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The propagation effects reshaping the excitation pulse are known to exhibit a strong influence on the high-
harmonic generation (HHG) in solid-state media. Previous measurements showed that the midinfrared pulse
dynamics, most importantly the nonlinear loss and spectral broadening, can dampen or even extinguish the
highest harmonic peaks. Despite the importance of these effects, their inclusion in the HHG modeling has been
so far restricted to one-dimensional propagation and/or very thin samples. This work demonstrates an approach
where the driving pulse is simulated with a full spatial and temporal resolution in samples of realistic thickness
while the material interfaces are included as well. We show that the HHG spectrum measured in the transmission
geometry is greatly affected by the Fresnel reflections causing interference in the vicinity of the material surface,
and we find that different parts of the harmonic spectra originate from different regions of the material sample.
Our results underline the importance of realistic and comprehensive simulations in the interpretation of high-
harmonic generation from solids in the transmission geometry.
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I. INTRODUCTION

Higher-order harmonic generation (HHG) from solids
[1–3] is an extreme nonlinear effect caused by nonresonant
optical excitation at high field-intensities. While it is very
much a universal behavior found in many systems exposed
to a strong excitation away from resonance, the underlying
dynamics also reflects the properties of the given material.
This is why the observations of the above-the-gap harmonic
generation from a solid-state medium [4] motivated research
to understand HHG as an experimental probe. For example,
a proof of principle was demonstrated early [5] for the all-
optical reconstruction of the electronic band structure using
the measured HHG spectra, and similar-in-spirit investiga-
tions continue [6,7] to attract interest. Beyond the energy
bands, HHG was identified as a suitable probing mechanism
also for the light-coupling transition-dipole moments [8,9],
and as a way to study the topological properties of materi-
als [10,11] and special features of the material’s electronic
structure [12,13].

The fact that HHG is so sensitive to every aspect of the
microscopic dynamics suggests that the HHG-based spec-
troscopy may offer many different modalities. However,
precisely because the HHG measurements respond to so many
properties at the same time, it is not trivial to disentangle
the observations. For example, if a thicker sample produces
a much weaker harmonic band, is the reason to be attributed
solely to the energy loss of the driving pulse, is it rather due
to absorption of the harmonic radiation in the material, or
perhaps both mechanisms are important? This is the reason
why numerical modeling becomes crucial.

However, numerical simulations involving HHG [14,15]
are still rather challenging. One of the issues is that a
measured HHG spectrum is a manifestation of an interplay

between the microscopic nonlinear response and macroscopic
propagation [14] of the midinfrared and high-harmonic fields.
The numerical complexity of a comprehensive simulation is
probably the main reason the modeling of solid-state HHG
often concentrates on what can be dubbed a “point response,”
which is calculated at a single location in the material under
the assumption that the local electric field is known. The
spectrum of the current density simulated at a single point is
then taken to represent the measured HHG spectrum. Obvi-
ously, this is a rather poor approximation, especially in the
transmission geometry.

When the solid-state high-harmonic spectra are gener-
ated in the transmission geometry, the measured spectrum
is greatly affected by the dynamics of the driving pulse.
The most important mechanism, identified, e.g., in [16] in
experiments on GaAs, is the high intensity of the driver
pulse causing carrier generation. The associated losses can
significantly decrease the energy of the pulse by the time
it reaches the exit facet of the sample, from where most of
the high-harmonic radiation is generated. As a result, the
higher harmonic orders are effectively “extinguished.” The
self-phase modulation is also significant and it causes spectral
broadening of all high-harmonic peaks. For these reasons,
the reflection geometry offers a more direct probe of the
microscopic material dynamics [17–19]. Nevertheless, it is
important to understand the requirements for an accurate
interpretation of the transmission-geometry high-harmonic
spectra (THHG). Comprehensive modeling, which includes
the simulation of the excitation pulse, can be instrumental in
this.

Extending the numerical simulation of HHG beyond the
“point-model” level presents a formidable challenge. While
it is understood that the geometry of the experiment [16]
together with the propagation effects [20–22] play a role
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FIG. 1. Simulation strategy: The electromagnetic field is split
into computational components. Thick solid black arrows represent
the incident pulse, the forward and backward MIR radiation inside
the sample, and also the eventually reflected radiation. Thin dashed
blue arrows show the high-harmonic radiation which is generated
in the vicinity of the output facet, together with the corresponding
radiation transmitted to the outside of the sample (which is what we
aim to calculate). Dotted thin red arrows indicate the high-harmonic
radiation generated deep inside the sample and also the radiation
internally reflected from the output facet; both are neglected in our
simulation (see text).

in shaping the measured HHG, comprehensive simulations
based on first principles, being numerically very expensive
[20,23,24], are usually reduced to one-dimensional pulse
propagation [25] and/or are only applied to very thin mate-
rial slabs. However, under highly nonlinear conditions and/or
in a realistically thick sample (hundreds of microns), the
propagation dynamics couples temporal and spatial degrees
of freedom of the excitation pulse and the one-dimensional
approximation becomes insufficient.

The goal of the present work is two-fold. First, from the
computational standpoint, we present a scheme which makes
it feasible to create a comprehensive model of an experiment
in the transmission geometry. The approach accurately treats
the propagation effects in both the midinfrared excitation
pulse and in the high-frequency radiation, all the while the
Fresnel reflections from the internal material boundaries are
also included in the simulation. Such calculations can be done
with full spatial resolution, and are therefore capable of cap-
turing spatiotemporal coupling in ultrashort duration pulses,
which is always significant in samples with realistic thickness.

Second, we put forward new insights into how the above-
the-gap harmonic radiation is formed. More specifically, we
show that different parts of the HHG spectrum effectively
originate from different depths below the sample surface.
While the highest harmonics are generated at or very close
to the surface, the signal for the medium-order harmonics is
sourced much deeper, up to hundreds of nanometers. It is also
shown here that the propagation and absorption effects add
significantly to the damping of higher harmonic orders.

II. SIMULATION SETUP

It should be useful to describe the simulation setup in broad
strokes before discussing details in the following sections.
We will also identify and justify the most important approx-
imations. The calculation, schematically depicted in Fig. 1,
consists of two distinct stages. It starts with a midinfrared
(MIR) pulse incident on a slab of GaAs. Fresnel reflections
from the input and output facets of the sample give rise to

wavepackets propagating forward and backward through the
material slab. These electromagnetic fields are all fully in-
cluded in the simulation during the first stage, and are also
mutually coupled through the reflections from the material
interfaces. The purpose of the first stage is to calculate the
MIR waveform in the vicinity of the output facet because that
is where the detected high-harmonic radiation originates.

The second stage of the simulation concentrates on the
vicinity of the output facet. Here we utilize the recorded field
of the MIR waveform to excite the GaAs and produce high-
harmonic radiation which partly exits the material. This is
the numerically expensive part of the whole simulation be-
cause, at each spatial point in the surface layer, one must solve
the semiconductor Bloch equations over the entire Brillouin
zone. The result of the second stage is the high-harmonic
radiation incident on the exit facet of the sample. It is then
straightforward to calculate how much of it is transmitted
through the material interface and what spectrum is eventually
detected in the far field.

The numerical complexity of the microscopic calculations
is the main reason we are forced to neglect some of the high-
frequency radiation propagating though the material. Namely,
we do not include the high-harmonic radiation that is gen-
erated deep in the volume of the material. We also neglect
the high frequencies internally reflected from the output facet.
The strong material absorption prevents this radiation from
contributing to the measured HHG spectra.

However, we also neglect the carriers excited into conduc-
tion bands when the high-harmonic radiation is absorbed. It
is conceivable that these excitations could affect the HHG
process. Indeed, it was suggested in [25] that such a process,
called self-seeding, can enhance the harmonic cutoff.

The reason we do not think the inclusion of this effect
would influence our conclusions is that once both stages are
finished, we can verify that the radiation produced in stage
two does not change the resulting HHG spectra when it is
added to the MIR driving pulse. We perform this check at
several spatial points in the vicinity of the sample surface,
and we indeed find that the spectra with and without the
high-frequency radiation included in the excitation pulse are
extremely similar. Only slight differences are found around
the harmonic band closest to the band gap, and the differences
at higher frequencies are negligible. This gives us the confi-
dence that the separation of the simulation into two stages is
appropriate.

III. EVOLUTION EQUATIONS FOR PULSED
ELECTROMAGNETIC FIELDS

The description of the solid-state high-harmonic genera-
tion can be often treated in the first Born approximation in the
sense that one first calculates the evolution of the optical field
for the excitation pulse, including all necessary frequencies
below the band gap. The results are then used to drive the
high-harmonic generation for the frequency range above the
material band gap. While this is an approximation, it is an
excellent one due to the fact that the intensity of the high-
harmonic radiation is so low, and it is absorbed so quickly, that
the feedback effect on the propagation of the driving pulse is
truly negligible. Note that such a splitting of the simulation
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into a “driver” and “harmonic stage” has been utilized in the
high-harmonic generation modeling in gaseous media [26] as
well.

A. Excitation-pulse dynamics inside a slab sample

Consider a material sample characterized by its frequency-
dependent permittivity ε(ω), in a plane-parallel slab geometry.
The material is exposed to the excitation by an optical pulse
incident on the “entrance facet,” not necessarily in the normal
direction. The Fresnel reflections from the material interfaces
give rise to multiple pulses propagating inside the slab in “for-
ward” and “backward” directions. For a very short incident
pulse and a sufficiently thick sample these counterpropagat-
ing waveforms do not overlap or interact in the bulk of the
material. However, the incident and reflected pulses always
overlap in the vicinity of the exit surface, where they create an
interference pattern. The interference between the pulses can
be especially pronounced in materials with higher refractive
indices, and the effect this has on the harmonic generation
is amplified by the extreme nonlinearity of the conversion
process. This situation must be accurately captured by the
simulation of the excitation pulse.

1. Propagation inside the bulk material

Away from the material boundaries, the displacement field
can be decomposed into forward- and backward-propagating
components

�D = �D+ + �D− , (1)

each expressed as a superposition of plane waves inside the
slab

�D±(t, �r) =
∫

�A±(t, �k)e∓iω(k)t ei�k.�rd3k . (2)

Here ω(k) is treated as a function of the spatial frequency and
it satisfies the dispersion relation

k2 = ω(k)2ε(ω(k))/c2, k = |�k| . (3)

Since this relation defines ω(k) as an implicit function, the
treatment must be restricted to a single transparency window
so that a unique complex-valued frequency can be assigned to
a given wave number k. Here we apply this framework to the
below-gap frequencies to describe the pump pulses, including
their spectral broadening and below-gap harmonic generation.

In a complete analogy to the t-propagated unidirectional
pulse propagation equation [27], the vector spectral ampli-
tudes that appear in (2) obey their individual propagation
equations

∂t �A±(t, �k) = ∓ iω(k)

2
e±iω(k)t

[
k2 − �k�k

k2
· �P(�k) − μ0∂t �J (�k)

]
.

(4)

However, these evolution equations must be solved simultane-
ously because they are coupled via the light-matter interaction
in the slab, here expressed as the induced polarization �P and
current density �J

�P(�r, t ) = �P({ �E (�r, t )}) and �J (�r, t ) = �J ({ �E (�r, t )}) . (5)

Of course, the polarization calculation requires to obtain the
total electric field E from the total displacement field D, and
this can be done by iterative inversion of the constitutive
material relation

�E = 1

ε
[ �D − �P({ �E})] , (6)

as it is usual in the time-domain Maxwell-equations solvers.
In a typical high-intensity femtosecond pulse propagation in
condensed media, two or three iterations are sufficient. Given
a model to calculate the polarization and the current density
for a given history of the electric field, the above equations
constitute an approximation-free evolution system for the
Maxwell problem inside the sample.

2. Treatment of material interfaces

In addition to the nonlinear coupling between the two
D±, the material material interfaces must be accounted for.
Roughly speaking, the idea is to extend the spatial domain in
(2) to the outside of the slab so that a spectral propagator can
be applied across the whole sample, and also in the regions
“behind” the material interfaces. Each of the two D± ampli-
tudes is held by its dedicated computational domain in which
the linear propagation is strictly unidirectional [and governed
by ε(ω)]. These domains extend beyond the boundary of the
material slab by some 50 to 100 microns (along the beam
direction, say z) to accommodate their “input” and “output
ports.”

The artificial output-region extending the computational
domain outside the exit facet allows the spectral propagator
to evolve the optical wave-packet encountering the material
interface beyond the material boundary. However, the optical
field amplitude outside of the sample is never used except to
calculate the spatial spectrum of the pulse via Fourier trans-
form. The extended domain is eventually terminated by an
apodized absorbing region serving as a pulse dump.

On the entrance-side of the computational domain, the
field outside the entrance facet must be constructed anew
before each application of the linear propagator as if the
waveform propagated from a half-space space filled by the
same medium. However, the precalculated field in the input
port must correctly account for the reflection from the ma-
terial boundary. This is achieved by a mapping of the field
propagating in the slab in the opposite direction, while apply-
ing the wave-number-dependent Fresnel reflection coefficient,
r(kz, k⊥), in the spectral representation of the pulse.

To illustrate the algorithm in a pseudocode, consider how
the right-going field D+(z, r⊥) partially reflects from the exit
facet located at z = z0 and is used to prepare the input port for
the left-going field D−(z, r⊥) for locations z > z0, i.e., behind
the material interface. A single update is executed as follows:

(1) right-going D+(z, r⊥) obtained in the previous step;
(2) calculate spatial spectrum D+(z, r⊥) → D̂+(kz, k⊥);
(3) apply reflection coefficient r(kz, k⊥)D̂+(kz, k⊥);
(4) back to real space, D+

r (z, r⊥) ← r(kz, k⊥)D̂+(kz, k⊥);
(5) recalculate D−(z0 + z, r⊥) = D+

r (z0 − z, r⊥) for
z > z0.

Here, → and ← stand for the transforms between the real-
space and spectral-space representations, each consisting of
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a Fourier transform connecting z, kz and a Hankel transform
connecting r⊥, k⊥.

This treatment of the internal reflections provides a nu-
merically exact solution to the linear part of the propagation
problem, with the accuracy controlled by the extension of
the spatial domain along the pulse propagation direction. Of
course, the spatial extension together with two additional
spectral transform make this algorithm expensive in com-
parison with unidirectional propagation. However, this is a
nonissue given that the calculations required to model the
material microscopic response (see Sec. III B) are orders of
magnitude more expensive.

B. Propagation of harmonic radiation

Having calculated �E (�r, t ) inside the sample, we can
use it in point-by-point microscopic calculations to evaluate
the induced current density �J (�r, t ) which is responsible for
the above-the-gap harmonic radiation. This is done using the
methods described in the subsequent sections (Sec. III B).
Here we give a description of how the source �J (�r, t ) converts
into HHG radiation detected outside of the sample.

In general, the HHG radiation detected outside of the sam-
ple is sourced in a subsurface layer several microns thick.
Thus, the first step is to propagate the HHG radiation gen-
erated in the depth of the sample to its surface. In the second
step, each spectral component is transmitted through the mate-
rial interface with a frequency-dependent Fresnel coefficient.
Because of the highly nonlinear dependence of the induced
current density on the local amplitude of the driving field, the
transverse profile of the beam plays a role and it is crucial to
account for it.

The propagation of the high-harmonic radiation through
the sample is governed by the unidirectional pulse propagation
equation [28] for the spectral amplitude �S(z, ω, k⊥) of the
electric field

∂z �S(z, ω, k⊥) = ikz �S(z, ω, k⊥) − ω

2εoc2kz

�J (z, ω, k⊥), (7)

where the propagation constant kz ≡
√

ω2/c2ε(ω) − k2
⊥ re-

flects the absorption and dispersion properties for the above-
the-gap frequencies via ε(ω), and �J (z, ω, k⊥) is the spatial
spectrum of the current density induced by the driver field.
In the first Born approximation, the above is nothing but a
set of inhomogeneous first-order differential equations that are
straightforward to solve.

Because the beam spot is usually at least several µm in
size, it is admissible to use a paraxial approximation for the
short-wavelength HHG radiation. This amounts to replacing
the propagation constant by kz(ω) = ωn(ω)/c in (7). Further,
the spectrum is measured in the far field, and therefore the
detected amplitude we are interested in is �S(z, ω, k⊥ = 0).
The solution for the detected spectral amplitude of HHG then
reads

�S(z, ω, 0) ∼ ωt (ω)

2εoc2kz(ω)

∫ z

eikz (ω)(z−z′ ) �J (z′, ω, 0)dz′, (8)

where t (ω) stands for the Fresnel transmission coefficient (at
normal incidence), and where the on-axis far field amplitude
of the induced current density can be calculated as the integral

FIG. 2. Refractive index and extinction coefficient in GaAs.

over the beam cross section

�J (z′, ω, 0) ∼
∫

�J (z′, ω, r)rdr . (9)

This formula represents the coherent average over the ex-
citation beam, and has a significant effect on the resulting
spectrum.

The most pronounced effect embodied in the above for-
mulas is the frequency-dependent absorption manifested in
propagator eikz (ω)(z−z′ ). It will be shown in the following that it
is the interplay between the HHG absorption and the spatially
modulated source strength in J (z′, ω, r) that controls which
regions in the sample contribute most to the detected HHG
spectrum.

IV. MATERIAL MODELS

This work utilizes a model of zinc blende materials for
our simulation-based illustration. In particular, we concentrate
on GaAs because it is the material for which the propagation
effects in HHG were studied in some detail [16].

A. Linear optical properties

The GaAs model for the linear chromatic properties was
constructed by joining three different sets of data, obtained
from [29] and originally published in [30–32]. Figure 2 illus-
trates the refractive index and extinction coefficient utilized
for the simulation of the propagation of the high-harmonic
radiation.

These data are used to construct the frequency-dependent
propagation constant kz(ω) in the paraxial-propagation for-
mula (7). The tabulated n(ω) is also used to calculate the
frequency-dependent “coupling prefactor” in front of the con-
volution integral.

B. Nonlinear material response

The nonlinear response of the material is calculated in
the framework of semiconductor Bloch equations (SBE) [33],
which in turn requires a description of the electronic struc-
ture. For the band structure we utilize the semi-empirical
tight-binding model [34] with specific parameter sets repre-
senting GaAs adopted from [35]. These material models are
utilized and tested in the previous works, demonstrating that
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FIG. 3. Spatiotemporal map of the electric field in the driving
pulse, depicted after 650 µm propagation through a GaAs sample.
The color scheme was chosen to emphasize the flat-top shape in what
was initially a Gaussian pulsed beam.

the second-order nonlinear coefficient in GaAs [36] can be
calculated, and that measurements of HHG spectra were also
reproduced without resorting to any parameter tuning [37].
The sgiSBEs simulator, described in [38], calculates the time-
dependent density matrix ρmn(k; t ) for each initial k, and gives
the induced current-density as an integral over the Brillouin
zone [39]

j(t ) =
∑
mn

∫
BZ

Tr[∂kt h(kt )ρ(k; t )]
dk

(2π )3
, (10)

where the k-dependent Hamiltonian h(k) and its gradient is
obtained in an explicit form from the tight-binding model and
kt = k − A(t ) is slaved to the vector potential of the driving
pulse.

The initial density matrix is set to represent all valence
bands full and the conduction bands empty. Each evolution
step follows a scheme akin to the operator splitting, alternating
between the density matrix ρo in the atomic-orbital basis, or
ρh in the instantaneous Hamiltonian basis as follows:

(1) ρo(k, t − �t ) obtained in the previous step;
(2) diagonalization of h(kt ) yields:
(I) eigenvectors organized into matrix V,

(II) energies εa forming matrix U = diag{−i�tεa/h̄};
(3) transformation to Hamiltonian basis, ρh ← V ρoV †;
(4) evolution step, ρh ← UρhU †;
(5) off-diagonal dephasing, ρh ← ρh exp[−�t/τdep];
(6) transformation to orbital basis, ρo ← V †ρhV ;
(7) microscopic current, j(k, t ) ← Tr[∂kt h(kt )ρo(k; t )].
While this implementation of the algorithm [38] mini-

mizes the number of matrix-matrix multiplication, the overall
numerical complexity is mainly given by the exact diagonal-
ization step, and that is why ours is a relatively expensive
algorithm. The advantage of this approach is that the sym-
metry of the material is faithfully preserved and that the noise
floor of the method is very low.

The phenomenological dephasing time τdep is chosen to
be 5 fs. It was observed in [37] (cf. Fig. 3) that the conver-
gence of a simulated spectrum as a function of the number of

Brillouin-zone grid points is faster for shorter τdep. This is
why, for this relatively fast dephasing, we can sample the Bril-
louin zone with a rather low resolution of 163 grid points and
already obtain decent simulated spectra. While an accurate
convergence would require grids about three times as big as
those used here, all we need for the present purpose is a model
with a qualitatively correct behavior. In other words, with
finer grid-resolutions the calculations would be much more
expensive, but our conclusions would not change. In fact, it is
safe to say that the same conclusions can be reached with any
HHG model that can capture the symmetry of the material.

V. RESULTS

We assume that a Gaussian pulse, with a central wave-
length of 3.5 µm, has a peak intensity of 109 V/m in the
material just after entering the sample. The transverse size
of the collimated beam is chosen to be 0.3 mm, so that
the diffraction effects remain weak during its propagation
through material layers from tens to hundreds of microns.
The cross section of the beam is sampled on a radial grid
of 32 points (spaced suitably for the discrete Hankel trans-
form [40]). The excitation pulse is polarized linearly along
the crystal axis, resulting in a geometry with a vanishing
second-order nonlinearity. The nonlinear light-matter interac-
tion included in the driver simulation are the instantaneous
Kerr effect (with n2 = 1.2 × 10−17 m2/W [41,42]), and the
generation of excited carriers. The latter is described by a
phenomenological rate [43] scaling with I3 and prefactor
adjusted such that the “ionization” losses through a sample
650 µm thick are about 50 percent for the given initial peak
amplitude, roughly matching the losses observed in the ex-
periment of [16], which motivated our simulation setup. The
methods outlined in Sec. II A are utilized for the first stage of
the simulation involving the excitation pulse. We use spatial
grids of up to 218 points (along z) with a grid-spacing of 5 nm
and record the history of the electric field inside a 2 µm layer
adjacent to the exit facet of the sample. The recording at each
spatial point used 8192 sampling points over a time-interval
of 600 fs.

In the second stage of the simulation, we utilize the scheme
described in Sec. II B to simulate the generated high-harmonic
radiation and its propagation from the sample towards its
detection in the far field. The electric-field histories recorded
in the first stage are used as the excitation for the simulation of
the material response relevant for the above-the-gap frequency
region as described in Sec. III.

A. Propagation effects and space-time
reshaping of the excitation pulse

Let us first illustrate the spatial-and-temporal reshaping the
excitation pulse goes through. Already after 50 microns of
propagation, the pulse energy and amplitude of an originally
Gaussian pulse diminish significantly, and the waveform con-
tinues to reshape upon further propagation. Current carriers
are mainly generated in the high-intensity on-axis region, and
cause a nonlinear phase shift which adds curvature to the
wave fronts in the trailing portion of the pulse. The amplitude
reshaping is illustrated in Fig. 3, showing the driving pulse
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FIG. 4. Spectral power of the induced current density exhibits
modulations caused by the chirp of the driver pulse. The “phase
shift” between the modulations at different radial locations reflects
different timing of the harmonic radiation at different radii.

resolved in radius and local time. Note that this “snapshot”
is taken before the pulse reaches the exit facet of the sample.
The color scheme in the figure is chosen to emphasize the
most important feature, which is the flat-top peak amplitude.
This is a consequence of the losses induced by the carrier
excitation, which affect most the highest-intensity parts of the
waveform, and which effectively “shaved-off” the top of the
original Gaussian pulse.

The phase shifts in the carrier wave modify the timing
of the induced nonlinear current density. In particular, the
chirp gives a temporal shift between harmonics radiated by
the leading and trailing parts of the driver pulse. This shows
up in the harmonic spectra as a modulation, exemplified in
Fig. 4, where we show a detail of the spectral power of the
induced current density in the center of the beam compared
to its counterpart at the radial distance of 50 micron. While
the two spectra exhibit the same power levels, their modu-
lation structures are shifted in relation to each other. This
indicates that different phase shift in the carrier at different
radial distance cause different relative timing between spectral
components of the nonlinear current. These are the effects that
a simple intensity averaging [20] would not capture properly,
and this is why we calculate the microscopic response of
the material from the actual radially resolved time-dependent
electric fields.

B. Interference effects at the exit facet

Related to the propagation effects is the Fresnel reflection
of the driving pulse from the material interfaces. The internal
reflection from the exit facet may be especially important
because it can significantly alter the peak amplitude of the
driving pulse.

In the particular setting of this work, the reflections from
the material interfaces play a major role. The reason is illus-
trated in Fig. 5, showing the inside of the material slab 10 µm
thick, irradiated by a pulse entering from the left. Depicted
here is the cycle-averaged local intensity of the “composite”
optical waveform which consists of pulses propagating forth
and back as in a Fabry-Perot cavity. The most important fea-
ture is the interference pattern in the vicinity of the exit facet,

FIG. 5. Cycle-averaged light intensity versus time and location in
the sample of GaAs. Entrance and exit facets are located at the left-
side edge of the figure (i.e., at z = 0 µm), and right at the location of
right-most peak, respectively. Materials with high refractive indices,
such as GaAs, give rise to a pronounced interference structure near
the exit facet which in turn affects the nonlinear material response.

where the local intensity reaches considerably higher than in
the incident pulse. Here, the intensity profile is extended and
drawn one quarter wavelength beyond the exit facet of the
sample in order to indicate the depth of the modulation, which
is significant due to the high refractive index of the material.

Given the extreme nonlinearity of the high-harmonic
generation process, the peak amplitude modulations in the
vicinity of the exit sample-facet have significant effect on
the HHG spectrum, as we show next. While simulating the
driver-pulse propagation in the GaAs sample, we record
the time-dependent electric field within a layer adjacent to the
exit facet. Throughout this layer, the microscopic response of
the material is calculated as described in Sec. III B, giving the
induced current density �J (r, z, t ), Fourier transform of which
enters as the source in the propagation equations (7) for the
high-harmonic radiation.

The logarithmic-scale spectral power of this source, S =
log10(|J (r = 0, z, ω)|2), is shown in Fig. 6. It is evident that

FIG. 6. Logarithmic spectral power of the induced current den-
sity, S = log10(|J (r = 0, z, ω)|2), as a function of the depth beneath
the exit facet of the sample. This example is for GaAs slab 170 µm
thick, excited by a 60 fs pulse centered at λ = 3.5 µm.
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FIG. 7. Spectral power of the high-harmonic generation detected
at the exit facet, shown here as a function of the depth in the
sample where the radiation was emitted. Contributions from the
deeper regions are effectively extinguished in the highest harmonic
bands.

as the local amplitude of the excitation field diminishes deeper
from the sample surface, the induced current exhibits or-
ders of magnitude weaker high-frequency bands. This is a
manifestation of the interference fringe in the driving pulse
localized at the sample facet. Of course, even deeper into the
sample, where the MIR intensity increases again in the second
fringe, HHG spectra power also increases. However, due to
the absorption of the above-the-gap frequencies, those deeper
regions give negligible contributions to the observed HHG
spectrum.

C. Propagation and absorption of the high-harmonic radiation

In HHG simulations, the spectral power of the induced
current is often assumed to approximate the actual observed
HHG spectrum, essentially neglecting the difference between
a source term in the Maxwell equations and the radiation the
term generates. In this section we show that it is an utterly
unrealistic assumption for the transmission geometry where
the propagation effects shape the spectral content of the high-
harmonic radiation.

The relevant relation between the source term J (ω) and
the spectrum of the detected radiation, S(ω), is expressed
in (8) which accounts for the propagation and absorption of
HHG radiation from its source to outside of the sample. To
appreciate the absorption and its effect on the reshaping of the
HHG spectrum, Fig. 7 depicts the spectral power sourced at a
given depth as it arrives at the sample surface. More precisely,
the quantity shown is S = log10(|eikz (ω)zJ (z, ω, 0)|2), so that
the effect of the absorption can be appreciated.

The contrast with Fig. 6 is indeed stark, especially for
higher-harmonic orders. Only a very thin surface layer con-
tributes to the highest observed orders, and this is obviously
due to the fact that a few hundred nanometers of the material
suffices to attenuate the radiation that was generated deeper
in the sample. In contrast, the lower above-the-gap harmonics
carry contributions from a much thicker layer of the material.

FIG. 8. The effect of the propagation and absorption in the
above-gap harmonic radiation for (a) 45, (b) 170, and (c) 650 µm
thick material sample. HHG spectra obtained solely from the surface
overestimate the higher harmonic bands. This “damping effect” is in
addition to that due to the nonlinear absorption of the pump.

D. HHG spectra observed outside the material sample

While the previous illustration shows the frequency-
dependent attenuation effect of the material between the
origin of the radiation and the surface, it says little about the
actually detected spectrum. To calculate this, formula (8) calls
for a “coherent sum” of all contributions from the depths of
the sample.

Figure 8 shows the results for three different sample
thicknesses, namely 45, 170, and 650 microns. The spectra
measured in the far field outside the sample are shown as
the gray-shaded area below the thick black line. In a quali-
tative agreement with the experimental observations in [16],
it is evident that the thicker samples effectively suppress the
higher harmonic orders. While the main reason for this was
identified as due to the propagation effects reshaping and
attenuating the MIR driver pulse, here we show that that the
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propagation effects experienced by the high-harmonic radi-
ation itself are equally important. To make this point, each
panel also depicts a HHG spectrum (top, red line) calcu-
lated from the naive assumption that the observed signal is
dominated by its strongest component originating right at the
sample surface. In other words, such a calculation accounts
for the propagation effects of the driver pulse, but neglects
the propagation effects acting on the high-harmonic radiation.
As one can see, neglecting the latter gives spectra that over-
estimate the spectral power of the higher-harmonic bands by
more than an order of magnitude.

VI. CONCLUSION

We presented a framework integrating realistic HHG sim-
ulations into a comprehensive model of an experiment in the
transmission geometry, where the propagation effects expe-
rienced by the excitation pulse influence the measurements
in a crucial way. Our approach represents a numerically less
demanding alternative to the time-domain denstiy functional
theory (DFT) simulations of the material coupled with the
one-dimensional wave equation for the electromagnetic field.
An important advantage of the method we put forward is the
ability to simulate realistically thick samples while including
a full-resolution three-dimensional (3D) description of the
pulsed beam which is necessary to capture its spatial and
temporal reshaping.

Our results were in line with some previously discussed
propagation effects. In particular, we corroborated the role
of the nonlinear absorption [16,22,25] and self-phase mod-
ulation of the excitation pulse [16,22]. We also verified the
importance of the spectral averaging caused by the intensity
variation in the cross section of the beam [20,44]. Beyond
the previously discussed propagation effects, we identified
several additional mechanisms that were equally important or
perhaps even more consequential in shaping the HHG spectra
measured in the transmission geometry.

The first effect is the spatial-temporal reshaping of the
excitation pulse which influences how different parts of the
cross section in the pulsed beam contribute to the measured
spectrum. As the excitation waveform propagates through
the material, it excites current carriers which in turn impart
time- and radially dependent nonlinear phase-shifts. As a
consequence, the high harmonics generated at different radii
emerge with different timings and varying chirps, giving rise
to “point spectra” with pronounced modulations structures.
The measured far-field spectrum, being a coherent sum over
the cross section of the beam, appears much smoother.

Second, we showed that the interference effects created
by the Fresnel reflections at the output facet of the sam-
ple substantially change the peak amplitude, and this has a
pronounced effect on the resulting HHG spectrum. Due to
the extreme nonlinear nature of the HHG process, neglecting
the role of the material interface underestimates the rele-
vant peak amplitudes and gives much weaker high-harmonic
spectra.

Third, and the most important, is the propagation effect in
the HHG radiation itself. As the HHG radiation propagates
through the material before it exits from the sample, the ab-
sorption adds significantly to the damping of the higher-order
harmonic bands. These propagation effects together with the
spatial modulation of the nonlinear material response decide
which region of the sample contributes most to a given portion
of the spectrum. While the highest orders are generated only in
a very thin surface layer, medium-order harmonics are sourced
from the deeper regions of of the material. An important im-
plication here is that a “point-model response” simulated at a
single spatial location does not provide a good approximation
of the actual HHG spectrum.

Our results also imply that the propagation-induced ef-
fective dephasing put forward in [21] is unlikely to affect
the transmission HHG spectra because the mechanism in
[21] requires propagation distances longer than the very short
path traveled by the high-harmonic radiation which eventually
reaches the detector.

The main takeaway from our study is that no quantitative
or even semi-quantitative interpretation of the HHG spec-
trum taken in the transmission geometry is possible without
a comprehensive modeling which includes the (3D + 1) sim-
ulation of the excitation pulse, sample geometry including
Fresnel reflections from its facets, and the propagation of
the HHG radiation through the lossy material. However, our
work also demonstrates that, thanks to the natural separation
between the dynamics of the below- and above-the-gap fre-
quencies, it is possible to construct realistic HHG models at
an acceptable computational cost. While many of the HHG
experiments with solid-state materials are done in the trans-
mission geometry, accurate simulations should facilitate their
interpretation.
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