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Raman effects in quantum frequency conversion using Bragg scattering
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We present a quantum-mechanical model that describes fiber-based frequency conversion by four-wave-
mixing Bragg scattering in the presence of Raman interactions. In the case of continuous-wave pumps, we find
closed-form expressions for the conversion efficiency and photon statistics characterized by the second-order
correlation function. For pulsed pumps, we derive a highly general model based on Green functions and provide
a numerical solution method using a split-step scheme. In both cases, we find that noise from spontaneous
Raman scattering can pose a serious challenge to this type of frequency conversion if the pumps are less than
30 THz from the quantum fields. However, this impact can be mitigated with cross-polarized pumps and, on the
anti-Stokes side, through fiber cooling.
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I. INTRODUCTION

Quantum frequency conversion is a crucial component for
future photon-based quantum communication and computing
applications [1–4]. The ability to flexibly convert photons
between wavelengths without destroying the fragile quantum
states [5,6] provides an interface between different parts of a
quantum-optical system such as a photon source, a transmis-
sion fiber, or a quantum memory [7].

Four-wave-mixing Bragg scattering (FWM-BS) provides
a platform free of additional noise [8], ideal for quantum
frequency conversion. Compared to the well-known processes
of sum-frequency and difference-frequency generation [9,10],
the two pump fields in FWM-BS provide increased flexibility
[11]. In addition, FWM-BS is possible in optical fibers with
efficient integration into an existing network [12,13]. This has
proved to be a promising platform for frequency multiplex-
ing of single photons [14] and has furthermore been used to
demonstrate quantum interference between spectral channels
[15,16].

Unfortunately, fiber-based FWM-BS is often accompanied
by a broadband emission from spontaneous Raman scattering
(SpRS) induced by nonlinear interactions of light and local-
ized material vibrations [13,17]. This can be partly mitigated
through cooling [12] and partly through restriction to short
frequency shifts [13]. However, long frequency shifts require
a strong pump that is spectrally close to the fragile quantum
fields and thus necessitates a more careful analysis of the im-
pact of Raman scattering. Appropriate quantum models exist
in the context of photon-pair generation [18,19], but FWM-BS
has only been studied using classical models [20] or with a
full Lindblad approach [21] with the associated computational
challenges.

In this work, we provide a semiclassical quantum model of
FWM-BS in the presence of Raman scattering by exploiting
the bilinear nature of the equations of motion. This leads
to exact solutions for the quantum fields in terms of Green
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functions without needing to restrict the Hilbert space. Using
this model, we provide quantitative guidelines for how the
quality of frequency conversion depends on the system config-
uration. We study the photon statistics and spectral properties
of converted single photons in the presence of Raman scat-
tering for both continuous-wave (cw) pumping and pulsed
pumping using a numerical split-step scheme.

II. THEORY

In this section, we introduce the evolution equations for the
quantum and classical pumps and derive a general expression
for the second-order correlation function for the frequency-
converted light.

A. Frequency conversion using Bragg scattering

FWM-BS is the coherent interaction between four spec-
trally separated fields, as illustrated in Fig. 1(a). An input
signal field (s) is frequency translated into the idler field (i)
through a χ (3)-nonlinear interaction mediated by two strong
pumps (p and q), under the requirement of energy con-
servation ωi − ωs + ωp − ωq = 0. For the remainder of our
analysis, we assume that the separation � = ωi − ωq is within
the Raman bandwidth, while the two pumps are separated
sufficiently far that we may neglect Raman interactions over
this frequency span (that is, there are no phonon modes with a
sufficiently large frequency to mediate such interactions). For
linearly polarized fields, the χ (3)-tensor distinguishes between
two different polarization configurations of the fields: co-
polarized and cross polarized, as illustrated in Fig. 1(a). The
co-polarized configuration has the largest nonlinear strength
and is therefore usually preferable [22]. However, the Raman
response divides the cross-polarized configuration into two:
the isotropic and anisotropic configurations [22]. These cor-
respond to the fields within the Raman bandwidth of each
other being co-polarized and cross polarized, respectively.
The co-polarized configuration maximizes Raman scattering
through the parallel Raman response, whereas the anisotropic
minimizes it through the orthogonal Raman response. The

2469-9926/2024/110(3)/033508(12) 033508-1 ©2024 American Physical Society

https://orcid.org/0009-0002-1583-5206
https://orcid.org/0000-0001-6738-5847
https://ror.org/04qtj9h94
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.033508&domain=pdf&date_stamp=2024-09-04
https://doi.org/10.1103/PhysRevA.110.033508


KORSGAARD, KOEFOED, AND ROTTWITT PHYSICAL REVIEW A 110, 033508 (2024)

FIG. 1. (a) Illustration of two possible polarization configura-
tions of the four fields: idler (i), signal (s), and pumps (p and q). The
pumps are separated from the nearest quantum fields by a frequency
detuning �. (b) The Raman response corresponding to the two po-
larization configurations for a silica fiber. The data are acquired from
Refs. [22,24].

corresponding response functions for a silica fiber are il-
lustrated in Fig. 1(b). For these reasons, we focus on the
co-polarized and anisotropic configurations in the following
analysis. It should be noted that these polarization config-
urations only hold for linearly polarized fields. The model
presented in this paper is completely general and is therefore
applicable for more complicated polarization modes, such as
orbital angular momentum modes [23] and spatial mode con-
figurations, although we only consider co-propagating modes.
For the sake of simplicity, we focus on the linearly polarized
modes during the presentation of the model.

B. Field equations

The full-vectorial quantum field equation describing FWM
for quantum operators representing the two polarization com-
ponents has been derived in previous papers [18,25]. In
Appendix A, we have deduced the nonlinear coefficients and
response functions when the quantum operators represent
arbitrary spatial and polarization modes and find that the
resulting equation of motion is identical to the full-vectorial
quantum field equation. To model FWM-BS, we consider the
four fields described in the previous section and only keep the
FWM terms for which ωp − ωq + ωi − ωs = 0 is fulfilled. To
simplify the equations, we decouple the pump equations from
the signal and idler equations by letting the pumps be classical
fields that are normalized such that |Ap,q|2 is the power. This
corresponds to an undepleted pump approximation. The quan-
tum fields are normalized to have the standard equal-space
commutation relations [ân(z, t ), â†

m(z, t ′)] = δnmδ(t − t ′). The
idler equation is thereby

∂zâi = −β1i∂t âi − i

2
β2i∂

2
t âi

+ 2i(γip|Ap|2 + γiq|Aq|2)âi + 2γipqsA
∗
pAqâs

+ iAq

∫
dt ′ fiqps(t − t ′)A∗

p(z, t ′)âs(z, t ′)

+ iAq

∫
dt ′ fiqqi(t − t ′)A∗

q(z, t ′)âi(z, t ′) + im̂iqAq. (1)

The indices are contracted such that ip = iiqq and the fields
without an argument are evaluated in (z, t ). The instantaneous
electronic response is described by γi jkl , and the noninstan-
taneous Raman response is represented by fi jkl , and each
characterizes the interaction between the four fields i, j, k, and
l . The noise operator m̂i j describes the creation or annihilation
of a phonon under the interaction between the two fields i
and j and thereby represents SpRS. Both the Raman response
function fi jkl and the noise operator m̂i j oscillate at frequency
�, as described in Appendix A. In addition, the linear dis-
persion is expanded around the central idler frequency in
terms of dispersion parameters β1i and β2i. In this model, we
kept the terms responsible for linear dispersion up to second
order, nonlinear phase modulation (NPM) from the pumps,
FWM-BS, delayed FWM-BS, delayed NPM, and SpRS. We
neglected the Raman terms that require interaction with a
phonon at the large frequency separation, for example, SpRS
from pump p to the idler. The signal field equation is identical
under the substitution s ↔ i and p ↔ q. We note that unlike
their electronic counterparts, the delayed versions of NPM and
FWM-BS do not perfectly conserve the energy of the optical
fields, leading to stimulated Raman effects.

The noise operators are based on the initial thermal phonon
distribution and are thus completely determined by their
second-order correlation,

〈m̂†
i j (z, ω)m̂kl (z

′, ω′)〉 = δ(ω − ω′)δ(z − z′)Fi jkl (ω), (2a)

Fi jkl (ω) =
√

2π Im[ fi jkl (ω)]nth(ω + �), (2b)

where nth(ω) = [exp( h̄ω
kBT ) − 1]−1 is the thermal population

number. Since the field equations are bilinear in the quantum
fields, the solution takes the simple input-output form [26,27]
after an interaction of length z = 
,

âi (
, t ) =
∫

dt ′[Gii(
, t, t ′)âi(0, t ′) + Gis(
, t, t ′)âs(0, t ′)]

+ i
∫

dt ′
∫ 


0
dz′[Aq(z′, t ′)Gii(
 − z′, t, t ′)m̂iq(z′, t ′)

+ Ap(z′, t ′)Gis(
 − z′, t, t ′)m̂sp(z′, t ′)], (3)

where Gi j are Green functions. The first term here represents
the frequency-conversion process, while the second term rep-
resents contamination from SpRS that is also subjected to the
frequency-conversion effect after its creation.

The strong classical pumps are unaffected by the single-
photon-level FWM-BS and are thus governed by

∂zAp = −β1p∂t Ap − i

2
β2p∂

2
t Ap

+ γp|Ap|2Ap + 2γpq|Aq|2Aq

+ iAp

∫
dt ′ fp(t − t ′)|Ap(z, t ′)|2

+ iAq

∫
dt ′ fpq(t − t ′)|Aq(z, t ′)|2. (4)
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The equation for pump q is found by substituting p ↔ q. By
treating the pumps classically, the problem simplifies con-
siderably since the equations of motions are now bilinear
in the signal and idler fields. However, as a consequence
of the delayed nonlinear response and the phonon operator,
the optical-field commutators are no longer perfectly pre-
served. In Appendix B, we demonstrate the validity of the
quantum model by showing that the commutators are pre-
served to first order in the Raman response. In this sense,
the model is perturbative, which is the experimentally de-
sired situation. This is most problematic on the Stokes side
where the field operators are (classically) amplified instead
of populating higher Fock states, and the spontaneous Raman
scattering cannot be minimized in regard to the temperature.
On the anti-Stokes side, which is the most experimentally
relevant, this behavior is less problematic since the induced
decay of the field operator simply lowers their expectation
values with respect to the vacuum, while a lower tempera-
ture decreases the amount of spontaneous Raman scattering.
Calculating the photon flux, the amplification and depletion
are correctly captured; however, the second-order correlation
function measures the photon statistics, which can therefore
not be described properly under a classical amplification.
Since the second-order correlation function is insensitive to
loss, the photon statistics of classical depletion are accurately
described.

C. Second-order correlation function

For single-photon applications, the second-order correla-
tion function is an important metric. At the waveguide output
z = 
 and at times t1, t2, it is defined as

g(2)(t1, t2) = 〈â†
i (
, t1)â†

i (
, t2)âi(
, t2)âi(
, t1)〉
〈â†

i (
, t1)âi(
, t1)〉〈â†
i (
, t2)âi(
, t2)〉 . (5)

At zero delay, a g(2)(t, t ) value of close to 0 indicates strong
antibunching and thus single-photon statistics at the output at
time t . For a frequency-converted single photon, a value larger
than 0 indicates contamination by Raman noise photons. We
consider a single-photon input state with a temporal amplitude
ψ (t ),

|ψ〉 =
∫

dt ψ (t )â†
s (t )|0〉, (6)

for which the second-order correlation function is calculated
(see Appendix C for details),

g(2)(t1, t2) = 1

Iout (t1)Iout (t2)
{|ψout (t1)|2E (t2, t2)

+ |ψout (t2)|2E (t1, t1) + E (t1, t1)E (t2, t2)

+ 2Re[ψ∗
out (t1)ψout (t2)E (t1, t2)] + |E (t1, t2)|2},

(7)

where the expectation values are determined in terms of the
Green functions,

Iout (t ) = |ψout (t )|2 + E (t, t ), (8a)

ψout (t ) =
∫

dt ′Gis(
, t, t ′)ψ (t ′), (8b)

E (t1, t2) =
∫ 


0
dz

∫∫
dtdt ′Q∗(z, t1, t )Q(z, t2, t ′)F (t − t ′),

(8c)

Q(z, t, t ′) = Aq(z, t )Gii (z, t, t ′) + Ap(z, t )Gis(z, t, t ′). (8d)

We have assumed a balanced Raman response, F = Fiqqi =
Fiqps, such that the Green functions can be factorized. Here,
F (t ) is the inverse Fourier transform of F (ω). Thus, the prob-
lem of calculating g(2) is reduced to the calculation of the
Green functions.

In realistic experiments, we cannot access g(2)(t1, t2) di-
rectly due to the finite temporal resolution of single-photon
detectors. Instead, we measure photon detection events
(“clicks”) within a certain time window T . Thus, the exper-
imentally relevant metric is instead [28]

g(2)
click =

∫∫ T/2
−T/2 dt1dt2〈â†

i (
, t1)â†
i (
, t2)âi(
, t2)âi(
, t1)〉[ ∫ T/2

−T/2 dt
〈
â†

i (
, t )âi (
, t )
〉]2 .

(9)
In the following sections, we analyze the second-order photon
statistics of frequency-converted single photons in the pres-
ence of stimulated and spontaneous Raman scattering for both
the case of cw pumps and the experimentally relevant case of
pulsed pumps.

III. CONTINUOUS-WAVE PUMPS

In this section, we analyze the case of cw pumps where
analytical solutions are obtained.

A. Signal and idler evolution

The cw pumps propagate with the pure phase evolu-
tion Ap,q(z, t ) = √

P0eiφ(z). Defining the Fourier transform as
âi(z, ω) = 1√

2π

∫ ∞
−∞ dt âi (z, t )eiωt , we obtain the simple quan-

tum evolution equation for the idler,

∂zâi (z, ω) = iκi(z, ω)âi(z, ω)

+ ig(ω)âs(z, ω) + i
√

P0m̂iq(z, ω), (10)

where the coupling functions are given by

κi(ω) = βi(ω) +
√

2πP0 fiqqi(ω) + �β

2
, (11a)

g(ω) = 2P0γiqps +
√

2πP0 fiqps(ω). (11b)

Here, the real part of κi describes phase modulation, while
the imaginary part describes classical. amplification or de-
pletion. The real part of g(ω) describes the gain in the idler
field due to the frequency conversion and stimulated Raman
scattering given by the imaginary part. The signal equation is
found under the substitution i ↔ s, q ↔ p, and �β → −�β.
Due to the pumps being cw, the Green functions take the form
Gi j (
, t, t ′) = Gi j (
, t − t ′), and the solution in the frequency
domain is thereby found,

âi (
, ω) = Gii (
, ω)âi(0, ω) + Gis(
, ω)âs(0, ω)

+ i
√

P0

∫ 


0
dz[Gii(
 − z, ω)m̂iq(z, ω)

+ Gis(
 − z, ω)m̂sp(z, ω)], (12)
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where the Green functions are given by

Gii(z, ω) = e
i
2 [κs (ω)+κi (ω)]z

k(ω)

{
k(ω) cos[k(ω)z]

− i

2
�β(ω) sin[k(ω)z]

}
, (13a)

Gis(z, ω) = i
g(ω)

k(ω)
e

i
2 [κs (ω)+κi (ω)]z sin[k(ω)z], (13b)

and we have defined the effective coupling function
due to phase mismatch, field walk-off, and higher-order
dispersion as

k(ω) = 1
2

√
4g(ω)2 + �β(ω)2. (14)

From the explicit expressions of the Green functions, the
classical amplification or depletion of the quantum fields is
seen to enter through the imaginary part of κs,i and k.

1. Spectral filtering

In practice, the idler is filtered spectrally to reduce the
amount of spontaneously emitted Raman photons. The filtered
quantum field after the nonlinear interaction is written as

âi(
, t ) = 1√
2π

∫ ∞

−∞
dωH (ω)âi (
, ω)e−iωt , (15)

where H (ω) is the spectral filter transmission function, which
is centered around the center frequency of the idler. The output
temporal distribution of the photon state is thereby

ψout (t ) = 1

2π

∫
dt ′

∫
dωH (ω)Gis(
, ω)ψ (t ′)e−iω(t−t ′ ).

(16)

The expectation value of the phonon operators is similarly
found to be

E (t1, t2) = P0√
2π

∫ 


0
dz

∫
dω|H (ω)|2

× |Gii(z, ω) + Gis(z, ω)|2F (ω)e−iω(t1−t2 ). (17)

In the following, we consider a rectangular spectral filter with
spectral width �ω.

2. Linearly polarized fields

The results presented in the previous sections are com-
pletely general as they describe any field mode or polarization.
In the following examples of the model, we restrict our at-
tention to the experimentally relevant situation of linearly
polarized fields. Additionally, we parametrize the response
functions through the Raman fraction fR, which describes the
fraction of the nonlinear response that is attributed to Raman
scattering. For silica fibers, which will be our focus of interest,
fR ≈ 0.18 [29]. The electronic and Raman response functions
thereby take the form [18]

γi jkl = 1
2γ (1 − fR)(δi jδkl + δikδ jl + δilδ jk ), (18a)

fi jkl (t ) = γ fRei�t
[
ha(t )δi jδkl + 1

2 hb(t )(δikδ jl + δilδ jk )
]
,

(18b)

FIG. 2. The relative output flux, as a function of the di-
mensionless nonlinear interaction strength γ P0
 in a co-polarized
configuration. The colored lines include Raman scattering and are
illustrated for fR = 0.18, detuning �/2π , and �ω/Iin = 1.

where the indices on the Kronecker deltas refer to the po-
larization of the corresponding mode, and γ depends on the
spatial mode overlap of the field profiles, as described in
Appendix A. In the remaining, we assume a single-mode
fiber such that γ is the same for NPM and Bragg scattering.
Throughout, we use the nonlinear coefficient of silica, γ ≈
1 (W km)−1 [30]. The sum of the isotropic-orthogonal ha and
anisotropic-orthogonal hb Raman response gives the parallel
response h, which can be estimated as a sum of harmonic
oscillators,

h(t ) = �(t )
∑

i

Fidi sin(ωit )e−dit , (19)

where �(t ) is the Heaviside step function, ωi is the resonance
frequency of the phonons, Fi is the resonance amplitude, and
di is the phonon decay rate. Using 11 oscillators provides
a good approximation for the silica Raman response func-
tion [24]. From the parallel response function, we extract the
anisotropic response function using Ref. [22].

B. Photon flux

To illustrate how Raman scattering impacts the general
frequency-conversion process, we start by investigating the
frequency-converted photon flux Iout. We consider a single
photon with a spectral width much smaller than the variations
of the Raman response, being 1

τp
� min{di}. The filter width

is correspondingly decreased, such that �ω � min{di}. For
the remainder of this section, we assume perfect phase match-
ing �β(ω) = 0 corresponding to k(ω) = g(ω). To first order
in the filter width, the output flux thereby becomes

Iout = |Gis(
, ω = 0)|2Iin

+ �ω

4
√

2π
{1 − exp[−8π fRR(0)γ P0
]}nth(�), (20)

where Im{ f (ω)} = √
2πγ fRR(ω), and the indices have been

suppressed for compactness. In Fig. 2, the relative output flux
is shown as a function of the dimensionless nonlinear interac-
tion strength γiqpsP0
, in a Stokes (�/2π = −17 THz) and an
anti-Stokes (�/2π = 17 THz) configuration, with fR = 0.18.
These are compared to the relative output flux in the absence
of Raman scattering, fR = 0.
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The optimal interaction strength in the absence of Raman
scattering is given by γiqpsP0
 = π

2 , as can be seen directly
from the Green function Gis. As Raman scattering is in-
troduced, the relative output flux significantly depends on
the frequency detuning. Due to stimulated Raman scattering,
the Stokes configuration experiences gain, whereas the anti-
Stokes configuration experiences depletion. The impact of
stimulated Raman scattering can be seen more easily through
the explicit expression of the Green function,

|Gis|2 = e−2Im{κ}


2
{cosh[2Im(g)
] − cos[2Re(g)
]}. (21)

The imaginary part of the cross-field coupling function g
induces a gain through Raman-induced Bragg scattering, ef-
fectively constituting a four-field stimulated Raman scattering
effect. However, the imaginary part of the self-field cou-
pling function κ introduces gain or absorption, depending
on the sign of �, and is the well-known stimulated Raman
scattering effect. Evidently, stimulated absorption requires an
anti-Stokes configuration, corresponding to Im{κ} > 0 and
Im{g − κ} < 0. In the examples presented here, we consider a
balanced Raman response, Im{g − κ} = 0. To see the impact
of spontaneous Raman scattering, it is necessary to investigate
the second-order correlation function.

C. Second-order correlation

Having determined the output probability amplitude ψout

and the phonon expectation value, given by Eq. (17), the
second-order correlation function is directly determined by
Eq. (7). We choose to investigate an input state with a
Gaussian temporal amplitude, given by

ψ (t ) = 1
√

τp(2π )
1
4

e
− t2

4τ 2
p , (22)

where τp is the standard deviation of the probability distri-
bution |ψ |2. For the present analysis, we focus on photon
pulses with a duration of the order of the Raman response,
τp = 0.1 ps. The filter width is chosen corresponding to the
pulse duration �ω = 2

τp
, so that the photon with high proba-

bility passes through the filter.
In Fig. 3(a), the second-order correlation function given by

Eq. (7) is shown. Along the dashed line in Fig. 3(b), the g(2)

value at zero delay time g(2)(t, t ) is found. From this, the idler
field is seen to exhibit single-photon statistics when the single
photon is present, |t1| = |t2| < τp. Outside the time window
of the single photon, the idler field exhibits thermal statistics,
which indicates the presence of spontaneous Raman photons,
which are inherently thermal. The solid line in Fig. 3(b) corre-
sponds to the g(2) value as a function of delay time, measured
exactly at the single-photon peak.

We now consider the experimentally relevant time-resolved
g(2)

click value with a time window of 10 ps, of the order of
realistic detector resolutions [31]. In Fig. 4(a), g(2)

click is shown
as a function of the nonlinear interaction strength with a vary-
ing interaction length, for a frequency detuning of �/2π =
17 THz and a fiber temperature of 300 K. Initially, the field is
dominated by spontaneous Raman photons, which is charac-
terized by a value of g(2)

click ∼ 1. Here, the thermal statistics are

FIG. 3. (a) The second-order correlation function g(2)(t1, t2)
illustrated for τp = 0.1 ps, fR = 0.18, �/2π = 17 THz, and a tem-
perature of 300 K. (b) The cross sections of g(2) given by the solid
and dashed lines in (a).

not apparent since the thermal correlations are much shorter
than the detector window due to the broadband nature of the
Raman spectrum. As the interaction length increases, g(2)

click
decreases, indicating the conversion of the single photon. The
anisotropic polarization configuration yields a significantly
lower g(2)

click value, compared to the co-polarized configuration,
even though the appropriate interaction length is a factor of
three larger. This is primarily caused by the orthogonal Raman
response being approximately a factor of 10 smaller. The
optimal g(2)

click value is not obtained at the optimal interaction
length due to the linear increase in spontaneously generated
Raman photons.

In Fig. 4(b), g(2)
click is shown as a function of frequency

detuning at the optimal interaction length, for three different
temperatures and the two polarization configurations. The
Raman response is clearly present for the two larger temper-
atures, which again shows the significance of the anisotropic
response. At 22 THz, the g(2)

click value is comparable for the
two polarization configurations due to a small difference in the
Raman responses [see Fig. 1(b)], while the interaction length
for the anisotropic configuration is still a factor of 3 larger.
For the low temperature 4 K, the phonon occupation is almost
nonexistent, thereby suppressing the amount of spontaneous
Raman scattering.

In the example presented here, the single-photon duration
is of the order of the Raman response, ∼0.1 ps. However,
single photons produced by quantum dots are usually of
the order of nanoseconds, permitting a filter width of the
order of GHz [32]. We therefore consider the regime in
which the spectral filter width �ω is much smaller than the
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FIG. 4. (a) The time-resolved second-order correlation value
g(2)

click as a function of nonlinear interaction strength, with γ P0 =
1 (km)−1, fR = 0.18, a fiber temperature of 300 K, and a frequency
detuning of �/2π = 17 THz. (b) g(2)

click as a function of frequency
detuning. This is illustrated for the co-polarized (solid line) and
the anisotropic (dashed line) polarization configuration, for three
different fiber temperatures. The black dotted lines correspond to the
approximated g(2)

click value, given by Eq. (23), for the corresponding
temperatures.

variations of the Raman response. Additionally, we assume
that the photon is completely captured both spectrally and
temporally, such that T �ω  1. Finally, we assume that the
effect of the spontaneous Raman photons is smaller than the
frequency conversion of the single photon corresponding to
|T �ω fRγ P0
R(0)| � 1. Under these three assumptions, we
obtain the approximate result,

g(2)
click ≈ (T �ω + 2π )

√
2πR(0)nth(�) fRγ P0
. (23)

Evidently, g(2)
click is proportional to R nth, which is the sponta-

neous Raman spectrum. In the regime |�| → ∞, the Raman
response can be expanded in a Laurent series such that R(0) ≈

1
�3

∑
i Fiωid2

i , which is used in Fig. 4(b) to illustrate the
approximated g(2)

click value, given by Eq. (23), as the black
dotted lines. Even though �ω/2π = 20 THz is much larger
than the variations of the Raman response in Fig. 4(b), the
approximated g(2)

click value estimates the order of magnitude
for the exact value, for the temperatures 300 K and 77 K.
However, for 4 K, the approximation error is emphasized due
to nth being small.

The analytical results show that it is possible to achieve
a second-order correlation value on the single-photon level
within the Raman bandwidth by properly engineering the
fields through frequency detuning, polarization configuration,
and fiber temperature. However, using pulsed pumps unlocks

additional degrees of freedom, and we consider this case in
the following section.

IV. PULSED PUMPS

In this section, we present a general evolution equation for
the Green functions introduced in Eq. (3). In contrast to
previous approaches, which involve propagating modes of a
Schmidt decomposition without Raman scattering [33,34], we
directly solve for the Greens function. We obtain the gov-
erning equations by inserting the proposed solution given by
Eq. (3) into Eq. (1). The resulting Green function equation is
expressed as a vector equation of the form(
∂z + β

1
∂t + i

2
β

2
∂2

t

)
G(z, t, t ′) = i

∫
dτK(z, t, τ )G(z, τ, t ′),

(24)

where the Green function vector and dispersion coefficient
matrices are given by

G(z, t, t ′) =
(

Gii(z, t, t ′)
Gsi(z, t, t ′)

)
, β

n
=

(
βni 0
0 βns

)
. (25)

The coupling matrix K has an instantaneous and noninstan-
taneous part, representing the electronic KE and Raman KR
response, respectively. These are given by

K(z, t, t ′) = KE(z, t )δ(t − t ′) + KR(z, t, t ′), (26a)

KE(z, t ) =
(

KE
iqqi(z, t ) KE

iqps(z, t )ei�βz

KE
spqi(z, t )e−i�βz KE

spps(z, t )

)
, (26b)

KR(z, t, t ′) =
(

KR
iqqi(z, t, t ′) KR

iqps(z, t, t ′)ei�βz

KR
spqi(z, t, t ′)e−i�βz KR

spps(z, t, t ′)

)
,

(26c)

where the matrix elements are defined as

KE
i jkl (z, t ) = 2γi jkl A

∗
k (z, t )Aj (z, t ), (27a)

KR
i jkl (z, t, t ′) = fi jkl (t − t ′)A∗

k (z, t ′)Aj (z, t ). (27b)

For the present analysis, the equations for Gii and Gsi are
sufficient since Gis = G†

si. However, the equation for the two
remaining Green functions is found under the substitution i ↔
s and q ↔ p. From Eq. (3), the initial condition to the Green
function equation is inferred and is given by

G(z = 0, t, t ′) =
(

1
0

)
δ(t − t ′). (28)

The Green functions depend on the evolving pump fields.
Therefore, to solve the Green function equation, it is necessary
to simultaneously solve Eq. (4), which is carried out in the
following using the conventional split-step Fourier method
[35]. Before giving an example of the solutions, we outline
how the split-step Fourier method is applied to the Green
function equation.

A. Split-step scheme for Green functions

In this section, we describe a completely general split-step
scheme for solving the Green function equation. The spatial
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FIG. 5. Illustration of the incremental evolution of the three
operators in the split-step scheme, applied on three iterated steps.
Starting from the first h

2 -dispersion step, the black arrows illustrate
the chronological order of the scheme.

evolution of the Green functions can be expressed as

∂zGz = (D + Ez + Rz )Gz, (29)

where D, Ez, and Rz are operators representing dispersive
effects, and electronic and Raman-induced NPM and Bragg
scattering at position z, respectively. The operators only act
on the first time argument, as described by Eq. (24). Solving
the equation over an increment h and invoking the trapezoidal
rule to approximate the integral in the exponential, the formal
solution can be expressed as

Gz+h = exp[Dh + Ẽzh + R̃zh]Gz + O(h3), (30)

where Õz = 1
2 (Oz+h + Oz ). From here, the Baker-Hausdorf

formula [35] can be applied twice, thereby separating the
evolution of each of the physical effects, giving rise to a sym-
metrical split-step scheme with three operators and a local step
error of O(h3). In Fig. 5, the symmetrical split-step scheme is
illustrated for a single step and the consecutive application
of the scheme. Each step is propagated by determining the
impact of each operator, which is found by solving the equa-
tion for each physical effect. The dispersive and electronic
effects have the exact solutions

[eDzhGz](ω, t ′) = exp
[
i
(
β

1
ω + 1

2β
2
ω2)h

]
Gz(ω, t ′), (31a)

[eẼzhGz](t, t ′) =
( Gii(z, t ) G(z, t )

−G∗(z, t ) Gsi(z, t )

)
Gz(t, t ′), (31b)

where the frequency argument in the dispersive step implies a
Fourier transform. We have defined the matrix elements of the
electronic step as

Gii(z, t ) = eik1(z,t )h− i
2 �βh

k2(z, t )

{
k2(z, t ) cos[k2(z, t )h]

+ i

2

[
K̃e

iqqi(z, t ) − K̃e
spps(z, t ) + �β

]
sin[k2(z, t )h]

}
,

(32a)

G(z, t ) = i
K̃e

iqps(z, t )

k2(z, t )
eik1(z,t )h− i

2 �βh sin[k2(z, t )h], (32b)

k1(z, t ) = 1

2

[
K̃e

iqqi(z, t ) + K̃e
spps(z, t )

]
, (32c)

k2(z, t ) = 1

2

{
4
∣∣K̃e

iqps(z, t )
∣∣2

+ [
K̃e

iqqi(z, t ) − K̃e
spps(z, t ) + �β

]2}1/2
, (32d)

where Gsi is found from Gii by substituting i ↔ s, and �β →
−�β. The tilde denotes the average over the z and z + h

points. Notably, the solution to the pure electronic scattering
has the same form as the solution in the cw regime.

Finally, we solve the Raman step. The equation govern-
ing this step is an integro-differential equation, which has a
form that does not have a general analytical solution. The
equation can be solved using numerical ODE solvers; how-
ever, here we propose a simple iterative approach. We start
by integrating R̂zGz over the increment h, and invoking the
trapezoidal rule to approximate the z integral,

[eR̃zhGz](t, t ′) = Gz(t, t ′) + �Gz(t, t ′), (33a)

�Gz(t, t ′) = i
h

2

∫
dτ [KR(z, t, τ )Gz(τ, t ′)

+ KR(z + h, t, τ )Gz+h(τ, t ′)]. (33b)

We determine �Gz recursively by first assuming Gz+h =
Gz. After three iterations, the error is O(h3), which is consis-
tent with the error of the symmetric split-step scheme.

B. Numerical results

In this section, we apply the scheme developed in the
previous section to the simple case of an optical fiber with
the fields placed symmetrically around the zero-dispersion
line. The fields thus co-propagate pairwise with β1s = β1q and
β1i = β1p, and walk-off β1s − β1i = �neff

c , where c is the speed
of light and we choose �neff = 10−3. For simplicity, the input
pumps are chosen to be identical to a Gaussian pulse form,

Aq,p(0, t ) =
√

P exp

[
−(

t ± �t
2

)2

4τ 2
p

]
, (34)

where P is the peak power, τp is the pulse duration, and
�t is the initial separation between the pumps. The fiber
length is chosen so that the pump fields collide at the fiber
midpoint, corresponding to 
 = 2�tc

�neff
, and to ensure complete

pump-pump collision, we choose �t = 6τp. To highlight the
phonon-induced temporal dynamics, we only consider pulse
durations of the order of the Raman response, τp = 0.1 ps.

In Fig. 6, the cross-Green function is illustrated for γ P
 =
4π , which ensures full conversion for a suitably chosen in-
put shape. Lines of causality, illustrated by the white dashed
lines, inherently bound the cross-Green function for a pure
electronic response due to the instantaneous nature of the
electrons. The lines are given by ti,s = t ′ + β1i,s
, with ti
being the upper line and ts the lower line, corresponding to
the earliest and latest times at which a frequency-converted
photon can arrive. Figure 6(a) shows |Gis| for a pure electronic
response. It is characterized by the shape of the pump and a
ripple. The same behavior has been observed in the analyt-
ical solutions, which have previously been determined for a
pure electronic response, where the ripple enters through the
zeroth-order Bessel function of the first kind [36]. Introducing
second-order dispersion in Fig. 6(b), a complicated overlying
pattern appears due to interference between the possible paths
of conversion. In Figs. 6(c) and 6(d), Raman scattering is
included with fR = 0.18 and fR = 1, respectively. For fR =
0.18, the Green function is mildly distorted, while for fR = 1,
the Green function is significantly altered and extends beyond
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FIG. 6. The cross-Green functions |Gis| illustrated for four
choices of parameters, each normalized to their respective maximum.
(a) Pure electronic response fR = 0. (b) Pure electronic response

fR = 0 and second-order dispersion β2s,p = −β2i,q = 0.01 ps2

m .
(c) Raman fraction corresponding to a silica fiber, fR = 0.18.
(d) Pure Raman response fR = 1.

the slow (electronic) causality line due to a delay induced by
the noninstantaneous Raman response.

To investigate the temporal dynamics, it is convenient to
decompose the Green functions into Schmidt modes, which
explicitly reveal the temporal shapes that are converted.
The Schmidt decomposition of the Green function has the
form [36,37],

Gis(t, t ′) =
∑

n

λnvn(t )un(t ′), (35)

where λn is the Schmidt coefficient describing the weight of
each Schmidt mode, vn is the output mode, and un is the
input mode. If the nth input Schmidt mode is chosen as the
input, it is converted to the corresponding nth output Schmidt
mode with conversion efficiency |λn|2. In Fig. 7, the Schmidt
coefficients for the two first Schmidt modes are shown as a
function of the nonlinear interaction strength γ P
, for three
choices of fR. For the pure electronic response fR = 0, the
first-order Schmidt coefficient initially dominates, indicating
a separable Green function in the low-interaction regime. As
γ P
 increases, the second-order Schmidt coefficient becomes
significant, which is seen as the emergence of a ripple in the
Green function; see Fig. 6(a). For sufficiently large nonlin-
ear interaction strength, both Schmidt modes are perfectly
converted. The same behavior was observed in analytical
models [36].

Introducing Raman scattering, fR = 0.18, the Schmidt
coefficients decrease primarily due to absorption from stim-
ulated Raman scattering. For fR = 1, the absorption is more
significant and, notably, the second-order Schmidt coefficient
increases faster initially, indicating that Raman scattering
deteriorates the separability of the Green function. Around
γ P
 = 7π , the gains induced by phonon-mediated FWM
and absorption from stimulated Raman scattering no longer

FIG. 7. The first (solid line) and second (dashed line) Schmidt
mode coefficients as a function nonlinear interaction strength γ P


found by varying the pump peak power P. These are shown for three
choices of Raman fraction: pure electronic response fR = 0, silica
fiber fR = 0.18, and pure Raman response fR = 1. Inset: The first-
order input Schmidt mode for each of the three responses, evaluated
at γ P
 = 4π .

balance each other due to phase-modulation effects in the
pumps, which give rise to an exponential increase of the
Schmidt coefficients.

The inset in Fig. 7 shows the first-order input Schmidt
modes for the three choices of fR, evaluated for γ P
 =
4π . The input Schmidt modes, including Raman scattering,
acquire a slight temporal broadening due to the delayed
Raman response, which thereby converts more efficiently be-
fore the point of collision compared to the pure electronic
response.

Using the Green functions, we can directly determine
the second-order correlation value g(2)

click from Eq. (9).
Figure 8 shows g(2)

click for a fiber with fR = 0.18, temperature
of 300 K, and a nonlinear interaction strength γ P
 = 4π

for four choices of input pulses, as a function of the fre-
quency detuning �. For comparison, we have included the
case with cw pumps from the previous section. The output
quantum states are filtered spectrally, as described by Eq. (15).
The four choices of input pulses represent four methods
for optimizing the single-photon shape with respect to the
pumps.

The most primitive choice, which is the Gaussian, ensures
the single photon has the same shape and duration as the
pumps. This leads to poor performance due to the complicated
phase-modulation effects of the pumps. We take the electron-
ically induced phase modulation into account by choosing the
input shape to be the first-order Schmidt mode of Gis with
fR = 0, illustrated by the black line in the inset in Fig. 7. This
noticeably improves the g(2)

click value. Including the effects of
Raman scattering, by choosing the input Schmidt mode with
fR = 0.18, as illustrated by the red line in the inset in Fig. 7,
improves the value even further. However, only by taking
the filter into account in the Green function, is it possible to
achieve the best performance.
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FIG. 8. Left axis: The time-resolved second-order correlation
value g(2)

click for a fiber temperature of 300 K. Right axis: The proba-
bility of detecting a frequency-converted single-photon, as a function
of frequency detuning. These are shown for four choices of input
single-photon distributions being a Gaussian centered around tin, an
electronic optimized, a Raman optimized, and a filter optimized. The
green curves illustrate the case with a Gaussian input pulse and cw
pumps, from Fig. 4(b).

For all frequency detunings of interest, the cw case has the
worst performance. This is because the average pump power
over the detection window is larger for the cw pumps, which
increases the accumulated spontaneous Raman photons.

This preliminary analysis shows that it is necessary to
consider all physical effects to achieve the best possible fre-
quency conversion. However, in a realistic experiment, the
single-photon shape is often predetermined and the pump
shapes would therefore have to be optimized with respect to
this. Although this inverse problem is generally difficult to
tackle, the present model paves the way for determining the
optimal pump shapes by taking the relevant physical effects
into account.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented a general quantum-
mechanical model that describes the frequency conversion of
a quantum state in a medium constrained by Raman scattering.
We have presented the model using a simple configuration
with linearly polarized modes and a single-mode fiber. How-
ever, the generality of the model allows the modeling of
frequency conversion between complicated spatial and polar-
ization modes by using the appropriate coefficients, which can
be found using the expressions provided in Appendix A.

Our focus of interest has been on the impact of Raman
scattering on single-photon applications of Bragg scattering.
Therefore, the appropriate figure of merit is the second-order
correlation function, for which we determined an expression
in terms of Green functions.

Using cw pumps, we found analytical expressions of the
Green functions in the frequency domain, from which we have
shown that it is possible to mitigate the impact of Raman
scattering by cooling the fiber, adjusting the frequency de-
tuning, or choosing a cross-polarized field configuration. The
results show that it is not possible to achieve a reasonable g(2)

click
value within the Raman bandwidth at room temperature. At
the same time, previous studies have shown that a frequency
beyond the Raman bandwidth is experimentally challenging
due to increasing phase-matching sensitivity [38]. Using the
approximate results for the cw model, given by Eq. (23), it is
possible to acquire a preliminary estimate of the temperature
required to achieve a g(2)

click value on the single-photon level,
which we here consider as a value below 0.05: at the dominant
Raman peak, � = 13 THz, with a co-polarized configuration,
a temperature of ∼135 K is necessary, while a temperature of
∼253 K is sufficient with a cross-polarized configuration.

Finally, we have developed a numerical split-step scheme
for determining the Green functions in a pulsed pump con-
figuration. This opens the parameter space considerably and a
careful analysis of a specific system is necessary to design
the optimal setup. However, with the preliminary analysis,
we have shown that it is possible to considerably optimize
the g(2)

click value by taking the relevant physical aspects of an
experimental setup into account.
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APPENDIX A: NONLINEAR COEFFICIENTS

Here we give a justification for using the vectorial model
described by Lin et al. [18] to model quantum fields quantized
in arbitrary spatial or polarization modes. We start by consid-
ering the full-vectorial Hamiltonian describing the electronic
interaction, and Raman scattering [25],

Ĥe =
∫

d3x
1

4ε3

∑
i jkl

χ
(3)
i jkl : D̂iD̂ jD̂kD̂l : (A1a)

ĤR =
∫

d3x
∫ ∞

0
dω

∑
i j

Ri j (ω) : D̂iD̂ j q̂(ω, x) :, (A1b)

where χ
(3)
i jkl is the third-order susceptibility tensor, ε is the

material permittivity, Ri j is the Raman response tensor, q̂ is
the bosonic phonon operator, D̂i is the ith vector component
of the displacement field, and we have defined x = (x, y, z). In
contrast to previous work dealing with Raman scattering, we
choose the phonon operator to be localized in all three spatial
coordinates x. This gives rise to a multimode description of
Raman scattering, which is necessary to construct a model for
intermodal FWM-BS. We perform a mode-field expansion of
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the fields to find the Hamiltonian in terms of the creation and
annihilation operators [39],

D̂(x, t ) =
∑

m

√
h̄εωm

2vm
[Âm(z, t )d(m)(r)eiβm0z−iωmt + H.c.],

(A2a)

q̂(ω, x) ∝ b̂(ω, x) + b̂†(ω, x), (A2b)

where ωm and vm is the center frequency and group velocity
of field m, respectively. The mode profiles are normalized,∫

d2r|d(m)(r)|2 = 1, and are not necessarily orthogonal. In-
serting this into the electronic Hamiltonian and keeping
only photon-number-conserving terms, we find the mode-field
Hamiltonian for the electronic interactions,

Ĥe = h̄
∫

dz
(
2 − 3

2δabcd
)
�abcd Â†

aÂ†
bÂcÂd , (A3)

where we have defined the nonlinear coefficient,

�abcd = 3h̄

4ε

√
ωaωbωcωd

vavbvcvd

∑
i jkl

χ
(3)
i jkl O

(abcd )
i jkl , (A4)

O(abcd )
i jkl =

∫
d2rd (a)∗

i (r)d (b)∗
j (r)d (c)

k (r)d (d )
l (r), (A5)

where O(abcd )
i jkl is the inverse mode area. Similarly, we find the

Raman scattering Hamiltonian in terms of the creation and
annihilation operators,

ĤR = h̄
∫

d3x
∫ ∞

0
dω

×
∑

i j

Ri j (ω)d (a)∗
i (r)d (b)

j (r)q̂(x, ω)Â†
aÂb + H.c. (A6)

Following the procedure outlined by Drummond [25] and Lin
et al. [18], we arrive at the evolution equation of the quantum
fields,

∂zÂm = −β1m∂t Âm − i

2
β2m∂2

t Âm

+ i
∑
nkl

�mnkl (2 − δmn)Â†
nÂkÂl + i

∑
n

m̂mnÂn

+ i
∑
nkl

Ân

∫
dt ′ fmnkl (t − t ′)Â†

k (t ′)Â†
l (t ′), (A7)

where the noise operator, describing spontaneous Raman scat-
tering, is given by

m̂mn(z, t ) =
∫ ∞

0
dωRi j (ω)

∫
d2rd (n)∗

i (r)d (m)
j (r)

× [b̂(x, ω)e−iωt + b̂†(x, ω)eiωt ]ei(ωm−ωn )t , (A8)

and the Raman response function is found to be

fabcd (t ) = 2�(t )ei(ωa−ωb)t
∫ ∞

0
dω sin(ωt )Im[ fabcd (ω)],

(A9a)

Im[ fabcd (ω)] =
∑
i jkl

Ri j (ω)Rkl (ω)O(abcd )
i jkl . (A9b)

The response function and the phonon noise oscillate at
the frequency difference, ωa − ωb. When the field is chosen
to be the four fields described in Fig. 1, this corresponds to
the frequency detuning �. When introducing the semiclassical
approximation, the nonlinear coefficient becomes

γabcd = �abcd

h̄
√

ωaωc
, (A10)

where a and c are the pump fields. In the Raman response
functions, the coefficient (h̄

√
ωaωc)−1 is absorbed into the

Raman response tensor Ri j .

APPENDIX B: COMMUTATION RELATIONS

In a quantum-mechanical model, the commutation rela-
tions should be preserved throughout the evolution. However,
since the loss is introduced through the delayed response
function, this can no longer be the case. Here, we will show
that the commutation relations are preserved to first order in
the Raman response, which will suffice for our semiclassi-
cal model, as it is experimentally preferred to minimize the
Raman interaction.

We consider here the commutation relations in the case of
cw pumps. Using Eq. (12), we start out by noting

[âi(
, ω), âi (
, ω
′)] = [âi(
, ω), âs(
, ω

′)] = 0, (B1)

for all 
, since [m̂i(z, ω), m̂s(z′, ω′)] = 0, which can easily be
shown by Fourier transforming Eq. (A8).

Next, we Taylor expand the Green functions, given by
Eq. (13), in the Raman response gi = √

2π Im{g}
,

Gii = cos(gr ) − gie
igr + O

(
g2

i

)
, (B2)

Gis = i sin(gr ) − gie
igr + O

(
g2

i

)
, (B3)

where gr = √
2πRe{g}
. We can thereby determine the com-

mutation relation to first order in the Raman response gi,

[âi(
, ω), â†
s (
, ω′)] = gi[nth(ω − �) − 2]δ(ω − ω′) + O

(
g2

i

)
.

(B4)

The term with nth originates from [m̂i(z, ω), m̂†
s (z′, ω′)] =√

2π Im[g(ω)]nth(ω − �)δ(ω − ω′)δ(z − z′) and captures the
gain induced by spontaneous Raman scattering. The term with
−2 describes the loss induced by stimulated Raman scat-
tering. Similarly, it can be found that [âi(
, ω), â†

i (
, ω′)] =
δ(ω − ω′) + O(gi ). Thereby, we have shown that in the per-
turbative regime, |gi| � 1, the commutation relations are
preserved.

APPENDIX C: SECOND-ORDER
CORRELATION FUNCTION

We want to find an expression for the second-order corre-
lation function in terms of the Green functions. To simplify
the evaluation, we express the output idler operator in terms
of two operators, representing the optical and phononic parts,
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respectively,

âi (
, t ) = Â(t ) + iM̂(t ). (C1)

Using that 〈M̂〉 = 0, we determine the four-point correlation
for a single-photon input state, which thereby yields

〈â†
i (t1)â†

i (t2)âi(t2)âi(t1)〉
= |ψout (t1)|2E (t2, t2) + |ψout (t2)|2E (t1, t1)

+ ψ∗
out (t1)ψout (t2)E (t2, t1)

+ ψ∗
out (t2)ψout (t1)E (t1, t2)

+ 〈M̂†(t1)M̂†(t2)M̂(t2)M̂(t1)〉, (C2)

where we have used the optical four-point correlation function
and the correlation function odd number of creation or anni-
hilation operators evaluate to zero, and we have defined the
expectation values as

E (t1, t2) = 〈M̂†(t1)M̂(t2)〉, (C3a)

ψ∗
out (t1)ψout (t2) = 〈Â†(t1)Â(t2)〉. (C3b)

The phononic four-point correlation function can be factor-
ized since the phonon’s bath exhibits thermal statistics,

〈M̂†(t1)M̂†(t2)M̂(t2)M̂(t1)〉
= E (t1, t1)E (t2, t2) + E (t1, t2)E (t2, t1), (C4)

and thereby we obtain the numerator of Eq. (7).
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