(�t, θ ) = L tan [α(�t, θ )]. (A5)

Similarly, we can find the distance between o- and
e-beams d ,

d (�t, θ ) = L tan [α(�t, θ ) + β(�t, θ )] − d ′, (A6)

defined as the distance between the o- and e-beam in the
x-y plane. It is important to know the distance between the
two beams since their separation can change as a result of
nonlinear interactions when the intensity becomes large.

We can also describe the respective fields and how they will
propagate within the crystal measuring in the lab frame. The
sum of two fields describes the full field, the o- and e-fields,
with spatially varying functions A(x, y, z) and B(x, y, z) as

E(x, y, z,�t ) = Êo(�t, θ )A(x, y, z)eı[ko(�t,θ )·r−ωt]

+ Êe(�t, θ )B(x, y, z)eı[ke(�t,θ )·r−ωt], (A7)

where Êo = x̂′, Êe = ŷ′, and x̂′, ŷ′ are defined in the main text.
Normal incidence is often considered, but some crystals are

nonoptimally cut with respect to the easiest axis of rotation.
Therefore, due to the crystal-cut optical axes, we consider the
beam at normal incidence but imperfectly aligned (γ �= 0).

Assuming a nonzero tilt angle (the zero tilt-angle case can
be obtained by imposing γ = 0), we find the electric field for
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linearly polarized light interacting with the medium as

E(x, y, z,�t, γ ) = Êo(�t, γ )A(x, y, z)eı[ko(�t,γ )·r−ωt]

+ Êe(�t, γ )B(x, y, z)eı[ke(�t,γ )·r−ωt],

(A8)

where polarizations and wave vectors now depend on both
rotation and tilt angle. The crystal is aligned such that, in
the linear regime, the o-beam passes straight through, and the
e-beam rotates around the o-beam at a rate of �.

Using the fields of Eq. (A8), nontrivial solutions of the
system A · E = 0 result from the condition det(A) = 0, where
A is

A =

⎛⎜⎜⎝
−k2

z + ω2

c2 ε11
ω2

c2 ε12 kxkz + ω2

c2 ε13

ω2

c2 ε21 −k2
x − k2

z + ω2

c2 ε22
ω2

c2 ε23

kxkz + ω2

c2 ε31
ω2

c2 ε32 −k2
x + ω2

c2 ε33

⎞⎟⎟⎠,

(A9)

and ne,i = √
εii are

ne,1(�t, γ ) � ne + δn cos2(γ )[sin2(�t ) + tan2(γ )],

ne,2(�t, γ ) � no − δn cos2(γ ) sin2(�t ),

ne,3(�t, γ ) � no − δn sin2(γ ). (A10)

Deriving coupled nonlinear Schrödinger equations

We model light propagation starting from the vector wave
equation to derive coupled NLSEs for the o- and e-beam
by substituting the electric field from Eq. (A8) and eigen-
value solutions for the wave vectors in Eq. (A9). We assume
∇ · E � 0, v � c and weak birefringence to obtain two cou-
pled NLSEs for the o- and e-beams, and applying the slowly
varying envelope approximation, we obtain

2ıko · ∇A + ∇2
⊥A +

(
ω2

ε0c2
Êo · εÊo − k2

o

)
A = 0,

2ıke · ∇B + ∇2
⊥B +

(
ω2

ε0c2
Êe · εÊe − k2

e

)
B = 0, (A11)

where ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplacian, and

k2
o,e(�t, θ ) = n2

o,e(�t,θ )ω2

c2 are the wave vectors with refractive
indices defined as in Eqs. (A1) and (A2).

Let us suppose that dispersion is large such that the phase
and group indices are significantly different from one another.
As a result, the group indices can be written as

no → ng
o = no + ω0

(
∂no

∂ω

)
ω0

,

ne → ng
e = ne + ω0

(
∂ne

∂ω

)
ω0

, (A12)

where ng
o,e are the group refractive indices for the o- and

e-beams, respectively. Nonlinear contributions contribute to
large dispersion, with an intensity dependence written as

ngo,e → neff
go,e

≈ ng
o,e + 1

2
ng

2Io,e, (A13)

where ng
2 is the nonlinear group index, and Io,e are the intensi-

ties for both the o- and e-beams, respectively. It is important to

note that we assume that both beams affect the other equally
as the self-action. We can define an effective refractive index
for the o- and e-beams,

neff2

o = no + ω0

(
dno

dω

)
ω0

+ ng
2|A|2/2,

neff2

e = ne + ω0

(
dne

dω

)
ω0

+ ng
2|B|2/2. (A14)

We must also apply a Lorentz transformation �k to be in a
moving reference frame,

�k = −ω0�r

c2
. (A15)

Substituting the fields into the two generalized coupled
NLSEs using the fields in Eq. (22), we arrive at

∂za = ı

2ko
∇2

⊥a + ıko

no
�nNLa − ω2

0

(
neff2

o − n2
o

)
�k

2k3
oc2

∂ya,

∂zb = ı

2ke cos2(γ )
∇2

⊥b + ıke

ne cos2(γ )
�nNLb

+ 2 tan(γ )[cos(�t )∂xb + sin(�t )∂yb]

− ω2
0

[
neff2

e − n2
e cos2(γ )

]
�k

2k3
e cos4(γ )c2

∂yb, (A16)

where �nNL(I ) is a nonlinear correction term and I is the
total beam intensity. This contribution becomes relevant with
intense illumination, further discussed in Sec. III. Assuming
monochromatic light, weak birefringence (δn � 1), and v �
c, the coupled nonlinear Schrödinger equations become

∂za = ı

2ko
∇2

⊥a − ıko

no
�nNLa − nNL

g,o

c
∂ya,

∂zb = ı

2ke cos2(γ )
∇2

⊥b + ıke

ne cos2(γ )
�nNLb

+ 2 tan(γ )[cos(�t )∂xb + sin(�t )∂yb] − nNL
g,e

c
∂yb,

(A17)

where

nNL
g,o = ω2

0

(
neff2

o − n2
o

)
�k

2k3
oc2

(A18)

and

nNL
g,e = ω2

0

[
neff2

e − n2
e cos2(γ )

]
�k

2k3
e cos4(γ )c2

. (A19)

B. Derivation of transverse shift due to nonlinear photon drag

Due to the motion of the medium, we suppose that a small
deviation impinges on the beam in the transverse plane at an
angle θ . We find the angle θ as a function of phase index n0,
and the group index ng

tan θ = v

c

(
ng − 1

n0

)
, (A20)

where v is the medium speed and c is the speed of light. We
can find the amount of transverse shift �y in terms of the
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medium length L, replacing tan(θ ) = y/L to find

�y = vL

c

(
ng − 1

n0

)
. (A21)

We write the phase index in terms of the complex dielectric
permittivity ε, such that n0 = √

ε. The permittivity is written
as

ε(ω) = εr (ω) + ıεi(ω), (A22)

where εr (ω) and εi(ω) are the real and imaginary parts, re-
spectively. However, we have assumed that the medium is
lossless. Therefore, we can neglect the contribution of the
imaginary part of the permittivity such that

n0 = √
εr . (A23)

Since it is the difference in phase and group indices that shows
the importance of the drag effect, the imaginary part plays a
negligible role in the drag and, therefore, can be omitted.

Knowing that ng = n0 + ω dn0
dω

, we can write the group in-
dex in terms of the permittivity as

ng =
√

εr (ω0) + ω0

2
√

εr (ω0)

(
dεr

dω

)
ω0

, (A24)

substitute Eqs. (A23), (A24), into Eq. (A21) and find the linear
photon drag effect

�y = vL

c

[
εr (ω0) + ω0

2
√

εr (ω0)

dεr

dω
− 1√

εr (ω0)

]
. (A25)

In the presence of an intense laser beam, certain media
can exhibit large group indices (ng ≈ 106 [6]). Using these
media, the linear photon drag effect can be extended to be
nonlinear. Firstly, we consider the lowest-order correction to
the permittivity in the form of �n, where the correction is
an instantaneous Kerr-type nonlinearity of the form �n(ω) =
n2(ω)I . Here, n2 is the nonlinear refractive index coefficient,
and I is the intensity of the input beam. Assuming �n � n0,
we find

εr (ω0) = [n(ω) + �n(ω0)]2 � n(ω0)2 + 2n(ω0)�n(ω0).
(A26)

From the group index contribution in Eq. (A25), the derivative
of the permittivity is also needed. Therefore, we derive the
permittivity with respect to the frequency and evaluate at
ω = ω0 to find(

dεr

dω

)
ω0

� 2n0

[(
dn

dω

)
ω0

+ I

(
d�n

dω

)
ω0

]
. (A27)

Substituting Eqs. (A26) and (A27) into (A24), we can find
a nonlinear group index nNL

g ,

nNL
g = n0

g + ng
2I, (A28)

where n0
g is the linear group index; ng

2 is the nonlinear group
index, written as

ng
0 = n0 + ω

(
dn0

dω

)
ω0

; (A29)

and

ng
2 = I−1

[
�n + ω

(
d�n

dω

)
ω0

]
. (A30)

Using the nNL
g , we can define a nonlinear angle

tan θNL = v

c

(
nNL

g − 1

n0

)
, (A31)

which can be described by θNL = θ ± �θ depending on the
nonlinear response of the medium. With this nonlinear angle,
we exploit again the geometry of the system to find a trans-
verse shift due to a nonlinear equivalent of the photon drag
effect

�yNL = L tan(θNL ) = Lv

c

(
nNL

g + 1

n0

)
. (A32)

Under certain conditions, systems have a large nonlinear
group index, and therefore we can suppose |nNL

g | � n0. De-
pending on the dispersion, the system could exhibit normal
nNL

g > 0 or anomalous nNL
g < 0 dispersion and the drag would

be negative and therefore considered slow or fast light, respec-
tively. As a result, the nonlinear transverse shift in position
scales linearly with the nNL

g ,

�yNL ≈ Lv

c
nNL

g . (A33)

C. Rotation speed and intensity dependence
of nonlinear group index

Our model has considered an instantaneous nonlinearity,
which is a simplification of the system in question. The rota-
tion speed makes the nonlinearity act as a noninstantaneous
response, particularly dictating the rates and, therefore, a tem-
poral response. Fast timescales can act and locally affect the
beam when considering slow speeds, while fast speeds are as-
sociated with long-lived effects on integer multiple full crystal
rotations. In the following two sections, we will describe how
the thermal and optical nonlinear response contribute to the
index gradient that controls the magnitude of the nNL

g and,
ultimately, the amount of transverse shift experienced by the
optical beam upon propagation.

1. Thermal contribution to nNL
g

When considering slower rotation speeds, the thermal non-
linear response contributes most to nNL

g , acting typically on
the order of several hundred microseconds [25]. A depiction
of the heat deposition and distribution due to the thermal
nonlinear response is shown in Fig. 9. Sufficiently slow speeds
generate a relatively constant index gradient in magnitude.
The index gradient steadily increases the transverse shift with
an increase in rotation speed up to characteristic speed �c, and
decreases thereafter due to less index gradient. Thus, a dimin-
ishing contribution from the thermal nonlinear response with
increasing rotation speed is observed up to a steady-state re-
sponse like in the case of �4 in Fig. 9. The characteristic speed
is related to the timescale of the interaction as �c = (2πτc)−1;
τc is a characteristic interaction time. The timescale for the
thermal nonlinear response is associated with an exponential
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FIG. 9. Schematic optical beam distributing heat over a rotating
ruby rod crystal face. The heat distribution circles about the crystal
cause an index gradient with varying magnitude depending on speed.
The heat reaches different distances, depending on the rotation speed,
until it reaches fully around the crystal, producing a smaller magni-
tude of index gradients at higher rotation speeds.

decay that reaches a maximum index gradient as
�ng

max(t ) = ng
2I0e−(t−t0 )/τc , (A34)

where I0 is the input intensity and t0 is an offset time. We
rewrite Eq. (A34) as a function of the rotation speed, (t −
t0)/τc = (� − �0)/�c, where �c is a characteristic rotation
speed and �0 is an offset rotation speed, such that

nNL
g = n0

g + ng
2I = n0

g + ng
2I0e−(�−�0 )/�c . (A35)

The nNL
g in the form of Eq. (A35) shows the general case when

considering the system dynamics. For � < �c, the nonlinear
response is predominantly thermal, denoted � f = (2πτ f )−1,
where τ f ≈ 200 µs [25]. The thermal contribution to the nNL

g
is therefore

nNL
g = n0

g + ng
2,thermI0, (A36)

where ng
2,therm is the thermal nonlinear group index,

n2,therm = −α f ng
2e−(�−�0 )/� f , (A37)

and α f is a phenomenological scaling factor.
For � > �c, the optical nonlinear response takes over,

denoted �s = (2πτs)−1. Some optical processes depend on
the lifetime of the excited state of an atom, which can be on
the order of τs = 3 ∼ 5 ms [6] that fit into this region. If the
effect was only a thermal nonlinear process, the shift would
progressively approach zero with higher rotation speeds, and
so we must consider both optical and thermal responses.

2. Optical contribution to nNL
g

In order to facilitate the explanation of the optical contri-
butions, we will begin using experimental parameters here.
We input a Gaussian beam profile in the xy plane with a
beam waist of 10 µm at a position x0 = 0.8R, where R is
the radius (R = 0.35 cm) and L is the length (L = 2 cm) of
the crystal, respectively. In the regime of � > �c, nNL

g is the
optical nonlinear response of coherent population oscillations,
giving rise to large group indices [6]. Similarly, we write the
optical response of nNL

g ,

nNL
g = n0

g + ng
2,optI0, (A38)

where the optical nonlinear group index takes the form

n2,opt = αsn
g
2e−(�−�0 )/�s , (A39)

where αs is a scaling constant. We note that the sign of the
nonlinear contribution is now positive. Certain systems exhibit

a large negative group index ng ≈ −106 [12], and the value
is set to be ng

2I0 = −1.1×106. The coexistence of the two
nonlinear processes results in a purely positive transverse shift
at the output of the crystal. ng

2I0, however, can be set to any
value, depending on the system at hand.

Since the system impinges an index gradient that moves
with the medium, the trajectory can be curved, contributing to
the overall transverse shift. An example of a curved trajectory
is shown in Fig. 10, which conveys the idea of a nonzero
output angle at the end of the medium. It is crucial to measure
this output angle to distinguish if nonlinear deflection has
also contributed to the transverse shift. The photon drag effect
generally exits the crystal parallel to the input beam. However,
we stress that although the beam exits at an angle that is not
parallel, it propagates in a straight line from that output angle,
as expected in free space.

D. The effect of thermal nonlinear response
on the dielectric tensor

Although the index gradient �n′
NL, impinged by a thermal

nonlinearity, does not contribute strongly to the amount of
transverse shift, analyzing the effect is worth noting. Let us
consider intense illumination impinged on media with non-
linear refraction, creating an index gradient modifying the
dielectric tensor. Therefore, for first-order correction in the
crystal frame, the dielectric permittivity is

ε′ −→ ε′ + �ε′
NL, (A40)

where �ε′
NL is written as

�ε′
NL = 2ε0�n′

NL

⎛⎜⎝ne 0 0

0 no 0

0 0 no

⎞⎟⎠. (A41)

The index gradient created by nonlinear refraction is also
affected by the rotation of the medium and tilt angle γ , where

�n′
NL → �n′

NL(�t, γ ). (A42)

In thermal media [14], the index gradient due to thermal
nonlinear response is

�n′
NL =

(
∂n

∂T

)
0

�T (r′), (A43)

where ( ∂n
∂T )0 is the medium’s thermo-optic coefficient at ther-

mal equilibrium (steady-state response) and �T (r′) is the
temperature variation about the point r′ = (x′, y′, z′). �T (r′)
for a stationary medium is governed by the 3D heat equation(

∂2
x′ + ∂2

y′ + ∂2
z′
)
�T (r′) = −γl |E′(r′)|2, (A44)

with γl = (Llossρ0cPDT )−1, where Lloss is the loss character-
istic length, ρ0 the material density, cP the specific heat at
constant pressure, and DT the thermal diffusivity. The solution
can be written in terms of a Green function G(r′), which
depends only on the sample geometry and the boundary con-
ditions and expresses the nonlocality of the nonlinear effect

�T (r′) =
∫∫∫

dr̃′G′(r′ − r̃′)|E′(r̃′)|2. (A45)
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FIG. 10. Schematic of curved trajectory induced by a moving index gradient created by the nonlinear refraction. (a) The trajectory at very
slow speeds, (b) the largest transverse shift around � = �c, and (c) a smaller transverse shift at high speeds.

Around the neighborhood of the medium’s midpoint, i.e.,
z0 = L/2, in the longitudinal parabolic approximation of

characteristic width Lnloc =
√ |n2|

γl | ∂n
∂T |0 ∝ √

Lloss [14], n2 the

nonlinear refractive index, and Lloss the characteristic loss
length, Eq. (A45) reads

�T⊥(r⊥′) =
∫∫

dr̃′
⊥G′

⊥(r⊥′ − r̃′
⊥)I ′

⊥(r̃′
⊥), (A46)

with I ′
⊥(r⊥′) = 1

L

∫
dz′I ′(r⊥′, z′), I ′(r′) = |E′(r′)|2 =

|E(r)|2 = I (r), and r⊥′ = (x′, y′). Assuming absorption is low
(L � Lloss), we find �T (r′) ∼ �T⊥(r⊥′) and ∂z′ I ′(r′) ∼ 0.
As a result, the index gradient impinged on the crystal by the
thermal nonlinear response is

�n′
NL(r⊥′) = n2

∫∫
dr̃′

⊥K ′(r⊥′ − r̃′
⊥)I ′(r̃′

⊥) − no,e, (A47)

with n2K ′(r⊥) = ( ∂n
∂T )0G′

⊥(r′
⊥). The index gradient is now

written as

�nNL(x, y,�t, γ ) = n2

∫∫
d̃xd̃yKγ (�x,�y,�t )I (̃x, ỹ)

− no,e, (A48)

where I (x, y) is a Gaussian intensity distribution and Kγ is
the nonlinear nonlocal kernel function affected by the weak
birefringence, written as

Kγ (x, y,�t, γ ) = K ′{cos(γ )[cos(�t )x + sin(�t )y],

− sin(�t )x + cos(�t )y}. (A49)

Understanding the importance of the kernel function fur-
ther requires a definition in Fourier space, as the coupled
NLSE adds the nonlinear response as a phase term. Therefore,
the kernel function in Fourier space is

Kγ (kx, ky,�t, γ )

= 1

2π [(k′
x )2 + (k′

y)2]
{
1 + L2

nloc

[
1 − exp

( − t
τN

)]} ,

(A50)

where Lnloc is the nonlocal length, τN is the noninstantaneous
timescale, and k′

x and k′
y are the x and y wave vectors in

the crystal reference frame. The nonlocality does not play
a huge role but scales the noninstantaneous response. The
noninstantaneous part only plays a role when the timescales
of the interactions are long-lived, on the order of seconds
or more. A summary of the variables and their functionality
can be found in Table II. With all relevant variables, we can

define how the dielectric permittivity is affected by an index
gradient. Therefore, in the lab frame, we write the dielectric
tensor with all perturbative terms under the assumption of
weak birefringence

ε = ε′ + ε′′(γ ,�t ) + �ε′
NL(x, y,�t, γ ). (A51)

E. Simulations and split-step Fourier method

We apply the split-step Fourier method to simulate non-
linear propagation through the rotating ruby rod of length L.
We input a Gaussian beam profile in the xy plane focused to a
position far from the center of rotation. The coupled NLSEs in
Eq. (A17) are propagated with the usual formalism of a linear
propagator D̂ and a nonlinear propagator N̂ . We can represent
the coupled NLSEs in the SSFM formalism as

∂za = (D̂o + N̂o)a,

∂zb = (D̂e + N̂e)b, (A52)

where the linear propagators are defined as

D̂o = ı

2ko
∇2

⊥ − nNL
g

c
∂y,

D̂e = ı

2ke cos2(γ )
∇2

⊥ + nNL
g

c
∂y

+ 2 tan(γ )[cos(�t )∂x + sin(�t )∂y], (A53)

TABLE II. Summary of the relevant variables used to calculate
the index gradient �nNL due to a thermal nonlinearity. The definition
of the variables is used to clarify the function of each variable within
the derivative.

Variable Functionality

Kγ Thermal kernel function(
∂n
∂T

)
0

Thermo-optic coefficient
�T (r′) Temperature variation
Lloss Characteristic loss length
ρ0 Material density
cP Specific heat at constant pressure
DT Thermal diffusivity
G(r′) Green’s function
Lnloc Nonlocal length
tN Noninstantaneous timescale
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and the nonlinear propagators are defined as

N̂o = ıko

no
�nNL,

N̂e = ıke

ne cos2(γ )
�nNL. (A54)

The fields a and b represent the o- and e-fields, respectively.
We can interchange between real space (a and b) and Fourier
space (â and b̂) using a Fourier transform (FT), or vice versa
with the inverse FT, that is,

a(x, y, z) = 1

2π

∫∫
R2

dkxdkyâ(kx, ky, z)e−ı(kxx+kyy),

â(kx, ky, z) = 1

2π

∫∫
R2

dxdya(x, y, z)eı(kxx+kyy), (A55)

where b and b̂ are written in a similar fashion.
We apply the linear propagators in Fourier space between

the points z and z + h, that is,

exp

(
h

2
D̂o

)
= exp

{
−ıh

2

[
−1

2ko

(
k2

x + k2
y

) − ı
nNL

g

c
ky

]}
,

exp

(
h

2
D̂e

)
= exp

(
−ıh

2

{
−1

2ke cos2(γ )

(
k2

x + k2
y

) − ı
nNL

g

c
ky

+ 2 tan(γ )[cos(�t )kx + sin(�t )ky]

})
.

(A56)

The linear step is then applied by taking the inverse FT of the
product of the linear propagator in Fourier space and the FT

of the field

K1n = h f (xn, yn),

K2n = h f
(
xn + 1

2 h, yn + 1
2 K1n

)
,

yn+1 = yn + K2n + O(h3). (A57)

We then will apply the nonlinear propagators assuming the
boundary conditions y′ = f (x, y) and y(xo) = yo. At the nth
step, we have

a = IFT

[
exp

(
h

2
D̂o

)
FT[a]

]
,

b = IFT

[
exp

(
h

2
D̂e

)
FT[b]

]
. (A58)

Recall that �nNL is dependent on both fields, that is,
�nNL := �nNL(|a|2 + |b|2). Therefore, the nonlinear propa-
gators are functions of both a and b. We apply the propagators
in the following manner:

A1n = hN̂o(an, bn)an,

B1n = hN̂e(an, bn)bn,

A2n = hN̂o

(
an + 1

2
A1n, bn + 1

2
B1n

)(
an + 1

2
A1n

)
,

B2n = hN̂e

(
an + 1

2
A1n, bn + 1

2
B1n

)(
bn + 1

2
B1n

)
,

an+1 = an + A2n,

bn+1 = bn + B2n. (A59)

Once we have applied these propagators over the entire
length of the crystal, all transverse movement at the output
crystal facet can be tracked. Furthermore, we can take the
average positions of the transverse trajectories, weighted by
the intensities of these trajectories, to extract the transverse
shift, which is controlled by the rotation speed input intensity.
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