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Extending temporal-coupled-mode theory to the antiresonant regime
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The antiresonant effects, which are opposite to the resonant effects, describe the destructive interferences that
occur in optical resonators. There is a growing trend in the recent development of photonic devices that explore
antiresonant effects such as topology structures and photonic molecules with asymmetrical geometries. For the
design of coupled optical resonators, temporal-coupled-mode theory (TCMT) has been widely applied, which
provides a simple yet effective physical picture of such systems. However, TCMT is valid for optical frequencies
that resonate well with the cavities. It becomes powerless to handle mode coupling at optical frequencies that
resonate in part of the resonators but antiresonate in the rest. In this work, we extend TCMT to antiresonant
regimes for investigating mode coupling between antiresonances and resonances in coupled-optical-cavity
systems via taking the analogy of the mode splitting. Our theory agrees well with the transfer matrix method
as well as the experimental results. A concrete example is given to show that our work offers an opportunity to
extend the application of TCMT in the design of advanced coupled-cavity structures.
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I. INTRODUCTION

Temporal-coupled-mode theory (TCMT) has been widely
applied as a mathematical tool to analyze the spectral re-
sponse [1,2], describe the Hamiltonian [3–7], and calculate
the S matrix [6], which is developed for resonance structures.
It provides a clear physical picture depicting the interaction
between different resonators. TCMT is suitable for linear
optics and can be extended to analyze nonlinear effects with
simple modifications [8,9]. With the help of TCMT and the
progress of photonics integrated circuit manufacturing tech-
nology, various novel coupled-cavity structures have been
realized and provided a fertile ground for many applications
[10–14]. Besides, many interesting phenomena have been
demonstrated in coupled-cavity systems where destructive
interference plays an important role such as microresonator
array for topology applications [15] and parity-time systems
for nonlinear optical signal processing [16]. However, TCMT
is only effective around the resonant frequency. It becomes
powerless to handle antiresonance situations (i.e., destructive
interference occurs in the resonator at the incident frequency).
On the other hand, the transfer matrix method (TMM) can
provide rigorous solutions, but it fails to reflect a clear phys-
ical connotation [17]. An alternative method applied to solve
antiresonant issues entails that the involved structures are re-
garded as a waveguide, while TCMT is employed to describe
other resonant elements [15]. Nonetheless, the response of the
antiresonant elements is hard to predict.

In this article, we propose an antiresonant TCMT
(ATCMT) to capture the physics when antiresonances are
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involved in coupled-cavity systems. The key idea is to model
the antiresonances by taking the analogy of the mode splitting
produced by two coupled resonant modes. The ATCMT is
then applied to deal with a situation in which antiresonant
elements couple with resonant elements. The results of the
theory are consistent with the transfer matrix method around
the antiresonant frequency over a wide range of coupling pa-
rameters. Furthermore, the transmission spectrum measured
from our fabricated device validates our theoretical predic-
tions. Our work provides a path to extend the TCMT in the
design of advanced coupled-cavity structures.

II. THEORETICAL MODEL OF THE ATCMT

Firstly, we consider the power enhancement in an all-pass
microring resonator (MRR), as sketched in Fig. 1(a). The ex-
ternal excitation is launched into the bus waveguide and then
couples into the MRR. Using the TMM, it can be described as

(
sout

A1

)
=

(
r0 − jκ0

− jκ0 r0

)(
sin

A2

)
,

A2 = te jφA1, (1)

where sin and sout are the input and output complex amplitude,
Ai=1,2 is the complex amplitude in the MRR as shown in
Fig. 1(a), t is the MRR’s round-trip field attenuation factor,
and φ is the round-trip phase. The field transmission and cou-
pling coefficients between the MRR and the bus waveguide
are r0 and κ0. The coupler is assumed to be lossless, so that
r2

0 + κ2
0 = 1. The transmission T and the power enhancement

F , defined as the ratio of the power inside MRR to the input
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FIG. 1. Schematic of the microring resonator (MRR) (a) and two
coupled MRRs (c). The two systems are coupled to a bus waveguide.
The power spectral responses in MRR are shown in panels (b) and
(d). Panel (b) is the intracavity power spectral response correspond-
ing to panel (a). Panel (d) is the power spectral response in MRR1
shown in panel (c). The red star indicates antiresonance.

power, can be easily calculated as

T =
∣∣∣∣ t − r0e jφ

1 − tr0e jφ

∣∣∣∣
2

,

F =
∣∣∣∣ − jκ0

1 − tr0e jφ

∣∣∣∣
2

. (2)

The periodic peaks in the power enhancement spectrum
manifest the resonant longitudinal modes. The antiresonant
frequencies exist in the middle of adjacent resonant longi-
tudinal modes, where the power enhancements become a
minimum, as marked by a red star in Fig. 1(b). Meanwhile,
we notice that the mode splitting that occurs in the strong-
coupling regime quenches resonance at the original frequency,
leading to a destructive feature [18]. Figure 1(c) shows a
system with two coupled identical MRRs, where the bus
waveguide only couples to one of the resonators. The power
enhancement spectrum of the MRR1 presents two resonant
modes due to the mode splitting. The power enhancement
spectrum of MRR1 presents two resonant modes due to the
mode splitting. A red star marker in Fig. 1(d) represents
the antiresonance point, which occurs between the two split
resonant modes. From the TMM point of view, this is due
to the fact that MRR2 introduces a π -phase shift to MRR1
at the resonant frequency, leading to a transformation from
constructive to destructive interference. From the TCMT point
of view, it is known that the TCMT of a single resonator yields
the same outcome as the first-order Taylor expansion of the
TMM at the resonant frequency [17]. Similarly, one can ex-
pand the transfer matrix results at the antiresonant frequency
to study the antiresonance. However, the Lorentzian function,
which inevitably emerges from the first-order expansion, does
not align with the trend in the variation of the frequency
response curve around the antiresonant frequency. Therefore,
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FIG. 2. Comparison of through-port transmission (a) and inner
power enhancement (b) between the ATCMT and the TMM. The
blue lines indicate the results obtained by Eq. (2), and the red lines
were obtained based on Eqs. (3) and (6).

retaining second-order expansion of the TCMT is necessary.
Since the TCMT of two coupled modes yields second-order
Taylor expansion terms, the mathematical foundation of the
antiresonance model has thus been laid coherently.

Following this idea, we proceed to describe the response
near the antiresonant frequency for an all-pass microring
shown in Fig. 1(a) using two coupled modes, i.e.,

da1

dt
=

(
− jω0 − γ0 − μ2

0

2

)
a1 − jgeb1 − jμ0sin,

db1

dt
= (− jω0 − γ1)b1 − jgea1, (3)

where |a1|2 = |A1|2TR is the stored energy in the MRR, b1

is an imaginary mode. |sin|2 represents the power flowing
in the input waveguide, ω0 is the antiresonant frequency, γ0

denotes the intrinsic loss rate of the MRR, and μ0 is the energy
coupling coefficient between the MRR and the bus waveguide.
ge and γ1 are both equivalent parameters, and ge represents
the coupling coefficient between the two modes and γ1 is
the mode loss of b1. By comparing the results of the transfer
matrix method, the following relationship is obtained:

ge =
√

4

T 2
R

− 4γ0

TR
− 2μ2

0

TR
, (4)

γ1 = 2

TR
, (5)

where TR = ngL/c is the round-trip group delay. The output at
the through port is

sout = sin − jμ0a1. (6)

Figure 2 compares the results obtained by the TMM
and our model. The through-port transmittance is shown in
Fig. 2(a), and the power enhancement in MRR1 is shown in
Fig. 2(b). The red lines, calculated using the ATCMT, match
the blue lines, the results from the transfer matrix method.
Around the antiresonant frequency, the power enhancement
comes to its minimum value, which means that all the power
of the input light at the antiresonant frequency is directed to
the transmission port.
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FIG. 3. Schematic of two differently sized coupling MRRs (a), in
which the perimeter of the large MRR2 is four times that of the small
MRR1. The response of the two individual MRRs is shown in panel
(b). There are five MRR2 resonant peaks between MRR1 adjacent
resonant peaks, and the red star indicates the coupling between the
antiresonance and the resonance. The equivalent model is shown in
panel (c); the antiresonant MRR1 can be regarded as two coupled
resonant MRRs.

III. ATCMT FOR MODE COUPLING BETWEEN
ANTIRESONANCES AND RESONANCES

In this section, we apply the ATCMT to study the cou-
pling between antiresonances of one cavity and resonances
of another cavity. We consider a system consisting of two
directly coupled MRRs, as sketched in Fig. 3(a).The perime-
ters of the two MRRs are in the ratio of 1:4, which means
that within one free spectral range (FSR) of MRR1, there
are three frequencies which are resonant in MRR2 but not in
MRR1, as illustrated in Fig. 3(b). We investigate the coupling
behavior of a specific frequency between MRR1 and MRR2,
as indicated by the red stars in Fig. 3(b), which is resonant
in MRR2 but antiresonant in MRR1. Using the TMM, the
transmission and power enhancements in the two MRRs can
be calculated as

T =
∣∣∣∣∣∣

r0 − t1
r1−t2e jφ2

1−t2r1e jφ2
e jφ1

1 − t1r0
r1−t2e jφ2

1−t2r1e jφ2
e jφ1

∣∣∣∣∣∣
2

,

F1 =
∣∣∣∣∣∣

− jκ0

1 − t1r0
r1−t2e jφ2

1−t2r1e jφ2
e jφ1

∣∣∣∣∣∣
2

,

F2 =
∣∣∣∣ − jκ1

√
t1

1 − t2r2e jφ2

∣∣∣∣
2

F1. (7)

According to the analysis given above, the antiresonant cavity,
i.e., MRR1, is replaced by two coupled resonant cavities, as
sketched in Fig. 3(c). Then, the whole system can be described
by the ATCMT as

da1

dt
=

(
− jω0 − γ0 − μ2

0

2

)
a1 − jgeb1 − jμea2 − jμ0sin,

db1

dt
= (− jω0 − γ1)b1 − jgea1,

da2

dt
= (− jω0 − γ2)a2 − jμea1, (8)

where |ai=1,2|2 is the energy in MRR1 and MRR2; γ2 = γ0 +
μ2

1TR1/2 is the mode decay rate of MRR2; μ1 is the energy
coupling coefficient between MRR1 and MRR2, which is
related to the field coupling coefficient by μ1 = κ1/

√
TR1TR2 ;

and μe = jμ1

√
1 − μ2

0TR1/2 is the coupling coefficient be-
tween MRR1 and MRR2. All the coefficients are derived by
comparing the ATCMT with the TMM expanded to second-
order terms. There are several interesting features in Eq. (8).
First, the loss γ2 includes both the intrinsic loss rate of MRR2
and the coupling loss, which is introduced by the antireso-
nance in MRR1. Physically, it means that the energy stored
in MRR2 would be directly coupled to the output channel.
Second, the coupling between the resonant mode in MRR2
and MRR1, i.e., μe, is a pure imaginary number, which is
different from conventional TCMT where the coupling is real.
It causes a correction for the loss of a2. This is because the
energy that couples from the resonant mode in MRR2 to
MRR1 does not solely couple to the output channel; a portion
of energy returns.

In Fig. 4, the transmission at the through port and the power
enhancement in the two resonators are displayed for two
coupled MRRs. The through transmission measured by the
experiment is represented by the solid gray line in Fig. 4(a).
The blue line is obtained based on the TMM, and the solid
red line is obtained by Eqs. (6) and (8). The ATCMT agrees
well with the experimental result and the TMM, as shown
in Fig. 4(b), which is a zoomed-in view of Fig. 4(a). The
power enhancement spectra of MRR1 and MRR2 obtained
by the ATCMT is consistent with the TMM, as shown in
Figs. 4(c) and 4(d), respectively. Note that the power en-
hancement of MRR1 has been found by ATCMT with good
agreement with the TMM results. It should be noted that for
the structure shown in Fig. 3(a), the antiresonant cavity MRR1
is commonly regarded as a waveguide [15]. As a result, it is
equivalent to an all-pass MRR, as sketched in Fig. 4(e). In
this case, the antiresonant element is reduced to a coupling
coefficient. The power enhancements at the points L and R
marked by the stars, shown in Fig. 4(e), can be derived using
conventional TCMT. As shown in Fig. 4(f), the results cannot
describe the power enhancement in MRR1 correctly.

To characterize the feasibility of our theory over wide
parameter space, we further scan the coupling coefficients
of the structure shown in Fig. 3(a) and use the ATCMT to
calculate the transmission in the special frequency marked by
red stars in Fig. 3(b). According to the relationship between
the field and the energy coupling coefficient, μ0max = 1/

√
TR1

and μ1max = 1/
√

TR1TR2, which corresponds to κ0 = κ1 = 1.
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FIG. 4. The through-port transmittance and the power enhance-
ment in the two resonators. The through-port transmittance measured
by the experiment is the solid gray line in panel (a), and panel
(b) corresponds to the box in panel (a). The power enhancement in
MRR1 and MRR2 is shown in panels (c) and (d). The blue line is
obtained by Eq. (7), and the solid red line is obtained by Eqs. (6) and
(8). For the two coupling MRRs shown in Fig. 3(a), the antiresonant
cavity can be regarded as a waveguide in panel (e). The coupling
between the resonant MRR2 and the waveguide is derived by the
TMM, and the power enhancements at the points L and R are shown
in panel (f). The orange line corresponds to the power enhancement
at point L, and the power enhancement at point R is displayed by the
green dashed line.

We then compared the outcomes to those obtained from the
TMM to generate an error diagram, shown in Fig. 5, where
the color bar indicates the absolute value of the difference.
The red circle labels the experiment state. The ATCMT is
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FIG. 5. Simulation of the relationship between the ATCMT
transmission errors and the coupling coefficients. The red circle
labels the state of the experiment. The color bar represents the errors.

valid for most situations; however, when the waveguide is
strongly coupled to MRR1 and MRR1 is weakly coupled to
MRR2, due to the breakdown of field uniformity, the ATCMT
will completely fail.

IV. CONCLUSION

In conclusion, we have extended TCMT into the antires-
onance regime to analyze the coupling cavity systems that
include both antiresonant and resonant elements. Unlike in
conventional TCMT where all the information inside the
antiresonant elements gets lost, we show in this work that
our developed ATCMT can predict the transmission as well
as power enhancement response of all elements including
antiresonant elements, by comparing to TMM as well as ex-
perimental results. In the end, the ATCMT is shown to be valid
in a wide coupling strength range. The approach is expected to
provide a possible way to extend the application of the TCMT
for the design of advanced coupled-cavity structures.
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