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Bulk and surface modes in a one-dimensional gyro-uniaxial photonic crystal
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We examine the features of electromagnetic bulk and surface modes in a one-dimensional photonic crystal
made up of lossless gyroelectric and uniaxial layers. We find a configuration that supports the propagation of
a type of surface mode that can have either positive or negative group velocity, depending on the signs of the
uniaxial permittivities. We also show how the introduction of gyrotropy qualitatively alters the photonic band
structure, making it possible to modify the allowed frequency ranges within the structure just by varying the
value of an external magnetic field. Exploiting an Otto configuration, we provide the analysis of a finite system
where near-zero reflectivity values correspond to large Goos-Hänchen shifts. We also explore low-symmetry
configurations where waves exhibit nonreciprocal behaviors.
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I. INTRODUCTION

In the field of modern photonics, the intricate interplay
between light and matter has opened the way for groundbreak-
ing discoveries and technological advancements. In the past
few decades, considerable attention has been focused on the
properties of photonic crystals (PCs) [1,2], which is primarily
due to their application in controlling the flow of light.

The optical properties of PCs are profoundly influenced by
the characteristics of the media they are made of. In isotropic
materials, neither wave polarization nor the refractive index
depend on the direction of wave propagation. Conversely, in
anisotropic materials such quantities may depend on the prop-
agation direction. Such low-symmetry configurations lead
to odd electromagnetic phenomena, such as Faraday rota-
tion in gyrotropic media [3,4]. Consequently, PCs crafted
from anisotropic materials exhibit markedly different char-
acteristics compared to their isotropic counterparts. Notably,
anisotropic PCs represent a rich resource due to their control-
lable dispersion, offering avenues for the creation of tunable
optical devices [5–8]. By harnessing external electric or mag-
netic fields, such as those facilitated by liquid crystals, it
becomes feasible to manipulate and adjust the properties of
these PCs, including the opening, closing, or shifting of band
gaps [9].

Beyond bulk modes, PCs harbor the potential to support the
propagation of electromagnetic surface waves (ESWs). Such
waves have garnered attention since Zenneck’s work in [10].
These modes travel along interfaces separating two media
while remaining localized in the transverse direction. Among
the most notable examples of ESWs are surface plasmon po-
laritons (SPPs), characterized by a transverse magnetic (TM)
nature, capable of propagating at the interface between two
isotropic media with permittivities of opposite signs [11]. As
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for interfaces involving gyrotropic media, ESWs show non-
reciprocal features such as the asymmetry between forward
and backward propagations [12–14]. In the context of periodic
structures, prominent types of ESWs include Tamm waves and
Bloch surface waves [15–24].

In this work we characterize bulk and surface waves that
can propagate in a one-dimensional PC composed of loss-
less gyroelectric and uniaxial layers. While previous works
have described light propagation in such two media separately
[23,25], their combination has never been analyzed before.
Our investigation reveals that, when the uniaxial components
behave as hyperbolic materials (HMs), a new kind of ESW
can propagate through the structure. Such modes exhibit ei-
ther forward or backward propagation features, i.e., positive
or negative group velocity, depending on the specific type
of HM involved. This feature is pivotal for developing new
photonic devices with controllable propagation directions for
light. Moreover, we show that such waves have a much greater
penetration depth into the bulk compared to Tamm waves
and SPPs. It is well established that photonic crystals act
as frequency filters, typically relying on bulk modes for this
purpose. In our case, the significantly different penetration
depths of SWs would allow control of signal transmission
through surface modes rather than bulk modes.

We also show that the introduction of gyrotropy into the
system significantly deforms the photonic bands. This sug-
gests that the electromagnetic response of the realistic system
could be tuned just by varying the value of the external mag-
netic field. In this way, one can freely modify the allowed
frequency ranges within the structure.

We subsequently conduct a brief analysis of a finite system,
composed of a few periods, where such effects can be found
by looking at the reflection spectra using an Otto configu-
ration. In this configuration, we show that near-zero values
of the reflection coefficient correspond to nontrivial values of
the Goos-Hänchen shift (GHS). Since the GHS is related to
the excitation of SWs, it can be either positive or negative
depending on the sign of the group velocity characterizing the
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FIG. 1. (a) Outline of the one-dimensional periodic multilayer structure. (b) Outline of the yz plane section of the periodic structure under
consideration. Here y′ and z′ represent the principal axes of the hyperbolic slabs

relative surface mode. Finally, we propose lower-symmetry
configurations whose reflectivity is not symmetrical with re-
spect to the inversion of the incidence angle, highlighting their
nonreciprocal features due to gyrotropy.

II. ANISOTROPIC MULTILAYERED STRUCTURES

Let us consider a multilayered system consisting of an
ordered succession of two lossless material slabs, whose
thicknesses and dielectric tensors are d1, ε1 and d2, ε2, respec-
tively, as depicted in Fig. 1(a). Let the spatial periodicity of the
stratified medium be L = d1 + d2 and ẑ be the growth direc-
tion such that the overall dielectric function on the structure
can be written as

ε =
{
ε1, mL < z < mL + d1

ε2, mL + d1 < z < (m + 1)L,

where m is an integer number. We consider a multilayered
structure composed of gyroelectric and uniaxial layers such
that their dielectric tensors read

ε1 = ε0

⎛
⎜⎝

εg 0 0

0 εg ig

0 −ig εg

⎞
⎟⎠, ε′

2 = ε0

⎛
⎜⎝

ε⊥ 0 0

0 ε‖ 0

0 0 ε⊥

⎞
⎟⎠ (1)

in their respective principal coordinate systems. As for
the uniaxial medium, let us initially consider the general

configuration wherein its optical axis is neither parallel nor
perpendicular to the interface between the two media. Hence,
we have to rotate its dielectric tensor by means of a rotation
matrix such that, in our coordinate system, the uniaxial dielec-
tric tensor reads

ε2 = Rx(α)ε′
uRx(−α) = ε0

⎛
⎜⎝

εxx 0 0

0 εyy εyz

0 εzy εzz

⎞
⎟⎠,

where the matrix elements are

εxx = ε⊥,

εyy = ε⊥ sin2 α + ε‖ cos2 α,

εyz = εzy = (ε⊥ − ε‖) sin α cos α,

εzz = ε⊥ cos2 α + ε‖ sin2 α.

For analytical convenience, we focus on anisotropic con-
figurations where TE and TM modes can be decoupled, while
low-symmetry configurations will be numerically investigated
in Sec. V. Nontrivial results will concern only the TM po-
larization; thus it is appropriate to consider the following
form for the magnetic field, accounting for both forward and
backward modes:

Hm
x (y, z) =

⎧⎨
⎩

[ameiku (z−mL) + bme−iku (z−mL)]ei(kyy−ωt ) mL < z < mL + du,

[cmeikg(z−mL) + dme−ikg(z−mL)]ei(kyy−ωt ) mL + du < z < (m + 1)L,

(2)

where u stands for uniaxial and g for gyrotropic, ku and kg

represent the z components of the wave vectors, and L ≡ du +
dg is the period of the structure, with du and dg the thicknesses
of the two slabs, respectively. The coefficients am, bm, cm, and
dm are the amplitudes of forward and backward modes relative
to each medium, as outlined in Fig. 1(b).

Applying the continuity conditions for Hx and Ey on the
two boundaries marked by red arrows in Fig. 1(b) leads to
a four-equation system relating the six variables am, bm, cm,
dm, cm−1, and dm−1. As shown in the Appendix, the whole
algebraic system can be recast in order to express cm−1 and

dm−1 as functions of cm and dm,

(
cm−1

dm−1

)
=

(
A B

C D

)(
cm

dm

)
, (3)

where A, B, C, and D are complex coefficients, which will
be derived in the next section. We will use this formalism in
order to find the eigenmodes in a one-dimensional periodic
structure.
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III. ANISOTROPIC PHOTONIC CRYSTALS

If we let the number of layers become infinite, we obtain a
photonic crystal. In such a periodic system, the Bloch theorem
assures that the solution to the Helmholtz equation is a Bloch
wave, namely, a wave function which can be written as the
product of a plane wave and a periodic term

H(z) = HB(z)eiKBz, (4)

where HB(z) = HB(z + L) is a periodic function and KB is the
Bloch wave number [26]. Following the procedure shown in
[27], we must solve the eigenvalue problem

(
A B

C D

)(
cm

dm

)
= e−iKBL

(
cm

dm

)
, (5)

whose solutions are

(
cm

dm

)
=

(
B

e−iKBL − A

)
, (6)

where

KB = ± 1

L
cos−1

(
A + D

2

)
. (7)

As pointed out in the Appendix, the eigenvalues are the
reciprocals of each other because the matrix in Eq. (5) is
unitary. If KB is a real number, the eigenvalues represent prop-
agating waves, whereas complex values of KB correspond to
damped waves in the bulk. Due to the properties of the cosine
function, we can distinguish two scenarios: If A + D ∈ R and
A + D < 2, the Bloch wave can propagate through the PC;
otherwise it will decay inside the bulk [26,27]. The latter
situation corresponds to the band gap.

We can derive the coefficients A, B, C, and D in the TM
case by means of Eqs. (A1)–(A4). By defining

εv ≡ ε2
g − g2

εg

and

Z ≡ εyzεv

ε‖ε⊥
− i

g

εg
, (8)

they turn out to be

ATM = eikudu

[
cos kgdg + i

2
sin kgdg

(
ε‖ε⊥kg

εvεzzku
+ εvεzzku

ε‖ε⊥kg
− ε‖ε⊥

εvεzz

k2
y

kukg
Z2

)]
, (9)

BTM = i

2
e−ikudu sin kgdg

(
ε‖ε⊥kg

εvεzzku
− εvεzzku

ε‖ε⊥kg
− ε‖ε⊥

εvεzz

k2
y

kukg
Z2 + 2Z

ky

kg

)
, (10)

CTM = − i

2
eikudu sin kgdg

(
ε‖ε⊥kg

εvεzzku
− εvεzzku

ε‖ε⊥kg
− ε‖ε⊥

εvεzz

k2
y

kukg
Z2 − 2Z

ky

kg

)
, (11)

DTM = e−ikudu

[
cos kgdg − i

2
sin kgdg

(
ε‖ε⊥kg

εvεzzku
+ εvεzzku

ε‖ε⊥kg
− ε‖ε⊥

εvεzz

k2
y

kukg
Z2

)]
. (12)

Note that Z reduces to zero if both media are isotropic and,
consequently, the matrix elements (9)–(12) reduce to the ex-
pressions commonly documented in the literature [1,26,27].
Furthermore, Eq. (7) becomes

KB
TM = 1

L
cos−1(cos kgdg cos kudu − F sin kgdg sin kudu),

(13)
where we defined

2F ≡ ε‖ε⊥kg

εvεzzku
+ εvεzzku

ε‖ε⊥kg
− ε‖ε⊥

εvεzz

k2
y

kukg
Z2. (14)

As mentioned in the preceding section, we only focus
on TM polarization because TE modes obey the very same
equations as in the isotropic case.

Before moving on, it is essential to make a significant
observation. As evident from Eqs. (13) and (14), the presence
of Z ensures that KB has an imaginary part if g �= 0 and
εyz �= 0 simultaneously, for any real values of ω and ky. This
is surprising, especially considering that it holds true even for
lossless structures, such as the ones we aim to analyze. In
any case, the band diagram is almost empty because, apart

from normal incidence and a few other cases, no mode can
propagate into the bulk. This last statement will be further
examined during the discussion of the numerical results. We
aim to investigate nontrivial scenarios involving gyrotropy;
hence we are compelled to restrict our analysis to the case
α = kπ/2, where k ∈ Z.

In the next section we employ Eq. (13) to derive band dia-
grams for TM modes within our anisotropic PC. Our objective
is to identify surface states within the band gaps, where bulk
modes are not allowed to propagate.

IV. MODES IN A SEMI-INFINITE PHOTONIC CRYSTAL

Valuable insights can be gathered by exploring the surface
modes permitted to propagate in PCs [17,28], as we demon-
strate below.

When a PC is cut along one interface between two consec-
utive slabs, two semi-infinite PCs are created. The dispersion
relation for surface waves propagating on a semi-infinite PC
bordering a dielectric half space is [18,22]

eiKBL − A − Bc

ωεI

√
εI

(ω

c

)2
− k2

y = 0, (15)
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FIG. 2. Reduced band diagrams for TM waves in a metal-dielectric PC, for different values of the structural parameters. The red dotted
lines correspond to surface modes, whereas the yellow solid line represents the light line of the dielectric half space. The structural parameters
considered are εI = 4, εg = 3, ε∞ = 8, dg = 0.56 µm, du = 0.44 µm, and α = π/2. The other parameters are (a) ωp,‖ = ωp,⊥ and g = 0, (b)
ωp,‖ = ωp,⊥ and g = 1.5, (c) ωp,‖ < ωp,⊥ and g = 0, (d) ωp,‖ < ωp,⊥ and g = 1.5, (e) ωp,‖ > ωp,⊥ and g = 0, and (f) ωp,‖ > ωp,⊥ g = 1.5.

where εI is the dielectric constant of the isotropic dielectric
half space. Equation (15) enables us to identify and graphi-
cally represent the surface modes directly on the reduced band
diagrams that characterize the system.

Prior to presenting our numerical findings, it is important
to introduce the frequency dependence of the dielectric func-
tions. We choose to consider the following dispersion for the
uniaxial medium permittivities:

ε⊥,‖ = ε∞

(
1 −

ω2
p⊥,‖

ω2

)
. (16)

Such response functions with anisotropic plasma frequencies
characterize the behavior of media that exist in nature [29,30]
or can be artificially engineered using multilayer or nanowire

array geometries [31–33]. In such engineered media, nonlocal
effects may play a significant role in shaping the dispersion
of electromagnetic waves, as discussed in [34,35]. We neglect
such effects in the present work.

As ω varies, Eq. (16) may describe an anisotropic
metal [ω < min(ωp⊥ , ωp‖ )], an anisotropic dielectric [ω >

max(ωp⊥ , ωp‖ )], or a hyperbolic medium [min(ωp⊥ , ωp‖ ) <

ω < max(ωp⊥ , ωp‖ )]. The last regime is of particular interest
when it comes to surface modes, as shown in Fig. 2 for
three different scenarios ωp,‖ = ωp,⊥ [Figs. 2(a) and 2(b)],
ωp,‖ < ωp,⊥ [Figs. 2(c) and 2(d)], and ωp,‖ > ωp,⊥ [Figs. 2(e)
and 2(f)] for nongyrotropy [Figs. 2(a), 2(c), and 2(e)] and
gyroelectric [Figs. 2(b), 2(d), and 2(f)] cases. It should be
specified that the surface modes in Fig. 2 only concern the
configuration where the semi-infinite crystal terminates with
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FIG. 3. Transversal sections of the reduced band diagram shown in Fig. 2, for kyL/2π = 1, corresponding to (a) Figs. 2(c) and 2(d) and
(b) Figs. 2(e) and 2(f). As gyrotropy is switched on, a large number of bulk bands appear slightly above or below the ωp,‖L/2πc line. Also
shown are the isofrequency contours corresponding to four slices of Fig. 2(f) at (c) ωL/2πc = 0.27, (d) ωL/2πc = 0.48, (e) ωL/2πc = 0.61,
and (f) ωL/2πc = 0.74. Thick cyan curves represent bulk bands, whereas thin magenta lines correspond to complex values of the Bloch wave
vector. Yellow dashed lines represents light lines.

a gyrotropic slab. If this were not the case, the dispersion of
the surface waves would be slightly different, but all their
characteristic features would remain the same.

For the case in Figs. 2(a) and 2(b), ωp,‖ = ωp,⊥ ≡ ωp,
two distinct types of surface waves are observed: a truncated
SPP below the threshold ω = ωp and Tamm waves in the
domain ω > ωp, where the metallic constituents demonstrate
dielectric behavior (ε‖, ε⊥ > 0). When gyrotropy is switched
on within the dielectric layers, the lower bands get modified
such that the SPP no longer exists. Conversely, Tamm waves
experience subtle modifications but do not undergo significant
alterations.

For the case in Figs. 2(c) and 2(d), ωp,‖ < ωp,⊥, the hori-
zontal bulk plasmon line undergoes a significant division into
numerous bulk bands, situated within the range delineated by
the plasma frequencies ωp,‖ and ωp,⊥, where the anisotropic
metallic components behave as type 2 hyperbolic metamateri-
als (HMMs) [36,37]. Notably, an intermediate surface mode
emerges within each band gap separating the bulk bands.
These waves have a positive group velocity; thus they propa-
gate in the forward direction. Interestingly, the introduction of
gyrotropy has minimal impact on surface modes, despite some
degenerate bands undergoing division. For enhanced clarity,
Fig. 3(a) illustrates two transversal sections of the reduced
band diagram.

For the case in Figs. 2(e) and 2(f), ωp,‖ > ωp,⊥, similar to
the previous scenario, an infinite array of bulk bands occupies
the domain delineated by the plasma frequencies ωp,⊥ and
ωp,‖. Within this domain, the anisotropic metallic components
behave as type 1 HMMs [36,37]. Notably, all the intermediate
surface waves demonstrate a negative group velocity, imply-
ing their propagation in the backward direction. Furthermore,
the SPP undergoes bifurcation into two branches due to the
convergence of lower bands. When gyrotropy is switched on,
the lower bands get modified such that the SPP no longer ex-
ists. For enhanced clarity, Fig. 3(b) illustrates two transversal

sections of the reduced band diagrams, whereas Figs. 3(c)–
3(f) show four isofrequency contours in the gyrotropic case.

In summary, these intermediate waves1 can propagate
either forward or backward, depending on the hyperbolic
behavior of the uniaxial material constituting the structure.
Similar results were found in [38] for the nongyrotropic case.
In such work, the intermediate surface modes are referred to
as Tamm-Langmuir surface waves.

As previously stated, the presence of gyrotropy in the sys-
tem modifies some bulk bands, as can be clearly seen in Fig. 3.
This implies that by adjusting the external magnetic field,
the electromagnetic response of the system can be fine-tuned,
allowing for the modification of the permissible frequency
ranges within the structure.

Figure 4 presents a comparison of the field distributions
between the Tamm wave and the intermediate mode. Notably,
the latter exhibits a significantly greater penetration depth than
the former. This property may allow the control of signal
transmission through surface modes rather than bulk modes.
It is observed that the electric field of the novel modes con-
centrates and oscillates within the uniaxial metallic layers.
This unique feature facilitates deeper penetration of the mode
into the bulk. Such a behavior is common to layered periodic
metal-dielectric structures with anisotropic metal layers [39]
and does not depend on the presence of a gyrotropic medium.

We conclude this section by numerically investigating the
observation made at the end of Sec. III, concerning the re-
striction to α = kπ/2, where k ∈ Z. As pointed out before,
if α �= kπ/2 then the Bloch wave number is complex almost
for every nonzero value of ky. As further confirmation, Fig. 5
shows the behavior of the imaginary part of KB as ky varies,

1The word intermediate refers to the position of the new surface
modes, which exist in the frequency domain delimited by the two
plasma frequencies.
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FIG. 4. Typical space distributions of the y component of the
electric-field amplitude in a semi-infinite gyro-uniaxial PC. The
blue regions represent the uniaxial components, whereas the orange
regions represent the gyrotropic components. (a) Tamm wave. (b) In-
termediate surface mode.

for four different values of the working frequency. It is evident
that KB ∈ C almost everywhere. Note that, depending on the
working frequency, the imaginary part of KB may be huge or
approach zero at normal incidence. The first case corresponds
to the band gap, where A + D is now real but larger than
2. The second case corresponds to bulk propagating modes;
hence this demonstrates that the band diagram is not empty
at normal incidence. Moreover, apart from the case ky → 0,
there may exist further values of ky for which Im(KB) becomes
very small. This is due to the form of Eq. (14): ku and kg are
imaginary for high values of the off-axis wave vector; hence
the imaginary part of the coefficient F can actually become
zero for a limited number of values of ky.

V. FINITE MULTILAYER STRUCTURES

This section contains a few numerical results concerning
finite structures, whose properties were analyzed using the
so-called Otto configuration with a coupling prism whose
refractive index is 3. As for the numerical method, we used
the 4 × 4 transfer matrix formalism for anisotropic media,
proposed by Berreman [40].

FIG. 5. Natural logarithm of the imaginary part of the Bloch
wave number as a function of the off-axis wave vector, for four
different values of the working frequency. The structural parameters
are the same as in Fig. 2(d), except for α = 1 rad.

FIG. 6. Reflectivity and Goos-Hänchen shift (in units of the in-
cident wavelength) for two multilayer structures composed of ten
periods, calculated using the transfer matrix method. The structural
parameters are the same as in Fig. 2. The other parameters are (a)
ωp,‖ < ωp,⊥, corresponding to forward surface modes of Fig. 2(d),
and (b) ωp,‖ > ωp,⊥, corresponding to backward-propagating surface
modes of Fig. 2(f).

First, we conducted a brief analysis on the Goos-Hänchen
shift [41] for finite multilayer structures. It is well known
that the GHS dramatically increases when getting close to
the Brewster angle [42], at which light is totally transmitted
through the system. We calculated both the reflectivity and the
GHS for two structures consisting of ten periods each, in the
frequency domain delimited by the two plasma frequencies
ωp,⊥ and ωp,‖. The results are shown in Fig. 6. Consistent with
expectations, at angles where the reflectivity approaches zero,
the GHS is positive in the case of forward modes, whereas it
is negative for backward modes.

A final matter worth consideration is bulk bands. As can
be seen from Eqs. (13) and (14), the dispersion of bulk bands
only depends on k2

y ; hence there is no difference between
positive and negative angles of incidence. Indeed, the bulk
modes are not affected by nonreciprocity effects despite the
presence of a gyrotropic medium. One way to break the high
level of symmetry and be able to observe differences between
positive and negative angles of incidence is to rotate the gyro-
electric components such that, in our coordinate system, their
dielectric tensor reads

ε1 = ε0

⎛
⎜⎝

εg 0 ig

0 εg 0

−ig 0 εg

⎞
⎟⎠. (17)

Figure 7 shows a comparison between the reflectivity of two
multilayer structures whose gyrotropic tensors are described
by Eqs. (1) and (17). It appears evident that the latter config-
uration introduces asymmetry between positive and negative
angles of incidence. Such a configuration cannot be analyzed
using the method of Sec. III because TE and TM modes
cannot be decoupled. They should be studied at the same time.
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FIG. 7. Comparison between the reflectivity of gyro-uniaxial
multilayer structures whose gyrotropic components are described by
Eq. (1) (red symmetric curve) and Eq. (17) (blue asymmetric curve).

VI. CONCLUSION

We have employed an analytical method to character-
ize the dispersion of bulk bands and surface states in a
one-dimensional PC composed of lossless gyroelectric and
uniaxial layers. This study reveals that the structure can sup-
port not only SPPs and Tamm waves, but also a new kind of
ESW. These surface waves exhibit either positive or negative
group velocity, which is crucial for developing new photonic
devices with controllable light propagation directions. Our
analysis shows that these surface waves have a much greater
penetration depth into the bulk compared to Tamm waves
and SPPs. This significant difference in penetration depths
allows for controlling signal transmission through surface
modes rather than bulk modes, enhancing the functionality of
photonic crystals as frequency filters. Furthermore, the intro-
duction of gyrotropy into the system significantly deforms the
photonic bands, indicating that the electromagnetic response
can be finely tuned by varying the external magnetic field.
This ability to modify the allowed frequency ranges within
the structure enhances the versatility of PCs. We also explored
the reflectivity spectra of finite structures arranged in an Otto
configuration. Near-zero reflectivity values correspond to high
values of the Goos-Hänchen shift, which can be either posi-
tive or negative depending on the sign of the group velocity
characterizing the relative surface mode. Additionally, we
examined configurations with asymmetrical reflectivity with
respect to the inversion of the incidence angle, highlighting
their nonreciprocal features due to gyrotropy.

Overall, our findings underscore the potential for con-
trolling signal transmission through novel surface modes in
layered structures based on a combination of hyperbolic and
gyroelectric media capitalizing on the properties of both
material classes.

APPENDIX: INTERFACE CONDITIONS

Given Hx in Eq. (2), it is trivial to evaluate Ey and Ez

by means of Maxwell’s equations. Additionally, they imply
that Hx and Ey are continuous functions along the boundaries,
while Ez is not, due to the dielectric function’s discontinuity.
The continuity of both Hx and Ey on the two boundaries
marked by red arrows in Fig. 1(b) leads to

cm−1 + dm−1 = ameikgL + bme−ikgL, (A1)

cmeikudu + dme−ikudu = ameikgdu + bme−ikgdu , (A2)

iεv

ε‖ε⊥
[dm−1(εzzku + εzzky) + cm−1(εzzky − εzzku)]

= am

(
ikg − g

εg
ky

)
eikgL − bm

(
ikg + g

εg
ky

)
e−ikgL, (A3)

iεveikudu

ε‖ε⊥
[cm(εzzku + εyzky) + dm(εyzky − εzzku)e−2ikudu ]

= am

(
ikg − g

εg
ky

)
eikgdu − bm

(
ikg + g

εg
ky

)
e−ikgdu , (A4)

where we defined

εv ≡ ε2
g − g2

εg
.

The components of the wave vectors obey the following dis-
persion relations:

εyyk2
y + εzzk

2
u + 2kykuεyz = ω2

c2
ε‖ε⊥,

k2
g + k2

y = εv

ω2

c2
.

Let us use am and bm as free variables and recast the system
(A1)–(A4) into the form(

cm−1

dm−1

)
= P−1Q

(
am

bm

)
,

(
cm

dm

)
= R−1S

(
am

bm

)
,

where P, Q, R, and S are 2 × 2 matrices [27]. The two pre-
ceding equations imply(

cm−1

dm−1

)
= P−1Q S−1R

(
cm

dm

)
. (A5)

The matrix

P−1QS−1R ≡
(

A B

‘C D

)

is unimodular because it relates the field amplitudes of equiv-
alent layers of two consecutive cells [26,27].
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