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Local model for the optical energy and momentum transfer in dielectric media
and the microscopic origin of Abraham’s force density
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We report on the continuity equations for linear momentum and energy associated to a recently introduced
electromagnetic formulation based on classical dipolar sources [Eur. Phys. J. Plus 138, 1034 (2023)]. When
connected to the mass-polariton quasi-particle dynamics, these equations provide a consistent microscopic
description of the local optical energy and momentum transfer inside dielectric media, called microscopic mass-
polariton formulation. This procedure also unveils the true microscopic origin of the long-known Abraham opti-
cal force density as an interplay between induced dipoles and mechanical stresses generated within the material.
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I. INTRODUCTION

Controlling optomechanical effects in matter is essential
for numerous applications in physics, being especially im-
portant in optical manipulation techniques [1–8], photonics
[9–12], and optofluidics [13–15]. Currently, however, the
electromagnetic forces acting inside matter when external
fields are present do not have a definite description. This prob-
lem is closely related to the Abraham-Minkowski controversy
[16–24], which treats the electromagnetic momentum transfer
inside dielectrics and appeared more than a hundred years
ago. Much of the difficulty associated with the Abraham-
Minkowski controversy stems from the fact that probing flux
and force densities and transfer rates of light in materials has
been very challenging. The lack of successful experiments has
led to interpretations that these densities and transfer rates
would not in general be uniquely defined, but only integrated
values would be physically meaningful [18]. However, ad-
vances in optics and photonics technologies are now starting
to enable experimental setups, which make force densities of
light measurable, at least indirectly [25–27]. From the theoret-
ical side, different electromagnetic formulations exist in the
literature to address this problem [28–31], but no universal
agreement has been reached yet.

Recently, we introduced the microscopic Ampère (MA)
formulation [25,32], which was developed for linear dielec-
tric media under optical excitation. In this formulation, the
medium is described as a continuum of classical point dipoles
and the associated optical force density is

fMA = 1

2
∇(P · E) + 1

2
∇(M · B) − 1

2
|E|2∇ε

1

2
|H|2∇μ + n2 − 1

c2

∂

∂t
(E × H), (1)
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which is given in the laboratory frame and is valid for lin-
ear, isotropic, lossless media with no dispersion, assuming
the atoms’ velocities are much smaller than the velocity of
light c. In the last equation, E is the electric field; P is the
polarization; H is the magnetic field; M is the magnetization;
B = μ0(M + H) is the magnetic induction field; ε and μ are
the medium’s permittivity and permeability, respectively; t is
time; and n = √

εμ/ε0μ0 is the medium’s refractive index,
with ε0 and μ0 denoting the vacuum’s permittivity and per-
meability, respectively.

The MA force density in Eq. (1) is capable of describing
the vast majority of experiments to date involving optical
forces and radiation pressure in dielectric media as the main
physical effects, as discussed in detail in Ref. [32]. The
formalism has the advantage of being derived from a well-
established microscopic model—the classical dipolar sources.
On the other hand, it was shown in Ref. [33] and subsequent
works [34–37] that, in order to fulfill the covariance require-
ments from special relativity, there must be a coupled state
of field and matter propagating through the dielectric—the
so-called mass-polariton (MP) quasi-particle, composed of
the electromagnetic wave plus a mass-density wave (MDW)
generated by the disturbances in the atomic positions due
to the optical force. More specifically, the MP formulation
was built using the Abraham force density [28,38], which
has been long adopted to describe external electromagnetic
forces acting in dielectrics [23,39]. Despite its relatively wide
range of application, Abraham’s force density is known to not
contemplate the electro- and magnetostriction effects [16,40],
which are quadratic effects on the fields tending to compress
the material toward the region of higher field intensity and cor-
respond to the first and second terms in Eq. (1), respectively.
This fact renders Abraham’s force density unable to model
experiments such as the ones reported in Refs. [25–27,41,42]
without further introducing (often phenomenologically) extra
contributions to the related continuity equations. In truth, to
the best of our knowledge, Eq. (1) is the only one in the
literature in accordance with the measurements of the optical
electrostriction force density reported in Refs. [25–27] while
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also being compatible with the classical model of tiny current
loops (also known as the Ampèrian model) for the micro-
scopic magnetization mechanism in matter [32,43]. Another
very important fact is that the few experiments that were truly
able to measure the photon momentum in matter showed a
linear dependence on the medium’s refractive index [44–48],
exactly as predicted by the coupled mass-polariton state [33].

In the context just presented, it is natural to consider the
possibility of properly incorporating the MA force density
into the MP formulation, i.e., to build the continuity equa-
tions for energy and momentum for the field plus matter
coupled system by using the MP quasi-particle while retaining
the force density from Eq. (1). This unification of the models
would provide a single consistent and nonphenomenological
model for the local energy and momentum transfer inside
dielectric media. This will be developed in the present work.
Our model also reveals the microscopic origin of the Abraham
optical force density in dielectrics as a byproduct. The results
cover an extensive variety of optomechanical applications and
further elucidate the centenary Abraham-Minkowski contro-
versy on the photonic momentum inside matter.

This work is organized as follows. In Sec. II, we build the
total stress-energy-momentum tensor of the coupled field and
matter system. In Sec. III, we derive the closed continuity
equations for the system by using the MP quasi-particle. In
Sec. IV, the general validity of the theory is discussed in
detail and compared to the existing literature on the topic. In
particular, the long-known Abraham force density is shown
to have originated from an interplay between induced dipoles
and mechanical stresses. At last, conclusions and future per-
spectives are drawn in Sec. V.

II. STRESS-ENERGY-MOMENTUM TENSOR

In flat space-time, the principles of conservation of energy
and linear momentum can be described simultaneously by the
covariant four-continuity equation [49] ∂νT μν = − f μ, where
∂ν = (c−1∂t , ∂x, ∂y, ∂z ), the indices μ, ν = 0, 1, 2, 3 denote
the space-time index and T is the stress-energy-momentum
(SEM) tensor, generically given as

T =
(

W S/c

cg
←→
T

)
, (2)

where
←→
T is the stress tensor, g is the momentum density, S is

the energy flux, and W is the energy density. Throughout this
work, the Minkowski metric ημν in the (−,+,+,+) signature
is implied. The four-force, in its turn, is f μ = (φ/c, f ), where
φ is the power density and f is the force density. We must
always have ∂νT μν = 0 for a closed system.

A. The field SEM tensor

The Lorentz force density law is given as f = ρE + J × B,
where ρ and J are the charge and current densities, respec-
tively. The MA force density in Eq. (1) was derived by
introducing into the Lorentz force density the four-current
density associated to a single medium element (for example,
an atom or a molecule) endowed with electric and magnetic
dipole moments, namely [50,51],

Jν
MA = [−c(p · ∇)δ3(r), ṗδ3(r) − (m × ∇)δ3(r)], (3)

where p is the electric dipole moment, m is the magnetic
dipole moment, δ3(r) the three-dimensional Dirac delta dis-
tribution, the over-dot denotes the total time derivative and
r is the position vector. As the force density from Eq. (1),
the four-current shown in Eq. (3) is valid for the laboratory
frame and nonrelativistic velocities. Alternatively, it is also
possible to obtain the optical force density from Eq. (1) from a
full Lagrangian approach [27] which does not need to invoke
Eq. (3) explicitly.

The procedure described above of defining an appropriate
model for the electromagnetic sources in matter and then
inserting them into the Lorentz force law is quite standard. For
example, the conventional Ampère formulation for macro-
scopic fields [38] is also derived in this fashion, where the
effective, bound four-current Jν

b = (−c∇ · P,∇ × M + ∂t P)
is employed. In fact, we notice that the widely known deriva-
tion of Maxwell’s stress tensor starting from the Lorentz
force density can be applied to any four-current configura-
tion. This happens because, excluding self-field effects, it is
always possible to substitute the electromagnetic sources with
the corresponding electromagnetic fields in the Lorentz equa-
tion through Gauss’ and Ampère-Maxwell’s laws, generating
f = ε0(∇ · E)E + μ−1

0 (∇ × B) × B regardless of the micro-
scopic sources’ details. We therefore conclude that Maxwell’s
SEM tensor, given by [49]

TMaxwell

=
(

WMaxwell ε0c(E × B)T

ε0cE × B WMaxwell
←→

I − ε0E ⊗ E − μ−1
0 B ⊗ B

)
,

(4)

must be valid for any four-current configuration, even though
it does not contain the source terms explicitly. Here, “T”

denotes matrix transposition, “⊗” denotes outer product,
←→

I
is the unit dyadic, and WMaxwell = (ε0|E|2 + μ−1

0 |B|2)/2.
The SEM tensor in Eq. (4) corresponds to the field part

of our system. Together with the SEM tensor of the mate-
rial (which will be shown in the next section), they form a
closed system whose four-divergence must be zero. Notice
that in this SEM description there are no explicit interac-
tion terms (as there would generally exist in Lagrangian
descriptions)—rather, the interaction term is related to the
fact that the four-divergences of the two SEM tensor terms
are nonzero four-force densities with opposite signs—hence,
the four-divergence of the total SEM tensor is zero [35–37].
Thus, interactions modify the values of the fields, but they are
not explicitly seen in the SEM tensors. In our case, the four-
divergence of Maxwell’s SEM generates the force density fMA

given in Eq. (1) and the power density φMA = E · JMA (see
Appendix A), with JMA given by the spatial part of the four-
current in Eq. (3). Contrary to Maxwell’s SEM tensor, these
interactions depend explicitly on the specific model adopted
to describe the electromagnetic sources within the system. To
calculate φMA, we start by writing the total power as

	MA =
∫

E · [ṗδ3(r) − m × ∇δ3(r)] d3r. (5)

Equation (5) corresponds to the contribution of a single
medium element to the total power. When a sum of sim-
ilar terms from medium elements at different positions is
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integrated over a small volume inside the dielectric (but
still microscopically large, i.e., containing a large number
of dipoles), and the dipoles’ velocities are assumed much
smaller than c, the calculation yields the power density as (see
Appendix B for the calculation)

φMA = 1

2

∂

∂t
(P · E − M · B), (6)

where φMA, P, and M are given by 	MA, p, and m divided
by the integration volume and multiplied by the number of
dipoles in this volume, respectively.

Assuming no external fields are initially present, if we
integrate φMA in time we obtain the energy density Wint =
(P · E − M · B)/2, which represents the (negative of the)
total work per unit volume that must be supplied to as-
semble the fields+dipoles configuration and to establish the
dipoles within the fields. This is different from the well-known
potential energy density of linear, stationary dipoles in ex-
ternal fields, −(P · E + M · B)/2, because to assemble the
configuration extra work must be supplied to overcome the
effects of the induced electric current, according to Lenz law.
For a detailed discussion on this subtlety see, for example,
Refs. [50,52].

With Eq. (6), the four-continuity equation associated to
the MA formulation, ∂νT μν

Maxwell = − f μ
MA, is then completely

defined. This equation contains the information of the elec-
tromagnetic fields dynamics and how they interact with the
material—therefore, by finding the appropriate SEM tensor
for the material we are able to delineate our closed system.
This tensor for the material will be discussed in the next
section using the mass-polariton quasi-particle theory [33].

B. The material and MDW SEM tensors

The original MP formulation [33] adopts, in the labo-
ratory frame, Abraham’s force density fAb = −|E|2∇ε/2 −
|H|2∇μ/2 + c−2(n2 − 1)∂t (E × H) and the SEM tensor re-
lation TMP = TAb + TMDW. In contrast to Maxwell’s SEM
tensor in Eq. (4), the original MP formulation used Abraham’s
SEM tensor, given by [28]

TAb =
(

WAb (E × H)T/c

E × H/c WAb
←→

I − D ⊗ E − B ⊗ H

)
, (7)

where WAb = (D · E + B · H)/2, and D = ε0E + P is the
electric displacement field. The MDW SEM tensor TMDW is
discussed later in this section.

Before description of the MDW, we discuss the SEM tensor
of the material, Tmat, which is given as a sum of a mass com-
ponent and a mechanical component, namely, Tmat = Tmass +
Tmech. The SEM tensor of the material mass is given by [49]

T μν
mass = (

ρa/γ
2
va

)
U μ

a U ν
a =

(
ρac2 ρavT

a c

ρavac ρava ⊗ va

)
, (8)

where ρa = γ 2
va

ρai0 + Wint/c2 is the mass density of the ma-
terial, in which ρai0 is the instantaneous rest mass density,
γva = (1 − |va|2/c2)−1/2 is the Lorentz factor corresponding
to the atomic velocity va, and U μ

a = γva (c, va ) is the four-
velocity of the material. Under dynamical interactions, which
locally vary the positions of atoms, ρai0 can differ from the

rest mass density of the material at equilibrium with no in-
teractions, which we denote by ρa0. As discussed in Ref. [38],
the relation of these two quantities is given by ρai0 = ρa0/(1 +
∇ · ra ), where ra is the atomic displacement field averaged
over a small volume, which however contains many atoms.
In the original MP formulation [33], the energy of induced
dipoles was considered as a part of Abraham’s energy density
WAb, and consequently Wint was set to zero in the expression
of ρa above. In the present theory, Wint is associated with
establishing induced dipoles within the time-dependent elec-
tromagnetic field by the power density in Eq. (6) as discussed
above. Thus, Wint is obtained by the time-integral of the power
density of Eq. (6), and it is equal to the difference of the
Abraham energy density WAb of the original MP formulation
and the energy density WMaxwell of the present formulation as
Wint = ∫ t

−∞ φMAdt ′ = WAb − WMaxwell.
The explicit form of the mechanical SEM tensor, Tmech,

depends on the specific deformation characteristics of the
material, e.g., a fluid or an elastic solid. For example, for a
perfect fluid we have T μν

mech = (P/c2)U μ
a U ν

a + Pημν [49,53],
where P denotes the local mechanical pressure.

The MDW SEM tensor is given for nonrelativistic atomic
velocities in the laboratory frame as a difference of the SEM
tensor of the material mass in Eq. (8) disturbed from equilib-
rium by the electromagnetic force and power densities and the
same formula with va = 0 and Wint = 0, denoted by T μν

mass,0, as
[33,35–37]

TMDW = T μν
mass − T μν

mass,0 =
(

ρMDWc2 ρavT
a c

ρavac ρava ⊗ va

)
. (9)

In this equation, the mass density of the atomic MDW is
defined as ρMDW = ρa − ρa0 = γ 2

va
ρai0 − ρa0 + Wint/c2. The

kinetic energy of atoms, resulting from optical forces, is ex-
tremely small due to its quadratic dependence on the small
atomic velocity in the assumed nonrelativistic regime and
hence can be neglected [37]. Thus, we can set γ 2

va
= 1 in the

equations above. Using the relation ρai0 = ρa0/(1 + ∇ · ra ) in
the limit of small ∇ · ra, we then obtain that the MDW mass
density in the laboratory frame can be approximated as

ρMDW = ρa − ρa0 = −(∇ · ra )ρa0 + Wint/c2. (10)

The first term is related to atomic displacements, and the sec-
ond term, which was absent in the original MP formulation,
is the mass equivalent of the interaction energy associated
with the creation of induced dipoles by the power density of
Eq. (6).

C. Incorporating the mass-polariton dynamics

The MA force density is the sum of Abraham’s force den-
sity and the electro- and magnetostriction effects, i.e.,

fMA = fAb + ∇(P · E)/2 + ∇(M · B)/2. (11)

In terms of stress tensors and momentum densities, the last
equation should be equivalent to

←→∇ · (
←→
T Ab − ←→

T Maxwell ) + ∂

∂t
(gAb − gMaxwell )

= 1

2
←→∇ · [(P · E)

←→
I + (M · B)

←→
I ], (12)
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where
←→
T Ab = WAb

←→
I − D ⊗ E − B ⊗ H,

←→
T Maxwell =

WMaxwell
←→

I − ε0E ⊗ E − μ−1
0 B ⊗ B, gAb = E × H/c2, and

gMaxwell = ε0E × B. It can be verified that Eq. (12) does not
hold as the magnetic part is unable to satisfy the relation.
The subtle issue to be noticed here is that fMA and fAb were
actually constructed for different physical systems. The force
density fMA is built from point dipoles and describes the
electromagnetic interactions locally, where by “locally” we
mean in a small volume inside the dielectric, which contains
many dipoles (i.e., is microscopically large) but is still smaller
than the total volume of the material. This feature is very
important as it allows the MA formulation to describe the
spatiotemporal dependence of the optical forces in dielectric
media. The force density fAb, in its turn, is obtained from the

equation fAb = −←→∇ · ←→
T Ab − ∂t gAb by employing Gauss’

and Ampère-Maxwell’s laws in their macroscopic forms [23],
i.e., ∇ · D = ρf and ∇ × H = Jf + ∂t D, respectively (where
ρf and Jf are the free electric charge and current density,
respectively). In these macroscopic forms the effective
bound four-current density Jν

b = (−c∇ · P,∇ × M + ∂t P)
is automatically assumed—therefore, formulations based
on this electromagnetic source model cannot be applied to
describe local optical forces, being appropriate only if one is
interested in the overall center-of-mass motion of the material
[16,38]. Thus, in local descriptions of optical forces in matter,
Abraham’s force density cannot be applied. In fact, the same
problem also happens to the Einstein-Laub formulation [30],
which, although initially modeled through point dipoles as
well, also employs the macroscopic Maxwell’s equations in
the derivation of its continuity equations [16,38]. This is a
very subtle and important fact for the Abraham-Minkowski
debate, which seems to have been overlooked in the literature.
Again, we stress that the only way to treat the electromagnetic
sources generically, be they bound and/or free, is by means
of Maxwell’s SEM tensor, as discussed at the beginning of
this section.

In the scenario discussed, we propose an alternative form
of the MP tensor, called microscopic mass-polariton (MMP)
tensor and given as

TMMP = TMaxwell + TMDW, (13)

where the SEM tensors TMaxwell and TMDW are given in
Eqs. (4) and (9), respectively. As stated earlier, TMDW encom-
passes the out-of-equilibrium rest mass and kinetic energies
of the system. The remaining mechanical effects are described
by the tensor Tmech, which was explicitly written in the begin-
ning of this section for a perfect fluid as an example.

The total SEM tensor of the closed system in our model is
therefore given by Ttot = TMaxwell + Tmat, or

Ttot = TMaxwell + Tmass + Tmech

= TMMP + Tmass,0 + Tmech. (14)

In mechanical equilibrium in the presence of static electric
and magnetic fields, Tmech is counterbalanced within the di-
electric by the electro- and magnetostriction force densities,
as will be discussed in the following section. For time-
varying electromagnetic fields, on the other hand, the striction
force densities act as sources in the acoustic pressure wave

equation [54], being therefore associated to the transient
acoustic relaxation of the medium.

III. CONTINUITY EQUATIONS

As the electromagnetic field and the material in our case
form a closed system, we must have ∂νT μν

tot = 0. This equa-
tion can be conveniently split into its temporal (μ = 0) and
spatial (μ = 1, 2, 3) coordinates, providing explicitly the en-
ergy and momentum continuity equations for our theory,
respectively, which will be shown next.

A. Energy continuity equation

Using the explicit forms of the SEM tensors and ∂ν =
(c−1∂t , ∂x, ∂y, ∂z ), we obtain the energy continuity equation in
the laboratory frame as

∂νT 0ν
tot = 1

c

∂

∂t

(
1

2
ε0|E|2 + 1

2μ0
|B|2 + ρac2

)

+ 1

c
∇ · (E × H + ρavac2) = 0. (15)

Here, the hidden energy contribution [55] Sh = M × E (also
known as Aharonov-Casher interaction [56]) has been added
to the electromagnetic contribution of the energy flux as E ×
H = μ−1

0 E × B + M × E = SMaxwell + Sh. This is necessary
because, as discussed in detail in Ref. [32], the derivations of
the MA force density are nonrelativistic and therefore need the
inclusion of the hidden momentum and energy contributions
in an ad hoc manner, when writing equations for the labo-
ratory frame, to keep the correct relativistic transformation
properties [57]—had we employed a relativistic derivation
from the start, these terms would arise naturally when the
center of mass energy of the dipole system is promoted to a
dynamical variable, as shown in Ref. [58] (see Appendix C
for more details). By adding these contributions to the four-
continuity equation in the laboratory inertial reference frame,
it is implied that we are keeping contributions only to order
|va|/c—therefore, the relatively small atomic kinetic energy
is neglected, as stated earlier. As the motion of the atoms is
accelerated due to the external forces, their proper frames are
not inertial reference frames—the velocity va is the relative
velocity between a local inertial reference frame, moving
along with the atoms, and the laboratory frame [36].

Notice that Eq. (15) has a distinct form from the
original MP formulation, which in this case would be
∂t (WAb + ρac2) + ∇ · (E × H + ρavac2) = 0 [33]. The dif-
ference stems from the field energy density WMaxwell =
(ε0|E|2 + μ−1

0 |B|2)/2 appearing in the time derivative term
instead of WAb [see Eq. (7)]. To elucidate this discrepancy, we
first note that, from Sec. II, we have ∂νT 0ν

Maxwell = −φMA/c.
Using the last form of Eq. (14), we then have

∂νT 0ν
tot = −φMA + ∂t (ρac2) + ∇ · (ρavac2) = 0, (16)

which is an alternative form of Eq. (15). As previously stated,
in our system the power density φMA is related to the as-
sembly and establishment of the induced dipoles within the
fields, with an associated energy density equal to Wint = (P ·
E − M · B)/2. As discussed in Sec. II B, this energy density
becomes implicitly contained in ρac2. From the point of view
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of Eq. (16), this fact can be seen as follows. First, we approx-
imate ρava ≈ ρa0va = ρa0 dra/ dt ≈ ρa0∂t ra. Thus, Eq. (16)
becomes ∂t [ρac2 + (∇ · ra )ρa0c2] = φMA. Using Eq. (10), this
equation is further written as ∂t (ρa0c2 + Wint ) = φMA. The
time derivative of the equilibrium mass density ρa0 is zero,
so we have ∂tWint = φMA, which is equivalent to the definition
of the power density in Eq. (6). Thus, we see that, regarding
the energy continuity equation, the mathematical difference
between the MP and MMP formulations lies in how the in-
teraction energy is treated—explicitly in terms of the fields or
implicitly as a part of the time-dependent mass density of the
material, respectively.

B. Momentum continuity equation

Keeping the same considerations and approximations em-
ployed in the energy continuity equation, the momentum
continuity equation, in its turn, is given in the laboratory frame
as

3∑
i=1

êi∂νT iν
tot = −fMA − fb + ←→∇ · (ρava ⊗ va ) + ∂

∂t
(ρava )

= 0, (17)

where i = 1, 2, 3, êi is the unit vector in the ith direction and fb

denotes the internal body force density in the medium, given
by the spatial derivative of T iν

mech. In the earlier example of
a perfect fluid, we have fb = −∇P . Besides this term, the
additional difference in Eq. (17) compared to the original
MP formulation is in the electro- and magnetostriction forces
contained in fMA. Notice that, by using the material derivative
d/ dt = ∂t + va · ∇ and the continuity equation of the atomic
number density na, given by ∂t na + ∇ · (nava ) = 0, Eq. (17)
reduces to Newton’s law of motion as na dpa/ dt = fMA + fb,
where pa = ρava/na is the momentum of a single atom.

At last, the coupling between field and matter expected to
arise in experimental observations, as already discussed for
the energy case, is more subtle for momentum and will be
addressed in the next section.

IV. DISCUSSION

The general validity of Maxwell’s SEM tensor as the elec-
tromagnetic part in coupled field plus matter systems with
arbitrary sources, suggested in Sec. II, is supported by the lit-
erature in works addressing electromagnetic force and torque
with diverse source models, such as dipoles [59,60], multi-
poles [61,62], negative-index scatterers [63], and nanoparti-
cles placed in metamaterials [64] and plasmonic traps [65,66].
In these works, the total electromagnetic force is calculated
as appropriate surface integrals of Maxwell’s SEM tensor
as obtained by integrating the general relation ∂νT μν

Maxwell =
− f μ. However, some works employ Minkowski’s SEM
tensor (which generates the same force density as Abraham’s
when time averaged)—see, for example, Refs. [3,6,67]. These
works, in their turn, are also subject to the problem discussed
in Sec. II of implicitly obtaining force densities that are
valid only for macroscopic, effective medium descriptions—
nevertheless, for applications where only the system center
of mass-energy movement is important and the total force

is observed as a cycle-averaged quantity, such as in typical
optical traps, this approach is consistent as well and agrees
with our proposal [20,68].

As stated in Sec. II A, the self-field interactions and their
effects are excluded in the presented theory. To justify this,
we refer to Ref. [69], where an alternative version of the SEM
tensor for classical electromagnetic sources was shown, which
explicitly excludes self-field contributions. The equation of
motion obtained from this modified tensor description is ex-
actly the one predicted by the Lorentz force law but without
the self-field contributions. Therefore, as we are not interested
in radiation reaction phenomena, the Lorentz force law can
be applied with no further complications, keeping in mind
that in our system, the motion of a single dipole is always
caused by the fields originating from all the other external
sources.

The essential coupling between field and matter in the con-
text of the Abraham-Minkowski problem has been discussed
extensively in the literature, where different subsystem’s sepa-
rations (even arbitrary ones) were proposed [19,20,23,70]. In
Sec. III A, the coupling in energy for the MMP formulation
was discussed in terms of the fields and interaction energy
densities. A similar but more subtle coupling is also present
in the momentum continuity equation, Eq. (17). By using the
MP quasi-particle, it can be shown that in the laboratory frame
the coupling between field and matter leads to a momentum
transfer proportional to n [33,35]—i.e., a Minkowski-type
momentum, in accordance with the few existing measure-
ments of photon momentum in matter [44–48]. This result
is unambiguously tied to the field momentum carrying a
momentum of Abraham type, proportional to 1/n, while the
matter contribution is attributed to the MDW carrying the
difference, proportional to (n − 1/n). Therefore, as in the case
of energy, our proposed theory agrees with the experimental
works observing the total, coupled linear momentum of the
field plus matter system. Indeed, as experimental observations
in this scenario will always capture the closed system, without
further argumentation, it is reasonable to assume that the
decomposition of the total SEM tensor is arbitrary, as done,
for example, in Ref. [20]; nevertheless, the decompositions
presented by us in Eqs. (13) and (14) have the advantage
of describing the subsystems in terms of very well-known
tensors, providing, therefore, a clearer physical interpretation.
Lastly, recall that although TMaxwell, TMDW, and Tmech are true
tensors, the electromagnetic sources and consequently the op-
tical force and power densities, given in Eqs. (1), (3), and (6),
respectively, were given specifically for the laboratory frame
and nonrelativistic velocities. Therefore, the presented theory
is not covariant, but this generalization is of technical interest
and will be addressed in future works.

From the definition of potential energy, the stress acting
inside the material due to the electromagnetic interaction with
the dipoles can be found from the derivative of the total (fields
plus interaction) energy density, (D · E + B · H)/2, with
respect to the associated strain component (in solid media)
[71]. It can be shown [40] that such calculation leads to
the force density ∇(P · E + M · B)/2, i.e., the work done by
the electromagnetic field generates strain inside the material,
which is manifested through the electro- and magnetostriction
effects. The same occurs for fluid media, with strain being
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substituted by a local pressure variation. We can then see that
striction effects correspond to pure stresses, and so they do
not change the local momentum transfer from light inside
the material, which occurs exclusively in the pulse propaga-
tion direction. Indeed, striction effects are long known to not
contribute to the material’s center of mass-energy movement,
having significant effects only in local force considerations
[16]. This interpretation also matches the discrete picture of
light, where the incident photons on an isotropic dielectric
have their average linear momentum in the light’s propagation
direction.

Equation (17) is compatible with the optoelastic simula-
tions from Refs. [12,33]—striction effects are balanced by
the strain-induced elastic forces, while the remaining force
density is equal to fAb. This force density is responsible for the
MDW propagating along with the light pulse. These dynamics
and the linear momentum conservation can be visualized in
detail in the two-dimensional simulations presented for an
elastic solid medium in Ref. [12]. Another relevant fact is
that an acoustic pressure wave would develop in fluids under
pulsed optical excitation to counterbalance the effects of the
generated striction force densities. This mechanism of acous-
tic relaxation was studied experimentally for nonmagnetic
fluids in Refs. [25–27], providing observations of the spa-
tiotemporal dependence of the optical force density. We recall
that, among all the known formulations for optical forces to
date, Eq. (1) is the only one capable of describing the exper-
imental results from Refs. [25–27] while being theoretically
consistent with the observed model for magnetization in mat-
ter [32,43,72,73], as stated in Sec. I. This fact together with
the familiar energy continuity equations shown in Eqs. (15)
and (16) provide very good evidence for the validity of the
presented theory. For a detailed discussion on the different
existing formulations for electromagnetic energy and momen-
tum transfer in matter, see, for example, Refs. [16,20,38,70].

Although, as just discussed, good agreement with exist-
ing experiments has been found, the complete experimental
confirmation of the presented theory requires the measure-
ment of the small mass transferred by the mass-density
wave [33]. Such mass, denoted by δm, is given as δm =∫

ρMDW(r, t ) d3r, where the integration region covers the
whole material. While optimized experimental setups to
measure this quantity have been suggested [74,75], this mea-
surement is quite challenging and has not, to our knowledge,
been performed yet. In the MMP theory, ρMDW is given in
Eq. (10) in terms of two contributions: one related to the small
atomic displacements and the other one related to the mass
equivalent of the energy spent in forming the induced dipoles
configuration. The latter contribution does not generate a mass
transfer; therefore, δm in the present theory is determined
solely in terms of the atomic displacements. As shown in
Ref. [38], ∇ · ra can be related to the field energy density
distribution, yielding in the current case ρMDW ≈ c−2(n2 − 1)∫ t
−∞(∂t ′WMaxwell + φMA)dt ′ = c−2(n2 − 1)WAb. This is the ex-

act same result as the original MP formulation [33,38];
therefore, δm is unchanged in the MMP theory.

A covariant theory of light propagating in dielectric me-
dia using the MP formulation has already been reported
[37,40]. Specifically, in Ref. [40], a decomposition of the total
SEM tensor very similar to the one shown in Eq. (13) was

adopted—however, the field part was given by Abraham’s
SEM tensor, while this work adopts Maxwell’s SEM tensor. In
truth, whenever effective macroscopic treatments for the mat-
ter part are appropriate, fAb does originate from Abraham’s
SEM tensor (as discussed in Sec. II C); in these cases, the MP
formulation with the addition of striction effects, as described
in Ref. [40], yields the exact same results as the MMP for-
mulation. This occurs because the total force acting on the
medium is the same in both MP and MMP formulations, i.e.,∫

fAbd3r = ∫
fMAd3r, since striction forces always integrate

to zero [16,68]. Therefore, the MMP formulation shares all
the momentum and mass-transfer properties and center of
mass-energy movement of the MP formulation, which have
been extensively discussed and shown to be mathematically
consistent [33–37,76]. As a consequence, the MP and MMP
formulations are not mutually exclusive: all the force densities
and simulations from Refs. [33,40] are correct, but the direct
association of Abraham’s SEM to fAb is implicitly valid only
for the conditions just cited. In this context, the MMP formu-
lation can be seen as a clarification of the MP formulation,
where the specific microscopic mechanisms of optical energy
and momentum transfer involved are described in terms of
electric and magnetic dipoles, eliminating the necessity of
phenomenological approaches.

Having treated energy and linear momentum conservation,
it is natural to ponder whether the presented theory is com-
patible with angular momentum conservation. Indeed, this
is a very interesting topic that has drawn much attention in
the past few decades, especially because it is now known
that structured fields can carry both orbital and spin angular
momentum [77–82]. In this scenario, simulations of optical
angular momentum transfer using the MP formulation were
already reported and seen to be in accordance with the con-
servation principle [76]. As striction forces are not related to
linear momentum transfer, it is expected that this behavior is
also shared by the MMP formulation.

The consideration of temporally dispersive media within
the mass-polariton dynamics has been treated earlier [34],
where the momentum transfer was found to depend on both
the wave’s group and phase velocity. This is also expected
to occur in the MMP formulation, but more careful analyses
are needed because, for example, the power density shown in
Eq. (6) is not valid for dispersive media. Besides dispersion,
the extension of the theory to include nonconservative optical
forces [83], anisotropy, and nonlinearities are also of interest.
Additionally, a more fundamental formulation can be sought
by working in a quantum mechanics regime, as done, for
example, in Refs. [84–86].

At last, recall that, as discussed, when electro- and mag-
netostriction force densities are counterbalanced by optically
induced stresses in the medium and the interaction energy
density is accounted for explicitly, the equations for en-
ergy density and force density in the dielectric are equal to
Abraham’s formulation; however, we emphasize that in local
descriptions of energy and momentum, there is no physi-
cally meaningful association of these conserved quantities to
Abraham’s SEM tensor as it necessarily employs macroscopic
sources in its application [23,38]. Therefore, the argumen-
tation developed here reveals the true microscopic origin of
Abraham’s force density in linear, isotropic, lossless, and
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nondispersive dielectric media: it results from the optical force
acting on moving induced dipoles partially counterbalanced
by local, internal mechanical stresses. To the best of our
knowledge, this simple interpretation of the long-known and
widely employed Abraham force density in terms of micro-
scopic dipoles had not been reported in the literature before.
Clarifying this subtlety contributes to our fundamental un-
derstanding of the interaction of electromagnetic fields with
matter and its numerous applications.

V. CONCLUSIONS

We have described a microscopic theory for the local
electromagnetic energy and momentum transfer inside linear
dielectric media called microscopic mass-polariton formula-
tion. Our work unifies two recently introduced models of
light in dielectric media: the microscopic Ampère formu-
lation, based on classical dipolar electromagnetic sources,
and the theoretical mass-polariton quasi-particle. This was
made possible by noticing that the widely known Maxwell’s
stress-energy-momentum tensor is the only one capable of
describing arbitrary electromagnetic sources in matter. The
field part of the system is then given by this tensor, while the
matter part is given by the mass-density wave tensor, which
corresponds to the disturbances in atomic positions propa-
gating along with the electromagnetic wave, and a general
mechanical tensor, which encompasses all effects not related
to rest mass or kinetic energies, such as internal stresses.
Additionally, in our model the electro- and magnetostriction
effects are counterbalanced by the medium’s local stresses,
with Abraham’s force density corresponding exactly to the
remaining terms of the optical force density; therefore, we
have shown that whenever local continuity considerations
must take place, Abraham’s force density does not originate
from Abraham’s stress-energy-momentum tensor. This signif-
icantly improves our current knowledge of the field and matter
interactions and also sheds light on the centenary Abraham-
Minkowski controversy on the photon’s momentum.

Our proposed theory agrees with most experiments re-
ported so far involving optical forces and radiation pressure
in dielectric media, providing a paradigm for general op-
tomechanical applications. When compared to the original
mass-polariton formulation, our theory presents the advantage
of being directly related to the very well-established dipolar
model for electromagnetic sources in matter, which clarifies
the microscopic dynamics of the system. Besides, electro- and
magnetostriction effects are also naturally accounted for. The
complete confirmation of our theory, however, still requires
the measurement of the small mass transferred by the prop-
agating mass-density wave, which remains a very difficult
experimental challenge and has not, to our knowledge, been
performed yet.
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APPENDIX A: CONTINUITY EQUATION FOR TMaxwell

In covariant form, Maxwell’s SEM tensor from Eq. (4) is
given as [49,53]

T μν
Maxwell = − 1

μ0

(
ηαλFμαFλν + 1

4
ημνFαβFαβ

)
. (A1)

Here, ημν is Minkowski’s metric in (−,+,+,+) signature
and Fμν is the usual electromagnetic field tensor, given in
terms of the electromagnetic four-potential Aμ as Fμν =
∂μAν − ∂νAμ. By taking the four-divergence of the above
equation, we get [49,53]

∂νT μν
Maxwell = −JαFμα. (A2)

In terms of electromagnetic fields and sources, the right-hand
side of the above equation is (apart from the minus sign)
the four-force f μ = (J · E/c, ρE + J × B), from where we
can recognize the Lorentz force density. By substituting into
this equation the four-current from Eq. (3) and properly in-
tegrating over the volume, we obtain [32] Eqs. (1) and (6)
for the force and power densities, respectively, in the MA
formulation.

APPENDIX B: CALCULATION OF φMA

The total power in the MA formulation is

	MA =
∫

E · [ṗδ3(r) − m × ∇δ3(r)] d3r. (B1)

Adopting index notation for the last term, this equation is
given by

	MA = ṗ · E −
∫

Eiεi jkm j∂kδ
3(r) d3r, (B2)

where εi jk is the Levi-Civita symbol and the summations in
repeated indices are implied. Integrating the last term by parts,
we obtain

	MA = ∂t p · E + εi jkm j∂kEi, (B3)

where we took ṗ ≈ ∂t p as the dipole’s velocity in the labo-
ratory frame is much smaller than c. In vector notation, the
second term on the right-hand side is equal to m · (∇ × E).
Invoking Faraday’s law, we have 	MA = ∂t p · E − m · ∂t B.
Notice, however, that this result for 	MA must be valid for the
laboratory inertial reference frame. In this frame, the dipole
moments are given, to first order in velocities, as [87] p =
p0 + v × m0/c2 and m = m0 − v × p0, where p0 and m0 are
the electric and magnetic dipole moments in the dipole’s rest
frame, respectively, and v is the dipole’s velocity in the lab-
oratory frame. In their turn, the fields are already assumed to
be given in the laboratory frame. Therefore, we have

	MA = ∂t (p0 + v × m0/c2) · E − (m0 − v × p0) · ∂t B.

(B4)
This result represents the contribution to the total power from
one single dipole moving with velocity v inside the integration
volume. By summing the contribution from all dipoles in the
integration volume and dropping the unnecessary subscripts,
we obtain

φMA = ∂t (P + v × M/c2) · E − (M − v × P) · ∂t B, (B5)
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where P and M correspond, respectively, to p and m di-
vided by the integration volume and multiplied by the number
of dipoles in this volume. Naturally, the above equation is
based on the traditional description adopted in condensed
matter where macroscopic fields are built from their associ-
ated microscopic counterparts—in our case, the polarization
P and magnetization M and the dipole moments p and m,
respectively—through a suitable spatial smoothing procedure.

Recalling that |v| 	 c, we may neglect the terms propor-
tional to v in Eq. (B5). Besides, as the medium is assumed
linear and nondispersive, we have at last

φMA ≈ 1

2

∂

∂t
(P · E − M · B), (B6)

which is exactly Eq. (6).

APPENDIX C: THE MMP LAGRANGIAN AND HIDDEN
MOMENTUM CONTRIBUTION

To justify the inclusion of the hidden energy and momen-
tum contributions in Eqs. (15) and (17), respectively, we will
initially follow the main steps from the derivation of the La-
grangian given in Ref. [58]. The starting point is the classical
version of the well-known quantum electrodynamics (QED)
Lagrangian for spinless, charged point particles interacting
within external electromagnetic fields. As we are interested
in electromagnetic dipolar sources, we will consider two
point particles with identical mass m and opposite elementary
charges e. The QED Lagrangian in this case reads

L = −mc2[(1 − |ṙ1|2/c2)1/2 + (1 − |ṙ2|2/c2)1/2]

−
∫ [

JμAμ + ε0

4
FμνFμν

]
d3r. (C1)

Here, ri and ṙi, i = 1, 2, are the position and velocity of the
ith particle, respectively, as given in the laboratory inertial
reference frame, and Aμ = (ϕ/c, A) is the electromagnetic
four-potential. The electrical charge density is ρ(r) = eδ3(r −
r1) − eδ3(r − r2) and the electrical current density is J(r) =
eṙ1δ

3(r − r1) − eṙ2δ
3(r − r2), which are equivalent to the

four-current in Eq. (3) for large observation distances |r|.
Next, the Power-Zienau-Woolley (PZW) gauge transfor-

mation [88–90] is applied to the Lagrangian in Eq. (C1),
allowing us to write the modified Lagrangian L′ in terms of
field quantities as

L′ = −mc2[(1 − |ṙ1|2/c2)1/2 + (1 − |ṙ2|2/c2)1/2]

+
∫ {

ε0

2
[|E(r)|2 − c2|B(r)|2] + 1

2
P(r) · E(r)

+ 1

2
M(r) · B(r) − Ṙ · [P(r) × B(r)]

}
d3r. (C2)

In the above equation, R = (r1 + r2)/2 is the center of mass
energy of the system as measured in the laboratory frame.
The first two terms on the right-hand side are not affected by
the PZW transformation. The first term inside the integral is
an invariant of the electromagnetic field and is related to the
field’s energy density. The second and third ones are associ-
ated to the dipolar interaction and, consequently, to electro-
and magnetostriction effects (actually, P and M are initially
related to the complete multipole expansions [58], but we have

already truncated it to account only for dipolar interactions).
The 1/2 factor occurs due to the linearly induced dipoles by
the fields. The last term is a linear momentum contribution
known as Röntgen interaction and appears naturally even in
nonrelativistic derivations [32,91,92].

Now, we promote R to a dynamical variable of the system
and introduce the relative coordinate q = r2 − r1. To leading
order in the velocities divided by c, it can be shown that the
Lagrangian in Eq. (C2) becomes

L′ = −Mc2 + M|Ṙ|2
2

+ mred|q̇|2
2

+
∫ [

ε0

2

(|E(r)|2 − c2|B(r)|2) + 1

2
P(r) · E(r)

+ 1

2
M(r) · B(r) − Ṙ · (P(r) × B(r))

+ Ṙ
c2

· (M(r) × E(r))

]
d3r, (C3)

where M = 2m is the total mass of the system and mred = m/2
is the reduced mass. The last term in the integral is directly
related to the hidden momentum and hidden energy contribu-
tions (which are also known as Aharonov-Casher interaction
in the QED context), and arises as a first-order effect (γ ≈ 1)
of the relativistic Lagrangian.

In the MMP formulation, the dielectric medium is de-
scribed under the continuum approximation as a distribution
of point dipoles—this way, we have q → 0, and the third term
on the right-hand side of Eq. (C3) is zero. By introducing the
atomic mass density ρa, the remaining mechanical terms are
transformed as

−Mc2 → −
∫

ρa(r)c2d3r (C4)

and

M|Ṙ|2
2

→ 1

2

∫
ρa(r)|va(r)|2d3r, (C5)

which are associated to the rest and kinetic energies of the
medium, respectively, with Ṙ being identified as the atomic
velocity va. With this continuum description and recalling
that the kinetic energy term is negligible, we can then fi-
nally write the Lagrangian density for the MMP formulation
as

LMMP = −ρac2 + 1

2
D · E − 1

2
B · H − Ṙ · (P × B)

+ Ṙ
c2

· (M × E), (C6)

which is valid for the laboratory frame and approximated
to leading order in the velocities, with the dependence on
r omitted for brevity. The MDW mass density is explicitly
obtained in the analysis when we study how much the original
mass density ρa0 becomes disturbed by the optical force as
ρMDW = ρa − ρa0.

The momentum density of the MDW can be obtained by
varying the action integral in Eq. (C6) with respect to Ṙ as
∂LMMP/∂Ṙ = −P × B + 1

c2 M × E, in which the hidden mo-
mentum contribution is transparently present. Alternatively, if
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the kinetic energy density term ρa|va|2/2 is kept, the equa-
tions of motion yield ρava − P × B + 1

c2 M × E = 0, which
is an equation for the MDW momentum density as ρMDWvl =
ρava = P × B − 1

c2 M × E.
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