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Temporal-coupled-mode theory (TCMT) is an important tool that is widely used for analyzing and designing
integrated photonic systems that consist of multiple connected resonators. In microresonator systems with well-
separated modes (relatively large free spectral range compared to the modal width), standard TCMT accounts
only for the resonant excitation and is known to give excellent results in the weak-coupling limit. In this paper, we
reveal a peculiar situation where TCMT breaks down under multiple excitation conditions. As we demonstrate,
this can be explained by the destructive and the constructive interference of the excitations associated to the
resonant and off-resonant modes respectively. In this case, we show that a multimode TCMT should be employed
to account for these effects. Our results thus suggest that, while it is safe to use the standard TCMT under a single
excitation, it must be applied with care when multiple excitations are involved.
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I. INTRODUCTION

The unprecedented progress in integrated photonics over
the past two decades has been largely enabled by the develop-
ment of various electromagnetic design toolboxes. Typically,
these involve separately computing the response of a few
elements via (numerically exact) Maxwell solvers (e.g., via
finite element [1], finite difference time domain [2], or Fourier
modal methods [3]) and extracting from them waveguide dis-
persion relations, resonator frequencies and linewidths, mode
profiles, (complex) reflection and transmission coefficients,
coupling coefficients, etc. These results are then fed into
(approximate) circuit-modeling methods for the efficient anal-
ysis of more complex systems such as the scattering matrix
approach [4] and different flavors of coupled-mode theory
(CMT) [5–8]. Conversely, device designs based on the scat-
tering matrix technique or from CMT approaches are typically
validated via Maxwell solvers.

Among the different flavors of CMT, temporal-coupled-
mode theory (TCMT) [5,9] has become a relevant tool
for understanding and engineering photonic integrated cir-
cuits based on coupled microresonators in the weak-coupling
regime. The scattering matrix approach can be used to study
the same problem, yet it requires more careful and lengthy
calculations in order to ensure the consistency of bound-
ary conditions along closed light trajectories. On the other
hand, TCMT reduces the problem to rather small sets of cou-
pled ordinary differential equations. In linear systems, these
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take the form of a discrete Schrodinger equation, where the
physics of the problem is encoded in a finite system matrix,
which is often denoted as H . In turn, this provides a use-
ful tool for engineering photonic structures such as slotted
ring resonators [10], nonreciprocal devices [11], and systems
with non-Hermitian symmetries [12–14] or topological invari-
ance [15,16]. Moreover, TCMT can be enriched by including
material nonlinearities and dispersion to derive the Lugiato-
Lefever equation [17] that accounts for various phenomena
such as frequency comb generation, soliton crystals, and wave
mixing inside microring resonators [18]. In quantum optics,
the quantum Langevin equation [19] plays the role of TCMT
after promoting the c variables to bosonic creation and anni-
hilation operators and adding the appropriate noise terms that
ensure the conservation of the bosonic commutation relation.

Given the success of TCMT and its widespread use in
applications ranging from non-Hermitian and topological
photonics to nonlinear and quantum optics and also given the
fact that current photonic systems are becoming increasingly
more complex with many integrated components on the same
chip, it is reasonable to seek a complete understanding of
the validity of TCMT and its potential failure. To date, it
was assumed that TCMT can be always applied in the weak-
coupling regime where one assumes that the coupling between
the various optical elements does not significantly alter their
bare eigenmodes. In this paper, however, we uncover a pecu-
liar situation where the application of TCMT may give very
erroneous results under multiple excitation conditions, even
when the system operates in the weak-coupling regime. This
is particularly important because some optical functionalities,
such as coherent perfect absorption [20–23] and tailoring the
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FIG. 1. A schematic demonstrating the main effect studied in this paper. (a) An optical system made of a microring resonator evanescently
coupled to two waveguides serving as input and output channels. Under a single excitation from port p1 with a frequency matching the real
part of the resonance frequency associated with the CW mode um, only this mode is predominantly populated. (b) If a section of the microring
is removed, the resonator becomes a curved waveguide. In this case, spatial coupled mode analysis can be used to analyze the system. Within
this framework, it is possible to tailor a second excitation from port p2 such that the net outcome is a destructive interference in the curved
waveguide section marked by the dashed arrow and the “X” sign, indicating the absence of light. Clearly, adding back that section does not
alter the light distribution. Thus, even for the full system, it is possible to judicially chose the amplitudes and phases of the two excitations to
produce a nonuniform light distribution inside the microring resonator as schematically shown in (c).

response of photonic chips [24–27], can be achieved only by
using multiple excitations.

II. RESULTS

A. Concept

Let us consider a microring resonator symmetrically cou-
pled to two waveguides as shown in Fig. 1(a). In the absence
of any excitation, one can solve Maxwell’s equations under
outgoing boundary conditions to find the resonant modes of
the ring, which are also known as the quasinormal modes
(QNMs) [28,29] and their associated complex eigenfrequen-
cies. When light is excited from one port [say, port p1 in
Fig. 1(a)], some of these modes become populated with dif-
ferent weights that depend on the excitation frequency and
modal overlap. Thus, in general the field inside the resonator
can be expressed as E (r, t ) = ∑

n un(t )En(r), where En(r) is
the field distribution of the QNM characterized by the index
n as a function of the spatial coordinates r and un(t ) is a time
dependent amplitude. When the excitation frequency is close
to one of the resonance frequencies, say that corresponding
to mode m, the above expansion can be approximated by the
resonant term whose amplitude, um(t ), evolves according to
the TCMT. This is the situation depicted schematically in
Fig. 1(a), where the excitation from port p1 populates the
clockwise (CW) traveling mode inside the ring resonator.
Note that in the absence of the waveguides, the QNMs of
the microring resonator are rotationally symmetric. While the
presence of the waveguides breaks this rotational symmetry,
in the weak-coupling regime, this effect is very weak. In this
case, the light intensity inside the microring resonator will be
almost uniform across its perimeter.

The above picture is generally assumed to apply when two
or more excitations are involved. To understand that, let us
consider the situation where another input from port p2 is
also used (i.e., both are exciting the CW mode); the standard
TCMT reads (we neglect intrinsic losses)

dum

dt
= (iωm − 2γ )um +

√
2γ (S̃1 + e−iθ (1)

m S̃2), (1)

where ωm is the resonance frequency, γ is the loss rate due
to the coupling to each waveguide, and the excitations from
the two waveguides are given by S̃1 and S̃2. Importantly, θ (1)

m
represents the phase acquired by the CW wave as it travels
from the junction with waveguide 1 to that with waveguide 2.
Here, θ (1)

m depends on the relative locations of the two waveg-
uides and the propagation constant βm of the waveguide mode
inside the ring waveguide. Note that S̃1,2 are not field ampli-
tudes. Rather, |S̃1,2|2 is proportional to the electromagnetic
power in each waveguide, respectively. Under continuous
wave excitation at resonance, i.e., when S̃1,2 = S1,2eiωmt , the
steady-state field amplitude inside the ring is given by Um =

1√
2γ

(S1 + e−iθ (1)
m S2), where um(t ) = Umeiωmt . Thus, it is clear

that regardless of the values and phases of S1,2 and the phase
θ (1)

m , TCMT predicts that the light intensity inside the ring will
just follow the distribution of the quasinormal mode E (r) [up
to a factor u(t )]. Given that the external signals both couple
to the CW mode, which is a traveling wave, it follows that
TCMT predicts a uniform distribution of the light intensity
(not necessarily the field) across the perimeter of the ring.
In order to appreciate the problem with this conclusion, let
us now consider the situation depicted in Fig. 1(b) where
a section of the ring resonator is removed altogether, effec-
tively turning it into a curved waveguide. This system can
now be described by using spatial coupled mode theory that
describes light tunneling between waveguides. For the same
double excitations from ports p1 and p2, one can easily tune
the input intensities and phases (i.e., the complex quantities
S1 and S2) in order to have a destructive interference in the
curved waveguide section marked by the dashed arrow and
the green “X” sign which indicate that light does not couple
to that section of the curved waveguide. In other words, under
this condition, the field amplitude at the output section of
the central waveguide (the region marked by the “X” sign)
is zero and thus all the input light from ports p1 and p2 exits
from ports p3 and p4. Obviously, in that case, the field and
intensity distribution of light inside the curved waveguide will
be highly nonuniform (there is light in the right section of the
curved waveguide marked by the continuous red arrow but
not in the left section marked by the “X” sign and dashed red
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FIG. 2. An identical microring resonator system to that shown
in Fig. 1(a) with parameters and fields labels suitable for scattering
matrix analysis. The coupling junctions depicted here (the black bars
at the top and bottom of the ring) are assumed to be zero width.
θ (1,2) are the acquired phases for the right and left halves of the ring,
respectively. Note that for a resonant mode θ (1,2) ≡ θ (1,2)

m , whereas
for any off-resonant mode with an index n the subindex m is replaced
by n.

arrow). The crucial observation here is that adding back the
removed section while at the same time keeping all the input
values intact [Fig. 1(c)] will not have any impact on the field
distribution because the field amplitude at this added section is
zero. It is thus clear that the predictions of the TCMT cannot
give the correct results in this last scenario.

To confirm the above predictions, we now employ the
scattering matrix approach to analyze the problem shown in
Fig. 2 in detail and determine the values of the input power
signals and their relatives phases that tune the system to this
peculiar operating point. In this case, the input and output field
amplitudes, which we denote as a(1,2)

1 and b(1,2)
1 , together with

the field amplitudes inside the ring just before and after the
junction, which are denoted by a(1,2)

2 and b(1,2)
2 , are connected

by the relation(
b(1,2)

1

b(1,2)
2

)
=

(
τ iκ

iκ τ

)(
a(1,2)

1

a(1,2)
2

)
, (2)

where τ and κ are the real-valued transmission and coupling
coefficients as shown in Fig. 2 and they satisfy the power
conservation relation τ 2 + κ2 = 1. In writing the above rela-
tion, we assumed that the junction has vanishing length. Of
course, in reality, the field tunnels between the waveguide
and the resonator across a finite length. However, this sim-
plification does not affect the main conclusion of our paper
as will soon be seen from the corresponding full-wave simu-
lations. In addition to the above scattering formula, we also
have the following relation: a(1,2)

2 = b(2,1)
2 e−iθ (2,1)

, implying
that |a(1,2)

2 |2 = |b(2,1)
2 |2, i.e., constant power at either side of

each junction. In what follows, we will assume the waveg-
uides are located symmetrically on each side of the resonator
and hence θ (1)

m = θ (2)
m = θm. The mode quantization condition

is thus given by 2θm ≡ βmL = 2mπ for any integer m where
βm is the propagation constant associated with the microring
waveguide mode and L is the total length of the microring
perimeter. In practice, this relation is meaningful only for
larger m values (typically larger than 20) in order to have

modes with high quality factors. By using the above relations,
we find that b(1,2)

2 = i
κ

(a(1,2)
1 + τa(2,1)

1 e−imπ ) (see Appendix A
for details). Accordingly,

η ≡
|Eright|
|Eleft|

=
∣∣b(1)

2

∣∣∣∣b(2)
2

∣∣ =
∣∣a(1)

1 + τa(2)
1 e−imπ

∣∣∣∣a(2)
1 + τa(1)

1 e−imπ
∣∣ . (3)

Here, Eright and Eleft are the complex-valued components
of the electric field perpendicular to the plane of the ring
located at the midpoints of the right and left halves of the
ring, respectively [see the red “X”s in Fig. 3(a)]. Obviously,
the value of η is not necessarily close to unity as otherwise
predicted by TCMT. In fact, the input fields can be chosen
to result in the extreme situation of the field being zero on
one side of the ring, i.e., η = 0 or ∞. For instance, the latter
choice, which corresponds to |Eleft| = 0, can be achieved
when a(2)

1 = ∓τa(1)
1 with the minus or plus signs chosen for m

even or odd, respectively. Importantly, we emphasize that the
above result is valid even in the weak-coupling regime, i.e.,
when κ � 1, which confirms our initial intuition that, under
certain multiexcitation conditions, the TCMT can fail even in
this regime.

B. Full-wave simulations

Next, we verify these results by performing a full-wave
analysis using the COMSOL software package, which is based
on the finite element method suitable for irregular geometries.
Here, the structure under consideration is shown in Fig. 3(a)
together with the corresponding dimensions and material pa-
rameters which are chosen to be relevant to that of silicon
photonics platforms.

Importantly, to ensure we are in the weak-coupling regime,
we chose a relatively large gap between the waveguides and
the ring resonators, namely d = 300 nm. For this design,
we find that τ 2 = 0.9865 and κ2 = 0.0135 which confirms
operation in the weak-coupling limit. The quality factor of this
device is Q = 15200 (see Appendix B). This relatively large
value of Q is chosen to illustrate that our results are valid in
the weak-coupling regime. In Appendix C, we present more
results for the case of a stronger coupling. In our simulations
and without loss of generality, we focus on the quasinormal
mode with m = 57. Full-wave modal analysis shows that the
real part of the complex resonance frequency of that mode is
f0 = 193.5579 THz. In order to target that mode, we launch
waves in the waveguides with that resonance frequency (later
we will scan the input frequency to determine the optimal
operating point that maximizes the mode asymmetry param-
eter η). As a reference point, we first present the simulation
results under a single excitation, i.e., a(1)

1 = 1 and a(2)
1 = 0

(using arbitrary units since the system is linear) as shown in
Fig. 3(b). Clearly, the field along the ring is uniform with
η ≈ 1.01 which confirms operation in the weak-coupling

regime as described before. Here, η ≡ |Eright|
|Eleft| where the fields

are measured at the red “X” points along the ring in Fig. 3(a).
Next, we test the extreme asymmetric field distribution sce-

nario discussed above by using two excitations with a(1)
1 = 1

and a(2)
1 = τ . Note that, since in our case m = 57, we have

e−iθm = −1. As a result, at each junction, the fields inside the
ring interfere destructively. The difference in their amplitudes

033509-3



SIMONSON, OZDEMIR, BUSCH, AND EL-GANAINY PHYSICAL REVIEW A 110, 033509 (2024)

FIG. 3. (a) A schematic diagram of the actual photonic structure used in the full-wave simulations with the following geometric and
material parameters: R = 5 µm (outer radius), w = 250 nm, d = 300 nm (edge-edge separation), the waveguide refractive index n1 = 3.48,
while the background index n2 = 1.45. The red “X”s denote the points where field values are measured. (b) The magnitude of the complex-
valued electric-field distributions inside the structure at resonance under a single excitation of amplitude a(1)

1 = 1 shown by the white arrow
(top left waveguide port). Here, one can observe that the field distribution is almost uniform. (c) Same as in (b) after adding a second resonant
excitation of magnitude a(2)

1 = τ from the right port of the lower waveguide. In this case, the field asymmetry between the left and right sides
of the microring resonator is clear, which indicates the breakdown of the standard TCMT analysis. In these simulations, the coupling between
the waveguides and the ring was chosen to be very weak to emphasize that the effect is not due to strong coupling. In Appendix C, we consider
more commonly used coupling conditions.

is chosen to produce a zero field in the left side of the ring
(see the scattering matrix analysis in the previous section).
However, due to the finite junction size and the adiabatic cou-
pling between the waveguide and the ring, the field does not
completely vanish everywhere. Instead, as shown in Fig. 3(c),
a clear and strong asymmetry in the field distribution with
η ≈ 285 can be observed. Another important observation is
that the total energy inside the ring in Fig. 3(b) is much larger
than the case in Fig. 3(c) (the ratio is ≈104), which is also
consistent with the scattering matrix analysis outlined above.
This point will be discussed further on.

To check the feasibility of observing such an effect in
practice, we perform a sensitivity analysis and plot the field
asymmetry ratio, η, as a function of the excitation frequency,
phase difference between excitation waves (δθm), and the
deviation from the optimal amplitude ratio. The results are
depicted in Fig. 4. From these plots, we can conclude that
the effect is resilient against frequency change (large values
of η can still be obtained for δ f in the range of MHz). The
amplitudes and phases require stronger but realistic control.
As a side note, we observe that the maximum asymmetry
is not achieved at the exact resonance frequency but rather

is shifted by −40 MHz and also occurs for δθm = −4 mrad.
This can probably be explained by the fact that our prediction
for these values based on the scattering matrix approach does
not account for the finite length of the resonator-waveguide
junction.

C. Field expansion in terms of the eigenmodes

While the above analysis and computational results clearly
demonstrate the potential failure of TCMT under certain input
conditions, they do not provide an insight into the reason
behind this effect in terms of the QNMs of the resonator. In
principle, this can be done by projecting the asymmetric field
on the QNMs. This however can be a cumbersome process
since the QNMs are in general not orthogonal [28,29] and
one needs to solve an adjoint problem and use biorthogonality
[28,30,31]. In microring resonators supporting high-quality
modes, the QNMs are tightly confined inside the ring, so we
can focus only on the azimuthal dependence of the mode,
simplifying the analysis (as the modes are nearly orthogo-
nal), and also provide a deeper understanding of the results.
Specifically, we can approximate the QNMs by |En(r, φ)〉 =
|R(r)〉 |�n(φ)〉. In writing the above expression, we assumed

FIG. 4. Plots of the asymmetry parameter
|Eright |
|Eleft | as functions of δ f (a), δθm (b), and |a(2)

1 |2 (c). Clearly, the field asymmetry can be still
observed for a range of input parameters. As discussed in the text, the maximum asymmetry occurs for an input frequency and phase that is
shifted from the ideal conditions derived from the scattering matrix analysis. A possible explanation is that in our analysis, we considered a
zero size coupling junction between each waveguide and the ring resonator.

033509-4



BREAKDOWN OF TEMPORAL-COUPLED-MODE THEORY … PHYSICAL REVIEW A 110, 033509 (2024)

that the field distribution of the QNM can be approximately
factorized into two separate functions of the coordinates r and
φ, where the radial part r does not depend on the quantization
index n. This approximation is reasonable for two reasons:
the ring is made of a single-mode waveguide with a radius
almost ten times larger than the wavelength, λ, inside the ring,
and the free spectral range (FSR) is a small fraction of the
wavelength (FSR ≈ λ/57 for our ring parameters). Hence, the
radial parts of wave functions associated with the neighboring
modes are almost identical and resemble the transverse mode
distribution of the straight waveguide. Furthermore, we will
use the normalizations 〈R|R〉 = 1 and 〈�n|�n〉 = 1. Here we
assume the electric field to be polarized in the z direction, i.e.,
perpendicular to the ring plane, and hence one can employ
the standard complex scalar inner product used in quantum
mechanics. In this regime, it is easy to see that |�n(φ)〉 =

1√
2π

e−inφ . Note that 〈�n|�m〉 = δn,m. By recalling that un-
der the extreme asymmetry condition the scattering matrix
method predicts the presence of the field only in the right side
of the ring and vanishing field in the left side, we can then
express the field distribution as |E (r, φ)〉 = |R(r)〉 |�(φ)〉,
where |�m(φ)〉 = iκe−imφ for 0 < φ < π and |�(φ)〉 = 0 for
π < φ < 2π , where m is the quantization number associated
with the resonant mode under consideration (recall that in our
simulations m = 57). Here, we took the point of the junction
1 as the reference point for φ = 0 and assumed that φ rotates
CW. By using the expansion E (r, φ) = ∑

n cnEn(r, φ), and
the above relations, we find cn = κ√

2π (n−m)
[ei(n−m)π − 1] (see

Appendix D for a detailed calculation). In other words, cm =
iκ

√
π/2, cn = −

√
2
π

κ
(n−m) when (n − m) is an odd number,

and cn = 0 otherwise. Note that the above expression predicts
that cn is finite for certain values of n < 0. This is coun-
terintuitive since it means that there is energy transfer from
the waveguides to the counterclockwise (CCW) modes. We
believe this to be an artifact originating from our assumption
of zero junction length and hence a uniform field across the
right side of the ring. In reality, the waveguides approach the
ring adiabatically and the field will vary across the perimeter
which will eventually lead to vanishing CCW fields in the
absence of any other source of back reflection. The important
point to emphasize here is that the Fourier series components
for the QNMs having quantization numbers n in the vicinity
of the resonant mode m are comparable to the coefficient
associated with mode m itself (for instance, |c57/c56| = π/2).
It is this interference between these modes that results in the
sharp asymmetry in the field distribution.

To better understand why these modes are excited with
comparable efficiency, we plot a schematic diagram for the
optical response associated with the QNMs as shown in Fig. 5.
This response function could be for example the transmission
in an add-drop filter configuration. Due to the finite quality
factor of every mode, the response is a Lorentzian curve rather
than a delta function. Under a single excitation at resonance
with mode m, only that mode is highly excited. Note that the
neighboring modes are also excited but with a much lower
efficiency as depicted in the figure using the blue and green ar-
rows. On the other hand, under a double excitation, each mode
is driven by a term of the form S1 + e−iβnL/2S2, where L is the
length of the microring, i.e., its perimeter. Here βn ≡ βn(ω) is

FIG. 5. A schematic of the response function (an add-drop con-
figuration for example) associated with the resonant mode m and the
neighboring modes m ± 1. Due to the modal losses, the response
function has a finite linewidth. The overlap between the tails of the
modes is exaggerated for illustration only. In the presence of an input
signal, different modes can be excited depending on their spatial and
spectral overlap with the input signal. Under a single excitation that
exhibits significant spatial overlap and resonance frequency match-
ing with mode m, only that mode will be dominantly excited with
much smaller excitations of the neighboring modes (assuming, of
course, that there is an overlap between the excitation signal and
all of the relevant modes). This situation is depicted in (a) where
the strength of the excitation is schematically represented by the
arrows (note that the contribution from modes m ± 1 is exaggerated
here for illustration). When two different excitations are used and
their amplitudes and phases are adjusted to significantly reduce the
overlap between the collective excitation and the resonant mode m,
it is possible for the modes m, m ± 1 (as well as other neighboring
modes) to have comparable amplitudes as shown schematically by
the length of arrows in (b). In that case, the interference between
these modes can lead to a nonuniform field distribution along the
microring resonator.

the propagation constant associated with the ring waveguide
mode of QNM n. Even when the waveguide is single moded,
the fact that each QNM has a different resonance frequency
means that βn varies from one mode to another. For the
resonant mode with n = m, we have e−iβmL/2 ≈ −1 for odd
values of m (which is the situation considered in our full-wave
simulation example), weakly exciting the resonant mode and
bringing its excitation amplitude to those associated with the
neighboring QNMs having even values of n with e−iβnL/2 ≈ 1.
This picture provides a direct insight into the formation of the
asymmetric field distribution described above. In addition, it
also provides a powerful predictive tool to tailor this behavior
in photonic systems. For instance, based on this analysis, one
would expect this effect to be more pronounced in larger
resonators with smaller free spectral range. On the other hand,
it predicts that this effect cannot be observed in single-mode
resonators such as those implemented using photonic crystal
structures [32,33] unless radiation modes are invoked.

D. Multimode TCMT

The discussion above suggests that TCMT can still be
used to obtain the correct results if one considers coupling
to many QNMs instead of just the resonant mode. To il-
lustrate this point, let us consider again the case where the
resonant state corresponds to an odd value of m. In that
case, the steady-state field amplitude of that mode is [see
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Eq. (1) and its solution] Um = 1√
2γ

(S1 − S2) (recall that in

that case, θ (1)
m ≡ βmL/2 is an odd multiple of π and hence

e−iθ (1)
m = −1). Conversely, for an off-resonant mode with an

even n (for which e−iθ (1)
n = 1), the field amplitude is given

by Un =
√

2γ

i(ωn−ωm )+2γ
(S1 + S2). Qualitatively, it is clear from

the above expression that if S1 ∼ S2, both Um and Un can be
comparable in magnitude despite the fact that Um is excited
at resonance. But, we can make this discussion even more
quantitative by noting that in the weak-coupling regime, γ �
FSR. Thus, we can write Un ≈

√
2γ

i(ωn−ωm ) (S1 + S2). By using
ωn = βnvp = 2πnvp/L, where vp is the phase velocity, we

finally obtain Un = i
√

2γ L
2π (n−m)vp

(S1 + S2). Furthermore, since τ

is very close to unity, it follows that S1 + S2 ≈ 2S1 (recall
that in this paper we consider the excitation S2 ∼ τS1) and
hence Un ≈ i

√
2γ L

π (n−m)vp
S1. Next, we evaluate the resonant term

Um. The excitation term in this case is given by S1 − τS1 =
S1 − √

1 − κ2S1 ≈ κ2

2 S1. We note then that from the scatter-
ing matrix analysis, the relative energy lost from the resonator
to the waveguides is κ2 + τ 2κ2 ≈ 2κ2. Since the time it takes
for a round trip is T = L/vp, we find the energy loss rate to be
2κ2vp

L . Finally, from TCMT, we know that the energy loss rate
in the resonator is 4γ . Putting these results together, we obtain

that κ2vp

2γ L ≈ 1. It follows that the multimode TCMT gives
identical results to the Fourier coefficients obtained from the
transmission matrix method, namely Un/Um = cn/cm. Thus, it
is clear that the correct physical behavior can be retrieved by
using a multimode TCMT that accounts for the off-resonant
excitations of multiple longitudinal modes.

Before we conclude, we make the following important re-
marks. First, in demonstrating the breakdown of the standard
TCMT associated with the field asymmetry under multiple
excitations, we have used a lossless microring resonator. If the
ring has intrinsic losses, the field amplitude will decay along
the propagation direction. In that case, the main result of this
paper is still valid but for different relative amplitudes and
phases of the two input signals (different values are needed
to produce the destructive interference on one side of the
ring). Second, in addition to the very different output power
distribution under single and double excitations [see Figs. 3(b)
and 3(c)], our results are also relevant to the situation where
a third waveguide is coupled to the ring at the location of the
“X” sign on the left side of the ring in Fig. 3(a) or in the case
where plasmonic particles or nanoantennas are deposited on
the ring (see for example [34]) at the aforementioned position.
In either of these situations, the light coupled out of the ring
will strongly depend on the excitation condition.

III. CONCLUSION

In summary, we have demonstrated that standard TCMT
can fail even in the weak-coupling regime where it is assumed
to always hold. Our analysis based on the scattering matrix
method of microring resonators, which is also confirmed by
using full-wave simulations of Maxwell’s equations, clearly
shows that under certain multiexcitation conditions, the
energy distribution inside the ring is highly nonuniform with
the light more concentrated in one-half of the ring. This is in

stark contrast to TCMT which predicts uniform light distribu-
tion. To better understand this behavior, we have expressed the
steady-state, nonuniform field distribution inside the resonator
in terms of its QNMs. In doing so, we have taken advantage
of the relatively high Q factor of the resonator and assumed
that the QNMs are orthogonal, which is a condition that will
clearly not apply in resonators with low Q factors. Finally,
we have shown that one can still retrieve the correct results
from TCMT by accounting for not only the resonant mode
excitation but the off-resonant modes as well. Given the wide
range of applications where TCMT is typically employed
for performing a fast analysis, our results indicate that the
application of TCMT must be considered with caution.
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APPENDIX A: FIELD AMPLITUDE CALCULATION

Here, we derive the expression that appears before Eq. (3)
for the field amplitudes b(1,2)

2 in terms of the input fields
a(1,2)

1 from ports p1 and p2, respectively. From the sec-
ond line of Eq. (2), we have b(1,2)

2 = iκa(1,2)
1 + τa(1,2)

2 . By
noting that a(1,2)

2 = b(2,1)
2 e−iθ (2,1)

m and again using the sec-
ond line of Eq. (2), we obtain b(1,2)

2 = iκa(1,2)
1 + τ (iκa(2,1)

1 +
τb(1,2)

2 e−iθ (1,2)
m )e−iθ (2,1)

m . Finally, by using τ 2 + κ2 = 1 and
θ (1)

m = θ (2)
m = mπ , we obtain b(1,2)

2 = i
κ

(a(1,2)
1 + τa(2,1)

1 e−imπ ).

APPENDIX B: QUALITY FACTOR CALCULATION

The quality factor of the loaded resonator shown in Fig. 2
is given by Q ≡ ω0/4γ . Here, ω0 = 1216.16 THz, which
corresponds to the m = 57 mode. The decay rate parameter γ

can be obtained by considering the add-drop configuration and
calculating the transmission from port p1 to p4 of Fig. 1(a). By
following this standard procedure (see [35] for details), we
estimate that γ = 20 GHz, and hence Q = 15 200. We note
that this relatively high Q value was chosen to emphasize that
our results are valid even in the very weak-coupling regime.

APPENDIX C: NUMERICAL EXAMPLE FOR A
STRUCTURE WITH A STRONGER COUPLING

In the main text, we demonstrated the breakdown of the
TCMT for a system that exhibits very weak coupling between
the microring resonator and the waveguide. Here, for com-
pleteness, we also present the full-wave simulation results
for a more practical example where the separation between
the ring and the waveguide is d = 200 nm, resulting in
τ 2 = 0.9018 and κ2 = 0.0979, yielding a quality factor of
Q = 2134. As can be seen in Figs. 6(a) and 6(b), our results
persist: the TCMT works well for a single excitation and
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FIG. 6. (a) The magnitude of the complex-valued electric-field
distributions inside the structure at resonance under a stronger-
coupling condition (with Q = 2134) for a single excitation with
amplitude a(1)

1 = 1 as shown by the white arrow (top left waveguide
port) and (b) for a double excitation with a(1)

1 = 1 and a(2)
1 = τ .

Obviously, the same behavior observed in Figs. 3(b) and 3(c) persists
here.

breaks down for a carefully selected double excitation (the
amplitude and phase relation between the two excitations in
this case are exactly the same for the structure used in the
main text). In this last scenario, we found that η ≈ 418.

APPENDIX D: FIELD EXPANSION CALCULATION

Within the context of the scattering matrix method, we
have found that under a particular excitation (see the main
text), light will exist only in half of the ring and will vanish in
the other half, i.e., we provided an expansion of the asymmet-
ric electric field in terms of the QNMs of the ring resonator:
|�m(φ)〉 = iκe−imφ for 0 < φ < π and |�(φ)〉 = 0 for π <

φ < 2π . By choosing 〈R|R〉 = 1 and |�n(φ)〉 = 1√
2π

e−inφ to
ensure that 〈�n|�n〉 = 1, we evaluate the Fourier coefficients
defined by cn = 〈En|Em〉

|En|2 to be

cn = iκ√
2π

∫ π

0
einφe−imφ dφ

= κ√
2π (n − m)

[ei(n−m)π − 1]. (D1)

In deriving the above expression, we made the reasonable
assumption that |R〉 is independent of the quantization indices
and that the modes are quasiorthogonal, which is valid for
resonators with relatively high quality factors.
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