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Optimization of static potentials for large delocalization and non-Gaussian quantum
dynamics of levitated nanoparticles under decoherence

Silvia Casulleras ,1,2,* Piotr T. Grochowski ,1,2 and Oriol Romero-Isart 1,2,3,4

1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, 6020 Innsbruck, Austria
2Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria

3ICFO–Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona) 08860, Spain
4ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain

(Received 2 July 2024; accepted 27 August 2024; published 5 September 2024)

Levitated nanoparticles provide a controllable and isolated platform for probing fundamental quantum phe-
nomena at the macroscopic scale. In this work we introduce an optimization method to determine optimal static
potentials for the generation of largely delocalized and non-Gaussian quantum states of levitated nanoparticles.
Our optimization strategy accounts for position-dependent noise sources originating from the fluctuations of
the potential. We provide key figures of merit that allow for fast computation and capture relevant features of
the dynamics, mitigating the computational demands associated with the multiscale simulation of this system.
Specifically, we introduce coherence length and coherent cubicity as signatures of large delocalization and
quantum non-Gaussian states, respectively. As a proof of principle, we apply the optimization approach to a
family of quartic potentials and show that the optimal configuration depends on the strength and nature of the
noise in the system. Additionally, we benchmark our results with a full quantum dynamics simulations of the
system for the optimal potentials.
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I. INTRODUCTION

Levitated nanoparticles offer a controlled experimental
platform for investigating quantum phenomena at the interface
between classical and quantum mechanics [1,2]. Recently,
ground-state cooling of nanoparticles in optical traps was
achieved [3–9]. This milestone has motivated efforts to ob-
serve quantum phenomena at large scales, that is, to prepare
non-Gaussian states that are delocalized over scales beyond
the zero-point motion, even approaching the size of the parti-
cle [10,11]. Such states, involving nanoparticles with billions
of atoms, could enable quantum matter-wave interferometry
with mesoscopic particles [10–15] and testing the quantum
superposition principle in regimes where collapse models
predict the breakdown of quantum mechanics [16,17]. Addi-
tionally, they could serve as ultraprecise sensors [15,18–20]
and could allow one to explore the interplay between quantum
mechanics and gravity, e.g., by measuring the gravitational
field of a massive object in a macroscopic quantum superpo-
sition [21,22].

Efforts towards controlling the motional state of levi-
tated nanoparticles in the quantum regime involve coupling
nanoparticles to external nonlinear systems, e.g., trapped
ions [23] or superconducting qubits [24,25], or internal two-
level systems, such as nitrogen-vacancy centers [14,26–28].
One alternative approach consists in utilizing nonharmonic
potentials to generate non-Gaussian dynamics [10,11,29].
Due to substantial decoherence in optical potentials [30,31],
it is beneficial that the dynamics happens either in the ab-
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sence of a permanent optical potential [11,12,29] or within
a nonoptical (dark) potential [10,32], e.g., generated by
electric or magnetic fields [33–39]. The mismatch of length
scales between the ground-state zero-point motion of the par-
ticle and the trapping potential necessitates expanding the
wave function, i.e., generating motional squeezing, to explore
nonharmonicities and attain larger quantum states [10,40].
However, such expansion enhances decoherence effects [20],
making the optimal design of the potential landscape, either
through dynamic control or static geometry, crucial for creat-
ing sufficiently pure and large quantum states. In this context
it is timely and interesting to develop tools to find optimal po-
tential shapes that allow for the preparation of large quantum
non-Gaussian states in the presence of decoherence.

In this work we introduce an optimization approach to
obtain optimal wide, static, nonharmonic potentials for the
generation of largely delocalized states and non-Gaussian
quantum states of levitated nanoparticles. We perform the
optimization in the presence of position-dependent noise
stemming from the fluctuations of the position and ampli-
tude of the potential [41–43], in addition to other sources of
decoherence such as the emission of thermal photons from
the particle [13,16]. The static potential is assumed to be
generated electrically or magnetically in order to avoid de-
coherence from photon recoil heating [30–32]. Moreover, we
focus on potentials that allow for dynamical protocols which
are faster than the typical collision time with a gas molecule
in ultrahigh vacuum [10,11,16,20,44], allowing us to neglect
the decoherence due to the presence of gas molecules. The
numerical simulation of the system is highly computationally
demanding due to the multiscale character of the dynam-
ics [45], thus hindering the optimization. To circumvent this
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problem, we introduce key figures of merit that allow for fast
computation and capture signatures of large delocalizations
and non-Gaussian quantum states. As a proof of principle, we
apply our method to find optimal quartic potentials for our
figures of merit depending on the noise type and strength.
Additionally, we perform numerically exact simulations of the
evolution of the particle for the optimal configurations and
show that the figures of merit introduced provide meaningful
information about the full quantum dynamics.

This article is structured as follows. In Sec. II we introduce
the framework we use to describe the evolution of a levitated
nanoparticle in a static potential in the presence of deco-
herence. In Sec. III we define the optimization problem and
introduce two figures of merit that capture relevant dynamics
of the system, namely, the coherence length and the coherent
cubicity. In Sec. IV we show an example of optimizing quar-
tic potentials for maximizing the above-mentioned figures of
merit and benchmark the results with the numerical simulation
of the full quantum dynamics of the system. In Sec. V we
present a summary, our conclusions, and an outlook.

II. DYNAMICS IN A WIDE POTENTIAL

Let us consider a particle of mass m which is optically lev-
itated in a harmonic potential of frequency �. Let us assume
that the motional state of the particle in one certain direction,
labeled x, is prepared in the ground state of the Hamiltonian
Ĥ0 ≡ p̂2/2m + m�2x̂2/2. Here x̂ and p̂ are the position and
momentum operators in the x direction. The zero-point po-
sition and momentum fluctuations of the particle are given
by x0 = √

h̄/2m� and p0 = h̄/2x0, respectively. At the time
t = 0, the optical potential is suddenly switched off and the
particle evolves in a wide static nonharmonic potential Vs(x)
[see Fig. 1(a)]. The Hamiltonian of the system for t > 0 is
given by

Ĥs ≡ p̂2

2m
+ Vs(x̂). (1)

Our goal is to optimize the shape of the nonharmonic potential
Vs(x) in order to maximize the nonclassical features of the
evolution of the state. The potential is assumed to be wide,
that is, the relevant length scale of the potential is considered
to be much larger than the initial spatial extent of the position
of the particle. This allows for coherent expansion [10,39] in
order to produce a sufficiently delocalized state that is able to
explore the weak nonharmonicities of Vs(x).

In this section we describe the evolution of a particle
within a wide, nonharmonic fluctuating potential Vs(x), using
the framework presented in [46]. Following the methodology
of [46], we present the master equation that incorporates po-
tential fluctuations and other sources of decoherence. First,
we solve the noisy dynamics within the Gaussian approxi-
mation. We then describe the non-Gaussian approximation of
the coherent dynamics detailed in [46]. These two distinct
approximations of the particle dynamics will enable us to
define the figures of merit introduced in Sec. III.

A. Dynamics in a fluctuating potential

Let us describe the dynamics of the particle in the cen-
troid frame, obtained by applying the unitary transformation

(a)

(b) (c)

FIG. 1. (a) Sketch of a nanoparticle trapped by an optical tweezer
and ground-state cooled at t = 0. For t > 0, the particle evolves
in a nonharmonic, static, wide, nonoptical potential. The position
and amplitude of the potential fluctuate according to the stochastic
functions ξ1(t ) and ξ2(t ), respectively. The dominant dynamics gen-
erated by a wide nonharmonic potential correspond to squeezing and
generation of cubic-phase states. (b) Wigner function of a squeezed
state with the squeezing parameter r = 1, squeezing angle θ = π ,
and purity P = 1. The standard deviation of the state in the direction
of maximum squeezing (expansion) is given by λ− = e−r (λ+ = er).
(c) Wigner function of a cubic-phase state along the p quadrature
with cubicity κ = 1 and purity P = 1.

Ûc(t ) ≡ exp{i[x̂pc(t ) − p̂xc(t )]/h̄} [46–48]. Here xc(t ) and
pc(t ) are the classical trajectories associated with the Hamil-
tonian (1), with the initial conditions xc(0) = 〈x̂〉(0) and
pc(0) = 〈p̂〉(0). Hereafter, we assume 〈x̂〉(0) = 〈p̂〉(0) = 0.
The transformation Ûc(t ) represents a displacement operation
to follow the classical trajectories of the state. In the case when
the quantum fluctuations of the state around the classical tra-
jectories are small compared to its size, the transformation to
the centroid frame removes the dynamics of the mean position
and momentum values of the particle.

Let us assume that the static potential Vs(x) fluctuates
stochastically in position and amplitude. In that case, the parti-
cle experiences an effective time-dependent potential given by
Vf(x, t ) ≡ Vs(x̂ + lξ1(t ))[1 + ξ2(t )], where l is a length scale
associated with the size of the potential. Here ξ1(t ) and ξ2(t )
represent the stochastic functions that model the fluctuations
of the potential in position and amplitude, respectively. Let us
consider that both stochastic functions represent a Gaussian
white noise and are uncorrelated. More specifically, they ful-
fill the relations 〈ξi(t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 = 2πS jδi jδ(t −
t ′) for j ∈ {1, 2}, where 〈·〉 denotes the average over many
repetitions and S j is the noise strength.

One can derive an effective master equation for the particle
in the centroid frame, accounting for the decoherence due to
the fluctuations of the potential as well as other sources of
decoherence modeled by a constant displacement noise [46].
In particular, the evolution of the particle is given by

∂ρ̂c

∂t
= 1

ih̄
[Ĥc(t ), ρ̂c(t )] + Dc(t )[ρ̂c], (2)

033511-2



OPTIMIZATION OF STATIC POTENTIALS FOR LARGE … PHYSICAL REVIEW A 110, 033511 (2024)

where ρ̂c = ÛcρÛ †
c is the state of the particle in the centroid

frame, Ĥc(t ) is a time-dependent Hamiltonian, and Dc(t ) is a
time-dependent decoherence superoperator. The coherent part
of the dynamics is given by the Hamiltonian (1) in the centroid
frame, that is,

Ĥc(t ) ≈ p̂2

2m
+ mω2

N∑
n=2

1

n

αn(t )

xn−2
0

x̂n, (3)

where we have expanded the nonharmonic potential Vs(x)
around the classical trajectory xc(t ) up to order N . Here
ω is a frequency scale and we have defined αn(t ) ≡
V (n)

s (t )xn−2
0 /mω2(n − 1)!. Additionally, we have used the

shorthand notation V (n)
s (t ) ≡ [∂n

x Vs(x)]x=xc(t ). The incoherent
part of the dynamics corresponds to the decoherence superop-
erator [46]

Dc(t )[ρ̂c] ≈ −
f(t ) + 
0

2x2
0

[x̂, [x̂, ρ̂c]], (4)

where 
f(t ) is a time-dependent decoherence rate that models
the decoherence due to the fluctuations of the potential and 
0

is a constant decay rate that models other sources of decoher-
ence, such as thermal emission of the particle. In particular,

f(t ) is given by


f(t ) = 2πx2
0

h̄2

{
S1l2

[
V (2)

s (t )
]2 + S2

[
V (1)

s (t )
]2}

. (5)

Equation (4) is obtained assuming that the fluctuations of the
potential and the quantum fluctuations of the state around the
classical trajectories are small. Note that the latter condition,
which corresponds to |〈x̂〉(t ) − xc(t )| 	 |xc(t )|, is usually
satisfied in the scenario that we are interested in, namely,
a particle evolving in a wide static potential [46]. These
assumptions allow us to approximate Dc(t ) by a quadratic
superoperator, neglecting the contribution of higher-order
commutators in x̂. Note that the decay rate 
f(t ) is time
dependent due to the different effect that the fluctuations have
on the particle, depending on its position with respect to the
potential.

Assuming that the quantum fluctuations of the state around
the classical trajectories are small, one can perform further
approximations on the coherent part of the dynamics. First,
one can consider the Gaussian approximation, which corre-
sponds to keeping only the lowest-order terms in the operator
x̂ in the Hamiltonian (3), namely, the quadratic terms. Alter-
natively, one can also consider the contribution of the first
non-Gaussian term to the coherent dynamics, given by the
cubic term in Eq. (3). In the following sections we describe
the evolution of the particle under these two approximations.

B. Gaussian dynamics approximation

Let us describe the first approximation, which corresponds
to considering the lowest-order term (n = 2) in Eq. (3). In this
case, the time-dependent Hamiltonian (3) is approximated by
the quadratic Hamiltonian

Ĥc(t ) ≈ ĤG(t ) ≡ p̂2

2m
+ 1

2
mω2α2(t )x̂2. (6)

Note that, since the initial state of the particle is Gaussian,
the quadratic Hamiltonian ĤG(t ) generates purely Gaussian

dynamics. In addition, the dissipative dynamics described
by Eq. (4) is also quadratic. Therefore, the full evolution
of the state described by the master equation (2) under
the approximation (6) is Gaussian. In that case, the state
of the particle can be unequivocally described by the co-
variance matrix C(t ), whose entries are defined as Cxx(t ) =
〈x̂2〉(t ) − 〈x̂〉2(t ), Cpp(t ) = 〈p̂2〉(t ) − 〈p̂〉2(t ), and Cxp(t ) =
Cpx(t ) = 〈x̂ p̂ + p̂x̂〉(t )/2 − 〈x̂〉(t )〈p̂〉(t) [49]. Since 〈x̂〉(0) =
〈p̂〉(0) = 0 and the evolution equation contains only quadratic
terms, the first-order moments vanish during the whole evo-
lution, i.e., 〈x̂〉(t ) = 〈p̂〉(t ) = 0. Specifically, the equations of
motion for the elements of the covariance matrix are given by

∂tCxx(t ) = 2

m
Cxp(t ),

∂tCpp(t ) = −2mω2α2(t )Cxp(t ) + h̄2

x2
0

(
 f (t ) + 
0),

∂tCxp(t ) = 1

m
Cpp(t ) − mω2α2(t )Cxx(t ), (7)

with the initial conditions Cxx(0) = x2
0, Cpp(0) = p2

0, and
Cxp(0) = x0 p0, where x0 and p0 are the position and momen-
tum zero-point fluctuations, respectively.

The evolution of the state under Gaussian dynamics con-
sists of squeezing and rotation in phase space. Thus, the
evolution can be described by the squeezing parameter r(t )
and the squeezing angle θ (t ), schematically depicted in
Fig. 1(b). In particular, the squeezing parameter r(t ) is given
by r(t ) = ln[λ−(t )], where λ−(t ) is the smallest eigenvalue
of the dimensionless covariance matrix C̄(t ) [50]. The entries
of C̄(t ) are defined as C̄xx(t ) = Cxx(t )/x2

0, C̄xp(t ) = C̄px(t ) =
Cxp(t )/x0 p0, and C̄pp(t ) = Cpp(t )/p2

0. The squeezing angle
θ (t ) corresponds to

θ (t ) = 2 arctan

(
ep · u(t )

ex · u(t )

)
, (8)

where u(t ) is the eigenvector of C̄(t ) associated with the
eigenvalue λ−(t ). Here ex and ep denote the unit vectors in
the x and p directions, respectively. The purity of the Gaussian
state can also be calculated from the dimensionless covariance
matrix, as

P (t ) = 1√
det[C̄(t )]

. (9)

C. Approximate non-Gaussian dynamics evolution

Let us describe a second approximation, which extends
beyond the one introduced in Sec. II B. Here we consider both
the quadratic and cubic terms in Eq. (3), that is,

Ĥc(t ) ≈ ĤnG(t ) ≡ ĤG(t ) + mω2

3x0
α3(t )x̂3, (10)

where ĤG(t ) is the quadratic Hamiltonian given by Eq. (6).
Note that the Hamiltonian ĤnG(t ) corresponds to the lowest-
order terms in Eq. (3) leading to an evolution of the particle
beyond Gaussian dynamics.

In order to simplify the description of the dynamics gen-
erated by the nonharmonic Hamiltonian (10), let us first
apply a transformation to the Gaussian frame driven by
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the Hamiltonian ĤG(t ) [46]. Specifically, the frame trans-
formation is defined by the unitary transformation ÛG(t ) ≡
exp+[i

∫ t
0 dt ′ĤG(t ′)/h̄], where exp+ denotes the time-ordered

exponential and ĤG(t ) is given by Eq. (6). The position
and momentum operators in the Gaussian frame, given by
˜̂x = Û †

G(t )x̂ÛG(t ) and ˜̂p = Û †
G(t ) p̂ÛG(t ), respectively, can be

computed as ( ˜̂x/x0, ˜̂p/p0)
 = S(t )(x̂/x0, p/p0)
, where S(t )
is a symplectic matrix that can be obtained as the solution to
the differential equation [46]

∂S(t )

∂t
=

(
0 �

−ω2α2(t )/� 0

)
S(t ). (11)

Let us write the position operator in the Gaussian frame as ˆ̃x =
η(t )[cos φ(t )x̂ + sin φ(t ) p̂x0/p0], where η(t ) and φ(t ) can be
calculated from the elements of the matrix S(t ) as η(t ) =√

S2
xx(t ) + S2

xp(t ) and φ(t ) = arctan[Sxp(t )/Sxx(t )]. Note that
η(t ) and φ(t ) can be interpreted as the quadrature squeezing
and quadrature angle that define the transformation to the
Gaussian frame, respectively. The Hamiltonian (10) in the
interaction frame driven by the Gaussian dynamics is then
given by

ˆ̃HnG(t ) = 2mω�β(t )

x0

(
cos[φ(t )]x̂ + sin[φ(t )]

x0

p0
p̂

)3

, (12)

where we have defined β(t ) ≡ 3α3(t )η3(t )/2. Equation (12)
shows that the effect of the non-Gaussian dynamics is en-
hanced by a large quadrature squeezing η(t ). The evolution
operator associated with the non-Gaussian dynamics (12) is
given by

ÛnG(t ) = exp+

(
−i

∫ t

0
dt ′ωβ(t ′)

x̂3
φ(t )

x3
0

)
, (13)

where x̂φ(t ) denotes the rotated quadrature x̂φ(t ) ≡
x̂ cos[φ(t )] + p̂ sin[φ(t )]x0/p0. Solving the dynamics
generated by Eq. (13) for a general time-dependent quadrature
angle φ(t ) involves computationally expensive numerical
integration. Thus, instead of solving the full dynamics
described by the evolution operator ÛnG(t ), in Sec. III we will
define a figure of merit inspired by Eq. (13) that requires only
the computation of the functions β(t ) and φ(t ), which can
be obtained from the Gaussian dynamics simulation of the
particle.

III. POTENTIAL OPTIMIZATION

Our optimization approach consists of finding the optimal
potential shape Vs(x) in Eq. (1), which maximizes the nonclas-
sical features of the evolution of a particle following Eq. (2).
The optimization using a figure of merit that requires a com-
plete simulation of the dynamics of this multiscale problem is
excessively computationally challenging [45]. Hence, here we
introduce two figures of merit that allow for fast computation
and capture the main features of the Gaussian and approxi-
mate quantum non-Gaussian evolution of the particle.

A. Coherence length

Let us introduce our first figure of merit, namely, the co-
herence length, which is relevant to the description of the
Gaussian evolution of the state of the particle. We define the
coherence length ξ (t ) in the direction of maximum expansion
of the state as

ξ (t ) ≡
√

8λ+(t )P (t )x0, (14)

where λ+(t ) denotes the largest eigenvalue of the dimen-
sionless covariance matrix C̄(t ) and P (t ) is the purity of
the Gaussian state, given by Eq. (9). It can be shown that
λ+(t ) corresponds to the variance of the position of the parti-
cle in the direction of maximum expansion, that is, λ+(t ) =
〈x̂2

θ (t )〉/x2
0. Here x̂θ (t ) denotes the rotated quadrature x̂θ (t ) ≡

x̂ cos[θ (t )] + p̂ sin[θ (t )]x0/p0, where θ (t ) is the squeezing
angle given by Eq. (8).

The coherence length ξ (t ) fulfills the relation〈
− xθ (t )

2

∣∣∣∣ρ̂c

∣∣∣∣xθ (t )

2

〉
(t ) = 1√

2πλ+(t )
exp

(
− x2

θ (t )

ξ 2(t )

)
, (15)

where |xθ (t )/2〉 denotes the eigenstate of the operator x̂θ (t )/2
with eigenvalue xθ (t )/2. Therefore, the coherence length pro-
vides a measure of the decay of the correlations of the
Gaussian state in the direction of maximum expansion. This
figure of merit can be useful in scenarios where it is desirable
to obtain large expansions while maintaining the coherence of
the state.

B. Coherent cubicity

Let us now provide a figure of merit that contains in-
formation about the non-Gaussian dynamics given by the
nonharmonic potential (10), as well as the coherence of the
state, which we denote by coherent cubicity. This figure of
merit is inspired by Eq. (13), but does not require the simula-
tion of the non-Gaussian dynamics of the system. To this end,
let us first introduce a time-dependent coefficient, denoted
by cubicity, that quantifies the strength of the non-Gaussian
dynamics described by the evolution operator (13). More
specifically, we define the cubicity κ (t ) as

κ (t ) ≡
√

β2
s (t ) + β2

c (t ), (16)

where βs(t ) ≡ ∫ t
0 dt ′ωβ(t ′) sin[φ(t ′)], βc(t ) ≡ ∫ t

0 dt ′ωβ(t ′)
cos[φ(t ′)], and the time-dependent functions β(t ) and φ(t ) are
introduced in Sec. II C.

Let us provide a motivation for the definition (16). Dur-
ing the evolution of a particle in a wide potential, where
one obtains large expansions, the quadrature angle φ(t )
is mostly constant, that is, φ(t ) ≈ φ0 [46]. In that case,
the cubicity (16) reads κ (t ) ≈ ∫ t

0 dt ′ωβ(t ′) and the evolu-
tion operator in Eq. (13) can be approximated by ÛnG(t ) ≈
exp[−iκ (t )x̂3

φ0
/x3

0] [46]. Therefore, the dynamics in the case
of a constant quadrature angle consists of the generation of
a cubic-phase state [10,11,51–53] along the rotated quadra-
ture x̂φ0 = x̂ cos(φ0) + p̂ sin(φ0)x0/p0 [see Fig. 1(c) for an
example of a cubic-phase state]. In that case, the cubicity
κ (t ) quantifies the strength of the generator ÛnG(t ). The
definition (16) of κ (t ) has been chosen to describe the
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strength of the generation of cubic-phase states along a gen-
eral quadrature, allowing for the quadrature angle φ(t ) to be
a time-dependent function which is piecewise constant at the
times when β(t ) is relevant. Specifically, for wide potentials,
the possible values of φ(t ) are usually separated by an integer
multiple of π , a property that can be understood in terms of
the Maslov index in the semiclassical approximation [54]. In
this way, κ (t ) allows us to account for the accumulation as
well as for the decrease of cubicity of the state along a general
quadrature.

We are interested in maximizing the effect of the non-
Gaussian dynamics while keeping the particle in a high-purity
state. Hence, we define the coherent cubicity as the product of
the absolute value of the cubicity κ (t ) and the Gaussian purity
of the state, that is,

K (t ) ≡ |κ (t )|P (t ), (17)

where P (t ) is given by Eq. (9). Note that we choose Gaussian
purity instead of the purity of the full state in order to obtain
a figure of merit that does not require the simulation of the
non-Gaussian evolution (13). We also remark that alternative
figures of merit could be defined, e.g., combinations of dif-
ferent powers of cubicity and purity. However, as we show
in the example in Sec. IV, the coherent cubicity given by
Eq. (17) provides valuable insights into the full non-Gaussian
evolution of the particle.

C. Constraints on the potential

When optimizing the shape of the static potential Vs(x) for
the figures of merit introduced above, we impose several con-
straints on the potential to meet some requirements regarding
experimental feasibility. First, we restrict the set of candidates
to potentials that, with respect to the initial position of the
particle, lead to closed phase-space classical trajectories. This
condition allows for many repetitions of the protocol while
using one single particle. Second, we set a bound for the
derivatives of the potential at the mean position of the par-
ticle during one full classical trajectory. In particular, we set
|α2(t )| � αb for 0 < t < Tc, where αb is a constant value and
Tc is the period of the classical trajectory. Third and finally,
we impose that the period of the classical trajectory is smaller
than the typical collision time tgas with a gas molecule in ul-
trahigh vacuum [11,16,20,44,55]. This condition allows us to
neglect the effect of decoherence due to gas molecules during
each run of the protocol. The timescale associated with a sin-
gle gas scattering event and for a spherical particle of radius R
is given by tgas = 3

√
mgaskBTgas/16π

√
2πPgasR2 [16], where

mgas, Tgas, and Pgas are the single molecule mass, temperature,
and pressure of the gas, respectively. An appropriate condition
that complies with current levitated nanoparticle experiments
is given by tgas�/2π ≈ 1500.

D. Optimization algorithm

We propose to perform the optimization of the potential
Vs(x) using a trust-region interior point method [56]. This
method combines trust-region and interior point methods
to solve nonlinear optimization problems with constraints.
The trust-region component approximates the objective

function within a specified region around the current solution.
Additionally, the interior point method ensures that the solu-
tion remains feasible by using barrier functions that prevent
boundary violations. The constraints imposed on the potential,
namely, Tc � tgas and |α2(t )| � αb, correspond to nonlinear
inequality constraints. In particular, Tc and α2(t ) are computed
from the numerical integration of the Hamilton equations. The
optimal potential can then be obtained after performing M
runs of the optimization algorithm using different randomized
initial seeds for the optimization parameters that describe the
potential, where M is sufficiently large such that the optimiza-
tion converges.

IV. EXAMPLE: OPTIMAL QUARTIC POTENTIALS

In this section we focus on applying the optimization
method to a particular family of potentials. Specifically, we
consider the family of quartic potentials

Vq(x) = 1

2
mω2

(
a(x − d0)2 + b

2d2
(x − d0)4

)
, (18)

where a, b, and d0 are the optimization parameters. Here ω

is a frequency scale, d is a length scale, d0 is the center
of the potential, and a and b are constants fulfilling |a| =
|b| = 1. The family of potentials (18) includes the double-
well (a = −1 and b = 1) and inverted double-well (a = 1 and
b = −1) potentials [see Fig. 2(a)], as well as purely positive
(a = b = 1) and negative (a = b = −1) frequency nonhar-
monic potentials. In particular, the double-well and inverted
double-well potentials are good candidates for the generation
of nonclassical states since they lead to an expansion of the
particle state at the inverted part of the potential, enhancing the
nonharmonicity of the potential [10,40,46]. Our goal is to find
the optimal potential within the family (18) that maximizes
the figures of merit introduced in Secs. III A and III B at
any instance of time during one classical trajectory, subject
to the constraints introduced in Sec. III C. Afterward, we
compare the figures of merit for the optimal potentials with
the full numerical simulations of the system [45]. The opti-
mization is performed for different levels and types of noise
stemming from the fluctuations of the potential, described by
the noise strengths S1 and S2 in Eq. (5), where we have set
l = d . For simplicity, we set 
0 = 0, that is, we neglect the
position-independent sources of decoherence. Here we set the
frequency scale equal to ω/� = 10−3 and the length scale to
d/x0 = 10−6, values that could be accessible in experimental
implementations of wide potentials.

A. Optimal potentials for maximum coherence length

The optimal quartic potential within the family (18) that
maximizes the figure of merit maxt∈[0,Tc] ξ (t ) depends on the
values of the noise strengths S1 and S2. The maximum co-
herence length achieved by the optimal protocol as a function
of noise strength is shown in Fig. 2(b). Specifically, the op-
timization leads to three different regimes, corresponding to
the double-well (DW) or inverted double-well (IDW) poten-
tials centered at different positions with respect to the initial
particle location [Fig. 2(a)].
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a) Optimal configurations for maximizing coherence
length during one particle trajectory for (i) low potential fluctua-
tions, (ii) large values of position fluctuations, and (iii) large values
of amplitude fluctuations. (b) Maximum value of coherence length
during one classical trajectory for the optimal potential and optimal
d0 (inset) as a function of position fluctuation strength S1 (solid line)
and amplitude fluctuation strength S2 (dashed line). (c) Decoher-
ence rate as a function of time associated with position fluctuations
of the potential, for different values of Sj , with j = 1. (d) De-
coherence rate associated with amplitude fluctuations for different
values of Sj , with j = 2. (e) Coherence length as a function of time
for different position noise strengths S1. (f) Coherence length as a
function of time for different amplitude noise strengths S2. Optimiza-
tion was performed using the ‘trust-constr’ method implemented
in SCIPY, with the following parameters: ω/� = 10−3, d/x0 = 106,
tgas�/2π = 1500, αb = 5, M = 2000 randomized initial seeds
within the range d0/d ∈ [0.005,

√
2], tolerance for termination of

10−6, and maximum number of algorithm iterations 103.

The first regime (i) corresponds to the DW potential (a =
−1 and b = 1) centered at the initial position of the particle
[Fig. 2(a)]. This configuration is optimal for low levels of
position and amplitude fluctuations (S1� � 10−10 and S2� �
10−9). In particular, the optimal position d0 is the closest
to 〈x̂〉 = 0 allowed by the condition that the period of the
classical trajectory fulfills the constraint Tc � tgas. In this
configuration, the motional expansion of the state is maxi-
mized. The time-dependent decoherence rate 
f(t ) associated
with the fluctuations of the optimal potential is relatively
small [
f(t )/� < 10−8 for 0 < t < Tc], as shown in Figs. 2(c)
and 2(d). Note that the maximum value of the coherence
length is achieved shortly before one half of the period of the
classical trajectory [Figs. 2(e) and 2(f)].

The second optimal regime (ii) corresponds to the DW
potential centered at the position d0 = d/2, where d is the

distance from the center to the minima of the double well
[Fig. 2(a)]. This configuration is optimal for large levels of
noise associated with the fluctuations in the position of the
potential (S1� � 10−7) and it corresponds to the particle
evolving in the region of positive frequency of the DW po-
tential. In this case, the expansion of the maximum variance
of the state is smaller, but the Gaussian purity of the state is
preserved compared to a strongly squeezed state, leading to
a larger value of coherence length. This configuration mini-
mizes the effect of the potential fluctuations at short times,
since the term V (2)

s (t ) in Eq. (5) vanishes, leading to a max-
imum coherence length at a time t 	 Tc [see Fig. 2(e)]. For
intermediate levels of noise (10−9 � S1� � 10−8), the opti-
mal configuration is given by a continuous transition between
the aforementioned regimes (i) and (ii) [inset of Fig. 2(b)].

The third optimal regime (iii) corresponds to the IDW
potential (a = 1 and b = −1), where the particle is initially
located at the minimum of the potential [Fig. 2(a)]. The IDW
potential is optimal for large levels of noise associated with
the potential amplitude fluctuations (S2� � 10−7). In this
case, the particle experiences an expansion equivalent to the
evolution in free space [see Fig. 2(f)]. This scenario minimizes
the decoherence rate 
f(t ), since V (1)

s (t ) in Eq. (5) vanishes.
For intermediate levels of amplitude noise (S2� ≈ 10−8), the
optimal potential is the DW slightly displaced from the initial
position of the particle [inset of Fig. 2(b)].

B. Optimal potential for maximum coherent cubicity

Let us now focus on obtaining the optimal quartic po-
tential within the family (18) for maximizing the coherent
cubicity (17) during one classical trajectory, that is, using
the reward function maxt∈[0,Tc] K (t ). The optimization leads
to one optimal configuration for all types and levels of noise
associated with the potential fluctuations within the studied
range (10−11 � S j� � 10−6 for j = 1, 2). The optimal poten-
tial is the double-well potential (a = −1 and b = 1), with the
particle starting at the inverted part of the potential [10], as
depicted in Fig. 3(a). More specifically, the optimal value of
d0 corresponds to the position associated with the maximum
allowed evolution time, i.e., the classical period Tc = tgas.
This configuration maximizes the expansion of the state of
the particle, which is needed to enhance the non-Gaussian
dynamics that generates quantum features. The maximum
value of coherent cubicity achieved by the optimal potential
decays exponentially with the noise strengths S1 and S2 [see
Fig. 3(b)]. In particular, the cubicity κ (t ) in the DW potential
is maximum at t = Tc/2, that is, when the particle evolves in
the quartic wall of the potential [46]. Since the decoherence
rate 
f(t ) associated with the different values of noise S1 and
S2 is also maximum at t = Tc/2 [Figs. 3(c) and 3(d)], the
coherent cubicity K (t ) is maximum at the time t � Tc/2, as
shown in Figs. 3(e) and 3(f).

C. Comparison with full quantum dynamics

Our optimization approach utilizes the figures of merit
introduced in Sec. III as signatures of large delocalization and
generation of non-Gaussian quantum states. However, these
figures of merit are introduced following approximations that
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FIG. 3. (a) Optimal potential for maximizing coherent cubicity
during one particle trajectory. The optimal parameters are a = −1,
b = 1, and d0 	 d such that Tc = tgas. (b) Maximum value of the
coherent cubicity in the range t ∈ [0, Tc] as a function of noise
strengths S1 (solid line) and S2 (dashed line). (c) Decoherence rate
as a function of time associated with position fluctuations of the po-
tential, for different magnitudes of Sj , with j = 1. (d) Decoherence
rate as a function of time associated with amplitude fluctuations of
the potential, for different values of Sj , with j = 2. (e) Coherent
cubicity as a function of time for different magnitudes of position
potential fluctuations. (f) Coherent cubicity as a function of time for
different magnitudes of amplitude potential fluctuations. Optimiza-
tion was performed using the ‘trust-constr’ method implemented
in SCIPY, with the following parameters: ω/� = 10−3, d/x0 = 106,
tgas�/2π = 1500, αb = 5, M = 2000 randomized initial seeds
within the range d0/d ∈ [0.005,

√
2], tolerance for termination of

10−6, and maximum number of algorithm iterations 103.

do not account for the full quantum dynamics of the system.
Hence, in this section we perform a comparative analysis
between our figure of merit that accounts for the leading
non-Gaussian term, namely, the coherent cubicity, and
the Wigner negativity of the state of a particle evolving
in potentials within the family (18) considered in the
optimization approach. The Wigner negativity is calculated
from numerical simulations of the full quantum dynamics
described by Eq. (2) [45].

In particular, let us consider two potentials within the
family (18), namely, the DW and the IDW potentials. As
mentioned above, the optimal potential to maximize co-
herent cubicity is the DW potential. For simplicity, our
analysis is centered on one particular type of decoherence,
namely, the noise stemming from the fluctuations in the
position of the potential (S2 = 0). The behavior of the co-
herent cubicity as a function of time for different levels of
noise strength [Fig. 4(a)] qualitatively agrees with the be-

(a) (b)

(c) (d)

FIG. 4. (a) Coherent cubicity of a particle evolving in a DW
potential (solid lines) and in an IDW potential (dashed lines) as a
function of time and noise strength S1. (b) Wigner negativity of a
particle evolving in a DW potential (solid lines) and in an IDW
potential (dashed lines) as a function of time and noise strength
S1. (c) Time tmax at which the coherent cubicity and the Wigner
negativity are maximum for the DW and IDW potentials as a function
of noise strength S1. (d) Maximum value of the Wigner negativity
(left axis) and the coherent cubicity (right axis) as a function of S1

for the DW and IDW configurations. The parameters of the poten-
tials are a = −1, b = 1, and d0/d = 0.05 (DW) and a = 1, b = −1,
and d0/d = 0.95 (IDW), where d/x0 = 106 and ω/� = 10−3. The
legend in (b) applies to both (a) and (b).

havior of the Wigner negativity volume [Fig. 4(b)], defined
as NW(t ) ≡ ∫

R dx dp[|W (x, p, t )|] − 1, where W (x, p, t ) de-
notes the Wigner function of the state [57]. More specifically,
the times at which coherent cubicity and Wigner negativity are
maximal coincide for both potentials [see Fig. 4(c)]. Further-
more, the observed trend in the figure of merit as a function
of noise strength agrees with the behavior exhibited by the
Wigner negativity [Fig. 4(d)]. Specifically, the DW potential
shows a greater amount of Wigner negativity in comparison
to the IDW for all levels of noise, as predicted by our opti-
mization method. Our findings demonstrate that the proposed
figure of merit effectively captures qualitative aspects of the
Wigner negativity, thus indicating its potential utility as a
metric for assessing the quantum non-Gaussian behavior of
a particle evolving in a nonharmonic static potential.

V. CONCLUSION

In this work we have introduced an optimization method
aimed at determining optimal static potential shapes for gen-
erating largely delocalized states and non-Gaussian quantum
states of levitated nanoparticles. This method accounts for
position-dependent noise sources inherent to experimental se-
tups. To minimize recoil heating and avoid decoherence due
to collisions with gas molecules, we focused on nonoptical
static potentials and rapid protocols conducted in ultrahigh-
vacuum environments. We considered stochastic fluctuations
in the position and amplitude of the potential as primary
sources of decoherence in particle dynamics, alongside other
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decoherence sources. To mitigate the computational demand
associated with the multiscale simulation of the system, we
proposed key figures of merit that enable efficient computa-
tion while capturing essential dynamic features. Specifically,
we introduced coherence length as an indicative measure of
the emergence of large delocalization and coherent cubicity as
a signature of the generation of non-Gaussian quantum states.

We have applied our optimization approach to a family
of quartic potentials, showing that the optimal configuration
depends on the nature and strength of the noise. We found
that the optimal quartic potential for maximizing coherence
length is either the double-well or the inverted double-well
potential, depending on the type of noise, with different
positions relative to the initial position of the nanoparticle
for varying noise strengths. Additionally, we determined that
the optimal potential within the considered family for the
generation of quantum non-Gaussian features, captured by
the coherent cubicity, is the double-well potential introduced
in [10]. An interesting outlook for our work is to extend the
optimization approach to a broader family of potential shapes,
including higher-order or time-dependent shaping of potential
landscapes [20,58]. Our optimization method could be used to

explore the possibility to obtain protocols for the generation
of macroscopic quantum superpositions of levitated nanopar-
ticles that are robust to environmental decoherence. Moreover,
similar optimization methodologies could be employed to de-
velop protocols for the optimal detection of noise sources in
nonoptical potentials.

The optimization code developed for this work is available
for public access on GitLab [59].
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